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Nontwist field line mapping in a tokamak with ergodic magnetic limiter
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For tokamaks with uniform magnetic shear, Martin and Taylor have proposed a symplectic map which has
been used to describe the magnetic field lines at the plasma edge perturbed by an ergodic magnetic limiter. We
propose an analytical magnetic field line map, based on the Martin-Taylor map, for a tokamak with arbitrary
safety factor profile. With the inclusion of a nonmonotonic profile, we obtain a nontwist map which presents the
characteristic properties of degenerate systems, such as the twin islands scenario, shearless curve, and separatrix
reconnection. We estimate the width of the islands and describe their changes of shape for large values of the
limiter current. From our numerical simulations about the shearless curve, we show that its position and aspect
depend on the control parameters.
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I. INTRODUCTION

Tokamaks are toroidal devices built with the purpose to
confine plasmas magnetically. This confinement is required
since the plasmas generated by ohmic heating of the filling
gas present such high temperatures that no material wall could
withstand them [1]. These magnetically confined toroidal
plasmas are promising candidates for obtaining a feasible pro-
cess of fusion energy generation, since they present potential
for succeeding in stable and operating conditions composed
of high plasma pressures and long confinement times [2]. The
confinement in tokamaks is a limiting factor for the effective-
ness of obtaining energy by thermonuclear fusion. For this
reason, modifications and new procedures involving tokamak
design are constantly being developed in order to improve
the confinement. A widely used method to provide such im-
provement is the creation of chaotic magnetic field lines in the
periphery of the plasma, which results in the destruction of the
flux surfaces, plasma edge cooling, and more control over the
plasma-wall interactions [2–4].

The ergodic magnetic limiter (EML), idealized by Karger
and Lackner [5], is composed by a set of current-carrying
wires externally placed in the Tokamak [4,6]. The EML
generates a magnetic field which resonates with the equi-
librium fields of the plasma, leading to the emergence of
magnetic islands, which eventually overlap and result in the
magnetic surface’s destruction and in the formation of a
chaotic layer at the edge of the plasma [4,6,7]. This chaotic
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layer, also called ergodic or stochastic, is composed by area-
filling field lines which are expected to decrease heat and
particle loading on the tokamak wall, restricting the level of
plasma contamination by impurities released from the wall
[4]. The inclusion of an ergodic limiter has already been
performed for some machines, such as the TCABR (Tokamak-
Chauffage-Alfvén-Brésilien) [6,8], the original TEXT (Texas
Experimental Tokamak) [7,9], HYBTOK-II [10], and JFT-23
[11], to name a few.

As in other examples in plasma physics, presented and
discussed in Refs. [2,12,13], the effect of the ergodic lim-
iter on the magnetic field lines in tokamaks can be treated
by the Hamiltonian formalism, and the resulting dynamics
can be investigated by two-dimensional symplectic maps. In
order to illustrate general aspects of the EML, Martin and
Taylor [4] proposed a two-dimensional area-preserving map
that describes the role of the rotational transform, the shear,
the diffuser strength, periodicity, and length for a scenario
of tokamaks with EML. In the analytical derivation, the ef-
fect of the limiter is considered to be restricted to a small
part of the toroidal circumference where the magnetic shear
can be neglected and the map is appropriate to describe
the region near the tokamak wall [4]. The Martin-Taylor
model was revisited in Ref. [3], in which the authors dis-
cuss some results involving periodic orbits, the position of
the resonance islands, the emergence of global chaos, dif-
fusion, and the size of the chaotic region. In Ref. [3] the
authors were able to find approximate results for the map
when considering the scenario in which the perturbation
is small and the map can be treated as a near-integrable
system.
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The Martin-Taylor map describes the field line dynamics
in a region close to the tokamak wall for scenarios with
an uniform magnetic shear and a safety factor radial profile
increasing monotonically from the magnetic axis to the toka-
mak wall [3]. However, the inclusion of nonmonotonic safety
factor profiles is thought to improve plasma confinement,
since this regime is capable of stabilizing microinstabilities
(trapped electron modes) and magnetohydrodynamic (MHD)
instabilities [14,15]. The nonmonotonicity associated to the
profile is responsible for new characteristics of the map, such
as the existence of twin islands and separatrix reconnection
process, and it also influences the types of bifurcation that can
occur in the dynamics [16].

