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Abstract. The human cerebral cortex can be separated into cortical
areas forming a clustered network structure. We build two different
clustered networks, where one network is based on a healthy brain
and the other according to a brain affected by a neurodegenerative
process. Each cortical area has a subnetwork with small-world proper-
ties. We verify that both networks exhibit rich-club organisation and
phase synchronisation. Due to the fact that neuronal synchronisation
can be related to brain diseases, we consider the delayed feedback con-
trol as a method to suppress synchronous behaviours. In this work, it
is presented that depending on the feedback parameters, intensity and
time delay, phase synchronisation in both networks can be suppressed.
Therefore, one of our main results is to show that delayed feedback con-
trol can be used to suppress undesired synchronous behaviours not only
in the healthy brain, but also in the brain marked by neurodegenerative
processes.
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1 Introduction

The brain is an organ composed of neurons which are interconnected through elec-
trical and chemical synapses [1,2]. Both kinds of synapses transmit information, but
by different mechanisms. Electrical synapse is a conductive link between neighbour-
ing neurons, where the signal transmission can happen in both directions and it is
extremely fast [3]. In the chemical synapse, the signal transmission is directed and
slower than the electrical synapse [4].

In mammals, the brain varies in size, and it has functional and anatomical distinct
structures [5]. The largest part of the human brain is the cortex, responsible for
important functions, such as thought, cognition, and memory [6]. The cortex regions
are densely interconnected by means of cortical axonal pathways [7]. Thomas et al.
[8] estimated the organisation of the human cerebral cortex by intrinsic functional
connectivity. They reported that different regions exhibit distinct features. Glasser
et al. [9] used multi-modal magnetic resonance images from the Human Connectome
Project to delineate and characterise cortical areas.

Phase synchronisation plays an important role in memory processes [10]. How-
ever, neuronal synchronisation can be associated with brain disorders, for example
epilepsy [11,12] and Parkinson’s disease [13,14]. Lameu et al. [15,16] analysed not only
synchronous behaviour, but also suppression of bursting synchronisation in clustered
neuronal networks and in networks based on cat’s brain. They analysed different inter-
ventions to suppress phase synchronisation, such as external time-periodic driving and
delayed feedback control.

Delayed feedback control was introduced by Pyragas [17] as a method of chaos
control. This method has many applications in various dynamical systems, such as
Duffing–van der Pol oscillator [18], quasi-integrable Hamiltonian systems [19], and
economical model [20]. Rosenblum and Pikovsky [21] suggested a method based on
delayed feedback that can be applied to suppress pathological rhythms in neuronal
systems. Batista et al. [22] investigated the suppression of bursting synchronisation
in scale-free networks of Rulkov neurons using delayed feedback control. Feedback
signal was also considered to suppress synchronisation in network of networks [23].

Delayed feedback was adapted for deep brain stimulation to control undesired
synchronous behaviours. The deep brain stimulation is a neurological surgery involv-
ing electrical stimulation to neuronal target structures through implanted electrodes
[24]. Popovych and Tass [25] studied delayed feedback for electrical brain stimula-
tion. They used multisite linear delayed feedback to modulate the pulse amplitude of
high-frequency and as a consequence to desynchronise collective rhythmic activity in
a neuronal ensemble. Abnormal neuronal synchronisation can be desynchronised by
means of a pulsatile electrical brain stimulation subjected to an amplitude modulation
by delayed feedback strategies [26].

There are studies about the mitigation of synchronisation during epileptic activity
by deep brain stimulation [27]. Recently, it was demonstrated that electrical stimu-
lation can be used to reduce spike-and-wave episodes in epilepsy [28]. Maksimenko
et al. [29] developed an algorithm for the prediction of spike-wave-discharges that
are related to epileptic seizures. The absence seizure prediction algorithm indicates
synchronisation within and between brain structures. This way, the delayed feedback
control can be applied at the onset of a seizure.