The dynamics of plasma configuration with nonmonotonic
safety factor profiles can be studied by nontwist systems
where the twist condition ∂xn1/∂yn �= 0 (also called the non-
degeneracy condition) is locally violated. Nontwist maps
violate the twist condition, which provides a monotonic re-
lation between the momentum and the velocity in the phase
space [17]. The behavior of nontwist dynamics systems can
be explained by the standard nontwist map (SNM), a paradig-
matic two-dimensional map proposed by del-Castillo-Negrete
and Morrison [18]. Some properties of plasmas in a nonmono-
tonic scenario can be explained by the SNM analysis, but the
map does not present a direct relation between its parameters
and the physical quantities of tokamak experiments.

Other nontwist maps were developed in order to de-
scribe some properties of the magnetic field lines in confined
plasmas with a nonmonotonic profile, such as the non-
twist Ullmann map [19,20] and the Revtokamap [21]. The
Ullmann map is a symplectic two-dimensional map desig-
nated to describe the magnetic field lines in a tokamak with
ergodic limiter. The map admits general safety factor pro-
files and presents an arbitrary parameter responsible for the
toroidal correction and with agreement with experimentally
observed profiles [20]. Since the map admits arbitrary profiles,
the inclusion of a nonmonotonic profile is investigated in
Refs. [22–26]. The nontwist version of the Ullmann map is
equivalent to the standard nontwist map with the addition of a
term related to the toroidal correction around the nonmono-
tonic region [22]. The Revtokamap [21], on other hand, is
composed of the inclusion of a nonmonotonic profile in the
Tokamap. The Tokamap, proposed by Balescu and coauthors,
is not directly derived from the study of magnetic field lines,
though it can represent some aspects of the global dynamics
of the field lines in tokamaks [24,27].

Following the idea of including nonmonotonic profiles in
existent maps, we propose, in this paper, the inclusion of
a nonmonotonic safety factor profile in the original Martin-
Taylor (OMT) map. In order to do this, we generalize this
map such that it admits an arbitrary safety factor profile. With

a nonmonotonic profile, we obtain a nontwist version of the
OMT map, the nonmonotonic extended Martin-Taylor (EMT)
map. In order to understand the role of nonmonotonicity in the
map, we analyze and compare the map with monotonic and
nonmonotonic profiles by investigating the resonances pro-
duced by these systems. The EMT map with nonmonotonic
safety profile exhibits typical properties of nontwist systems,
like twin island chains, shearless curves, and separatrix recon-
nection [17,22,23]. Using the pendulum approximation, we
obtain expressions for the position and the width of resonant
islands. We find that for the nontwist case, this approximation
is acceptable only for a limited range of the perturbation.
Thanks to the nontwist characteristic of the map, the shearless
transport barrier is robust and can be broken only for relatively
large perturbation strength, in contrast with the twist case,
for which the invariant curves are broken accordingly to their
winding numbers.

This paper is organized as follows: We present the general-
ized version of the Martin-Taylor map and its nontwist version
in Sec. II. In Sec. III we study the resonances present in the
system by the pendulum approximation applied to both twist
and nontwist maps. Since the inclusion of a nonmonotonic
profile causes the emergence of the shearless barrier, we study
the effect of the perturbation parameters in the shearless curve
in Sec. IV. Our conclusions are presented in Sec. V.

II. EXTENDED MARTIN-TAYLOR MAP

The effect of an ergodic magnetic limiter on the structure
of the magnetic field lines in Tokamaks was studied by Martin
and Taylor in their seminal paper of 1984 [4]. In order to de-
scribe the effect of the external perturbation due to the limiter
on the magnetic surfaces, they proposed a two-dimensional
area-preserving map composed by two maps, where one de-
scribes the effect of the limiter and the other represents the
influence of the shear in the field lines [3,4].

For the deduction of the map, Martin and Taylor considered
a tokamak with large aspect ratio such that the toroidal curva-
ture can be neglected and the tokamak can be approximated
to a periodic cylinder [3]. Furthermore, since the purpose of
the map is to describe the behavior near the tokamak wall,
the poloidal curvature can also be neglected such that it is
possible to use a rectangular coordinate system [3]. In such
geometry, the coordinate x = bθ stands for the rectified arc
along the tokamak wall, where b is the minor radius of the
tokamak, θ represents the poloidal angle, and y = b − r is
the radial distance to the tokamak wall at y = 0. They define
discretized variables (xn, yn) as the values of the field line
coordinates at a fixed Poincaré surface of a section. With these
approximations, the original Martin-Taylor map is defined by
the composition M = T1 ◦ T2, where [3]

T2 :

⎧⎪⎪⎨
⎪⎪⎩

x∗
n = xn − bp

m
exp

(−myn

b

)
cos

(mxn

b

)
,

y∗
n = yn + b

m
ln

{
cos

[
mxn

b
− p exp

(−myn

b

)
cos

(mxn

b

)]}
− b

m
ln

[
cos

(mxn

b

)] (1)
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represents the action of the ergodic limiter, i.e., the mag-
netic field line enters the limiter at the point with coordinates
(xn, yn) and emerges at a point with (x∗

n, y∗
n ) [4]. The parameter

m is the number of segments of toroidal pairs of coils that
conduct a current I , and p is the strength of the limiter action,
which is proportional to the limiter current [3,4]. The map T1

is defined by

T1 :

{
xn+1 = x∗

n + α + sy∗
n,

yn+1 = y∗
n

(2)

where s is the shear parameter which indicates how the safety
factor varies with the radius and α is defined as α = 2πb/qb,
with qb being the safety factor at the tokamak wall [3,24]. The
mapping T1 describes the behavior of the field lines under the
influence of the shear only, which results in a displacement in
x on a constant value of y [3,4].

The map (1)-(2) can be generalized in a way such that
the safety factor profile q(y) appears explicitly, which we call
extended Martin-Taylor map:

xn+1 = xn − p

m
e−myn cos(mxn) + 2π

q(yn+1)
,

yn+1 = yn + 1

m
ln

{
cos[mxn − pe−myn cos(mxn)]

cos(mxn)

}
, (3)

where x and y have been normalized with respect to the
Tokamak minor radius b. It can be verified that the map
(3) is area preserving for any profile q(y). Therefore, the
modification of the Martin-Taylor map allows us to include
different types of safety factor profile as nonlinear, monotonic,

and nonmonotonic profiles. The original Martin-Taylor map
used a linear approximation for the safety factor profile which
cannot describe some aspects of the magnetic field in the
inner plasma column, for example, nonmonotonic profiles.
The interest in the EMT map is that it can be adapted to a large
number of possible safety factor profiles, providing a simple
map for field lines exhibiting chaotic behavior in a variety of
situations. For the OMT map (1)-(2), the safety factor profile
is a linear approximation near the tokamak wall, i.e.,

q(y) = 2πb

(α + sy)
= 2πqb

2π + sqb y
, (4)

with y normalized with minor radius b.
Since q(y) is arbitrary, we can use a nonmonotonic profile

which matches some plasma discharges that occur in tokamak
experiments [22,28,29]. The nonmonotonic profile is chosen
by considering a current density with a nonmonotonic behav-
ior, a central hole and a peak outside the center [28,30–32]:

j = j0

(
1 + β ′ r2

a2

)(
1 − r2

a2

)μ

ẑ, (5)

where a is the plasma radius, which is usually slightly less
than the minor radius b, and j0 is proportional to the total
plasma current. The parameter β ′ is defined as β ′ = [β(μ +
1)]/(β + μ + 1), and μ and β are chosen to fit the profiles
observed experimentally [22,29]. For the current density (5),
the resulting safety factor profile is written, in the variables x
and y, as [22,29]

q(y) = qa
(1 − y)2

a2

[
1 −

(
1 + β ′ (1 − y)2

a2

)(
1 − (1 − y)2

a2

)μ+1

�(a + y − 1)