We build neuronal networks according to the topological organisation of the
structural cortical networks obtained by Lo et al. [30]. Using diffusion tensor image
tractography, they constructed structural connection matrices from human brains.
One obtained from a healthy patient and other from a patient with Alzheimer’s dis-
ease. In our networks, we consider in each cortical area a subnetwork with small-world
properties. Small-world networks have a low average characteristic path length and a
high average clustering coefficient [31]. He et al. [32] provided evidence of small-world
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properties in the human brain by cortical thickness from magnetic resonance imaging.
With regarding to the neuron model, we utilise the Rulkov map [33], that mimics neu-
ronal bursts and have been used to investigate coupled networks [34,35]. We apply
a feedback control to this kind of coupled network and analyse alterations in the
obtained synchronisation pattern due to the applied feedback control.

In this work, our contribution is to perform a comparison between two clus-
tered networks: (i) a network built from a healthy brain, and (ii) another from a
brain with a neurodegenerative disease. The networks exhibit phase synchronisation
in different areas. One novel aspect is the occurrence of different synchronous pat-
terns between the networks due to the rich-club organisation, where the rich-club is
given by different areas. One of our main results is to show that the delayed feed-
back control leads to a successful suppression of the synchronous behaviours in both
networks.

This paper is organised as follows: in Section 2, we introduce our neuronal network
composed of coupled Rulkov maps. Section 3 shows that depending on the parameters
the network can exhibit phase synchronisation. In Section 4, we study the effect of
delayed feedback control on the synchronisation. Our final remarks are presented in
the last section.

2 Neuronal network

In our network each neuron is modelled by the Rulkov map [33]

xn+1 =
α

1 + x2n
+ yn, (1)

yn+1 = yn − σ(xn − β), (2)

where n corresponds to the interaction, xn and yn are the dynamical variables, α
controls the spiking time-scale, and σ and β are associated with the slow time-scale.
We consider σ = 0.01, β = −1.25, and α is randomly distributed in the interval
[4.1, 4.4]. Figure 1 displays the time evolution of xn and yn that represent the fast
and slow dynamical variables, respectively. In Figure 1a we see chaotic bursts, where
the point in time when the burst starts is represented by nk, where k is an integer. The
yn variable exhibits regular saw-teeth oscillations with local maximum and minimum
when the burst starts and ends, respectively, as shown in Figure 1b.

The neuronal networks is composed of Rulkov maps and the dynamics is given
by

x
(i,a)
n+1 =

α(i,a)

1 +
(
x
(i,a)
n

)2 + y(i,a)n +
ge
2

(
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n − 2x(i,a)n

)

−gc
D∑
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[
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(
x(d,f)n − θ

)(
x(i,a)n − Vs

)]
+ Λn, (3)

y
(i,a)
n+1 = y(i,a)n − σ(x(i,a)n − β), (4)

where (i, a) denotes the neuron i in the area a, ge and gc are the electrical and chemical
coupling strengths, respectively. A(d,f),(i,a) is the adjacency matrix of the chemical
connections, H(x) the Heaviside step function, θ the presynaptic threshold, Vs the
reversal potential, and Λn is the external perturbation. We consider θ = −1, Vs = 1
for excitatory synapses, and Vs = −2 for inhibitory synapses. The connectivity matrix
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Fig. 1. Time evolution of (a) xn and (b) yn for the Rulkov map, where nk denotes when
the burst starts.

(a) (b)

Fig. 2. Matrices of the corticocortical connectivity for (a) healthy (HM) and (b) degenerative
(DM) brain, where the matrix elements have connections weighted 0 (white), 1 (red), 2
(blue), or 3 (green). The matrices have 78 areas that are separated into 7 regions (left
hemisphere in black colour and right hemisphere in orange colour): central lobe (C), frontal
lobe (F), temporal lobe (T), parietal lobe (P), occipital lobe (O), limbic lobe (L), and insula
(I).

has F = 78 areas and each area has a subnetwork with D = 100 neurons, where the
subnetwork is constructed according to the Newman–Watts network [36].

The adjacency matrix A(d,f),(i,a) is based on the topological organisation in the
structural cortical networks obtained by Lo et al. [30]. Figures 2a and 2b show
the matrices for the healthy (HM) and degenerative (DM) brain, respectively. The
matrix elements have connections weighted 0 (white), 1 (red), 2 (blue), or 3 (green).
We consider 0, 1, 2, and 3 for absent, sparse, intermediate, and dense connection,
respectively.