]−1

, (6)

where � is the unit step function and qa = q(r = a) is the value of the safety factor at the edge of the plasma, and it is also
chosen to fit experimental results [22]. If β ′ = 0 for the safety factor profile (6), the profile is monotonic in the range y ∈ [0, 1]
and approaches the behavior of the safe profile for the OMT. The shear parameter s is given by

s = −2πb

q2

dq

dy
. (7)

In the OMT map, the shear parameter takes a constant value, which we take as s = 2π [3,4]. For the nonmonotonic profile
(6) of the EMT map, the respective shear is [3,4]

s = 4πa2

qa(1 − y)3

{
1 −

(
1 − (1 − y)2

a2

)μ[
1 + (1 − y)2

a2

(
μ + β ′(1 + μ)

(1 − y)2

a2

)]
�(a + y − 1)

}
. (8)

The safety factor radial profiles for both the OMT map,
Eq. (4), and the EMT map, Eq. (6), are shown in Fig. 1, as
well as the respective values of the shear parameter. For the
OMT map, s is constant and indicates a monotonic increase
from the center (y = 1) to the edge (y = 0) of the plasma
[Fig. 1(a)]. For the nonmonotonic profile of EMT map showed
in Fig. 1(b), we observe an extremum at y ≈ 0.36, where the
profile has a minimum value. There is a radial range in which
q is not single valued, which does not occur for the monotonic
case.

From the shear of the nonmonotonic profile, plotted as the
pink curve in Fig. 1(c), we draw attention to two points: the
sharp turn at y = 0.1, and the null value in y ≈ 0.36. The
sharp point occurs at the edge of the plasma r = a = 0.9
(y = 0.1), distinguishing the regions inside and outside the
plasma. The shear vanishes at y ≈ 0.36, highlighted by the
dashed line. This point corresponds to the minimum value of
q in Fig. 1(b) and, consequently, to the point where the twist
condition, ∂xn+1/∂yn �= 0, is violated by the system [18]. In
the dynamical system, this point belong to the shearless curve,
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FIG. 1. Examples of safety factor profiles q(y). The monotonic profile (4) of the OMT map is exhibited in (a), and the parameters are
s = 2π and qb = 5. For the nonmonotonic profile of the EMT map in (b), we choose the parameters qa = 5, β = 2, μ = 1, and a = 0.9. The
shear respective to the monotonic and nonmonotonic profile are shown in panel (c) by the constant (blue) value s = 2π and by the curve,
respectively. The dotted line in (c) indicates the edge of the plasma, while the dashed line highlights the point in which the shear is null.

a typical solution of degenerate systems, characterized by
having an extreme value of the winding number [33]. The
winding number ω associated to a solution with initial condi-
tion (x0, y0) is defined by the limit [34]

ω = lim
n→∞

xn − x0

n
, (9)

which converges only if the solution is regular (quasiperiodic
or periodic).

In order to examine the influence of the safety factor pro-
files on the EMT map, we construct the phase space by
plotting some solutions of OMT map (3) and EMT map with
a nonmonotonic profile (6). The phase spaces are shown in
Fig. 2.

The phase space for the OMT map [Fig. 2(a)] depicts
a typical situation for conservative near-integrable systems.
We observe the coexistence of periodic and quasiperiodic
solution, represented by the solid curves, with a chaotic area-
filling orbit represented by dispersed points at the lower region
of the phase space, near the edge of the tokamak. Since m = 4,
we observe multiple chains of four islands centered at dif-
ferent values of y. However, not all the chains belong to the
same resonance: the four lower (green) islands are generated
by the same initial condition, as the islands at the center of
the phase space (center around y = 0.55). For the islands in
shade of red around y ≈ 0.3, however, one initial condition
generates two islands, and therefore we observe islands with
two different sizes. A similar scenario is observed for the
islands around y ≈ 0.8. These islands are not connected, since
they correspond to four different solutions.