We calculate the matching index (MI) for both HM and DM, due to the fact that
a large MI value is associated with synchronous behaviour. The MI is obtained by
means of the connectivity MI maa′ between two areas a and a′ (a 6= a′). maa′ is the
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Fig. 3. Normalised matching index for all areas from the (a) HM and (b) DM.

amount of overlap of their neighbourhoods, and given by [37]

maa′ = Maa′ +
N∑
n=1

ManMa′n, (5)

where Maa′ is the adjacency matrix with elements equal to 1 when a and a′ are
connected and 0 when they are not connected. We normalise MI dividing each element
by ka + ka′ −maa′ , where ka is the degree of the area a. maa′ = 1 if all inputs to
areas a and a′ come from different areas, and maa′ = 0 if they receive inputs from
the same areas. In Figure 3, we see that both HM and DM have a group of areas
(26 ≤ a ≤ 32) with high MI values, that corresponds to the occipital region in the
brain.

We analyse the connectivity profile of both matrices by means of the weighted
rich-club parameter, that is given by [38]

ρ(r) =
φ(r)

φrandom(r)
, (6)

where

φ(r) =
W>r∑E<r

l=1 w
rank
l

, (7)

where r is the richness index calculated from the sum of the weights attached to the
connections originating from a neuron, E the total number of connections, and wrank

l

is the ranked weight with wrank
l ≤ wrank

l+1 (l = 1, 2, 3, . . . , E). A network has a rich-club
organisation if ρ(r) is greater than 1 over a range r. We verify that both HM and DM
have a rich-club organisation. Figure 4 shows ρ for the HM (black circles) and DM
(red triangles) brain, and as a result we identify the areas with higher ρ values which
are the most interconnected ones (local rich-club). In the HM (black circles), the rich-
club is composed of the areas 25, 29, 30, 37, 64, and 76. The rich-club in the DM (red
triangles) is given by the areas 25, 37, 64, 69, and 76. Therefore, both networks have
rich-club organisation composed of different areas due to the degenerative process in
the brain.
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Fig. 4. Local rich club for the areas in the HD (black circles) and DM (red triangles).

3 Phase synchronisation

Neuronal groups can generate oscillatory activity, as well as they can exhibit
synchronised activity [39]. In this work, as a diagnostic tool we use the order param-
eter to identify synchronous behaviours. The order parameter was introduced by
Kuramoto [40]

zn = Rn exp(iΨn) ≡ 1

Nneur

∑
j∈a

exp(iψ(j,Ineur)
n ), (8)

where Rn and Ψn are the amplitude and angle for a centroid phase vector, respectively.

ψ
(j,Ineur)
n corresponds to the phase of the neuron j belonging to the set Ineur with an

amount of neurons Nneur which are considered to compute Rn. The phase is given by

ψn = 2πk + 2π
n− nk

nk+1 − nk
, (9)

where nk denotes when the burst starts (Fig. 1a). We calculate the average order R
parameter between the areas (a, a′) in the time interval T ,

R =
1

T

T∑
n=1

R(a,a′)
n . (10)

For identical neurons, R = 1 when they are completely synchronised and R� 1 for
desynchronous behaviour. In our neuronal network, we consider that the neurons are
synchronised if R > 0.9, due to the fact that the neurons are not identical.

Figure 5 shows the R values between the cortical areas in the HM and DM. For
ge = 0.02 and gc = 0.002 both HM (Fig. 5a) and DM (Fig. 5b) exhibit R values
less than 0.9 as a result of the asynchronous behaviour. Increasing gc we verify the
emergence of a large region of synchronicity in the network. Figures 5c and 5d display
the areas where the neurons are synchronised. We verify different synchronised areas
in the HM and DM, as well as 35% and 45% of R values greater than 0.9, respectively.
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Fig. 5. Average order parameter (colour bar) for gc = 0.002 in panels (a) HM and (b) DM,
and gc = 0.004 in panels (c) HM and (d) DM.

The occipital (26 ≤ a ≤ 32) region exhibits not only phase synchronisation in both
matrices of the corticocortical connectivity, but also large values of MI. The different
synchronous patterns between the matrices can be associated with the change of the
rich-club organisation due to the degenerative process in the brain.

4 Delayed feedback control

The delayed feedback control was proposed by Pyragas [17]. In this control method
a delayed signal from the system is used as external perturbation to change the
system’s dynamical behaviour. The analytical knowledge of the system is not required
in feedback scheme. It was suggested for suppression of synchrony in neuronal
networks [21].

In this work, we consider a delayed feedback control to suppress synchronous
behaviour in both HM and DM. The delayed feedback can be introduced modifying
the external perturbation in equation (3) as

Λn =
1

Np

∑
(i,a)∈Ip

x
(i,a)
n−τ , (11)

where Np is the number of neurons belonging to a set Ip of perturbed neurons, and
τ is the time delay.
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Fig. 6. RO (colour bar) as a function of Np and τ for gc = 0.004 in panels (a) HM and (b)
DM. The delayed feedback control is applied in the region 26 ≤ a ≤ 32.
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Fig. 7. RT (colour bar) as a function of Np and τ for gc = 0.004 in panels (a) HM and
(b) DM. The delayed feedback control is applied in a percentage Np of neurons that are
randomly chosen in the network of networks.

Firstly, the delayed feedback control is applied only in the occipital region. This
region (26 ≤ a ≤ 32) has large MI and synchronised areas in both HM and DM.
We calculate the average order parameter for the occipital region RO as a function
of Np and τ , as shown in Figure 6, where Np is the percentage of neurons in the
occipital region. We verify the existence of domains of suppression, that are found
around Np ≈ 25 and Np ≈ 50. The domains also depend on the τ values. For τ ≈ 280,
the average time between two bursts, the feedback does not suppress the neuronal
synchronisation. Whereas for τ ≈ 140, half of the average time between two bursts,
the synchronisation is successfully suppressed.

Secondly, we apply the delayed feedback in a percentage Np of neurons randomly
chosen in all network of networks. Figure 7 displays the total average order parameter
RT as a function of Np and τ . RT is calculated considering all neurons in the neuronal
network. We see in both HM and DM that there is one large domain of synchronisation
suppression for 4 < Np < 50 and τ from 80 to 160.
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5 Conclusion

Neuronal synchronisation plays an important role in various tasks, as well as it has
been related to pathological brain rhythms. With this in mind, we build a network
of networks composed by Rulkov neurons to study suppression of neuronal phase
synchronisation. We consider structural connection matrices according to a healthy
and degenerative brain.

Both networks exhibit synchronous behaviour among different areas when the
coupling strength is increased. We observe different synchronous patterns between
the matrices that are related to the change of the rich-club organisation due to the
degenerative process in the brain. In addition, the occipital region has large values
of MI, as well as it shows phase synchronisation in both HM and DM.

With the objective of suppressing synchronous behaviour, we apply the delayed
feedback control. We find suppression domains by varying the percentage of perturbed
neurons and the time delay. We verify that it is possible to suppress the synchronisa-
tion in the occipital region applying the feedback in 25% of the neurons with a τ value
around 140, that is the half of average time between two bursts. Moreover, with 5%
of neurons randomly chosen in the network and τ from 80 to 160 the synchronisation
can be suppressed in all neuronal network. Therefore, we show that delayed feedback
control can be used to suppress synchronous behaviours not only in the healthy brain,
but also in the degenerative brain.
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Fundação Araucária, and São Paulo Research Foundation (processes FAPESP 2011/19296-
1, 2015/ 07311-7, 2016/23398-8, 2015/50122-0, 2017/13502-5, 2017/20920-8, 2017/18977-1).
Research supported by grant 2015/50122-0 São Paulo Research Foundation (FAPESP) and
DFG-IRTG 1740/2. We acknowledge the Taiwan data results which were supported by
Taiwan MOST grants and collected in National Yang-Ming University.

Author contribution statement

All authors contributed extensively to the work presented in this paper.

References

1. S. Grossber, Neural Netw. 1, 17 (1988)
2. P. Dayan, L.F. Abbott, Theoretical neuroscience: computational and mathematical

modeling of neural systems (MIT Press, Cambridge, 1999)
3. B.W. Connors, M.A. Long, Annu. Rev. Neurosci. 27, 393 (2004)
4. S.-C. Lee, S.J. Cruikshank, B.W. Connors, J. Physiol. 588, 2403 (2010)
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