For the EMT map [Fig. 2(b)] chaotic behavior is not
present in the phase space, indicating that the perturbation
is not strong enough to break up the regular solutions. Addi-
tionally, we observe rotational circles represented by the black
curves, and two chains of four islands each. For both chains
all the islands belong to the same solution. In red we have
the shearless curve in which the winding number assumes
its maximum value. In order to highlight the behavior of the
winding number for both maps, we compute the profile of ω

for a line x0 in the phases spaces of Fig. 2 and present the
respective profiles in Fig. 3. For each point (x = x0, y) we

computed the limit (9), considering nF = 106 as final iteration
time.

In Fig. 3(a) we observe the winding number profile for the
phase space of the OMT map presented in Fig. 2(a). The value
of ω increases monotonically as y varies from y = 0 to y = 1.
The are some plateaus, indicating the existence of islands in

FIG. 2. Comparison between the phase spaces for the (a) OMT
and (b) EMT map. For both spaces, m = 4, p = 0.2, and qa = qb =
4.5. For the extended map, the plasma radius is a = 0.9 and the
shearless curve is indicated by the curve in red in (b).
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FIG. 3. Winding number profile for the (a) OMT map and the
(b) EMT map. The chosen lines for the computation is x0 = 0.8
and x = 1.1, respectively. The point yS indicates the position of the
shearless curve in the profile.

the phase space. Each plateau is related to the colored islands
in the phase space of Fig. 2(a).

For the EMT map, the winding number profile is presented
in Fig. 3(b). We observe a nonmonotonic scenario in which ω

takes on an extreme value at yS , indicated by the red symbol.
In this case the point of extreme is a maximum. Due to the
nonmonotonic behavior of the winding number, at least two
distinct solutions present the same ω. A solution below the
shearless curve (y < yS) will have the same value of ω as a
solution above the curve (y > yS). This is what happens for the
two islands chains in Fig. 2(b). They are at different “sides”
of the shearless curve and present the same winding number,
indicated by the plateaus in Fig. 3 at ω = 0.25. For this reason
they can be called “twin” islands.

Since the map is not symmetric, the twin islands are dif-
ferent. These scenarios were observed for other asymmetric
nontwist maps [35]. For the standard nontwist map, del-
Castillo-Negrete, Greene, and Morrison remarked that when
the period of the twin islands is even, the elliptic and hy-
perbolic points of each chain are aligned with each other in
such a way that if the chains collide, a hyperbolic-hyperbolic
collision happens [34]. This is not observed in the EMT map.
Observing the islands in Fig. 2(b), if they eventually collide, a
hyperbolic-elliptic collision would happen, the same collision

that occurs when the islands present an odd period in the
SNM.

The EMT map presents four control parameters: (1) the
perturbation amplitude p that, as discussed for the OMT map
in the previous section, represents the limiter action, (2) the
plasma radius a, (3) the safety factor value at the plasma edge
qa, and (4) the number of pairs of toroidal oriented segments
m [3]. In Fig. 4 we consider the influence of qa and p in the
phase space for fixed a = 0.9 and m = 3.

The phase spaces in Fig. 4 are computed for two values
of perturbation: p = 0.15, representing a weak perturbation,
and p = 0.4, a strong perturbation. The small perturbation
scenario is shown in the upper panels, (a), (b), and (c), while
the lower panels, (d), (e), and (f), portray the scenario for the
strong perturbation. For the first, second, and third column,
we have qa = 3.5, qa = 3.65, and qa = 3.75, respectively.

Observing the structures in the phase spaces for each p
following the increase of qa, we notice that the qa is related
to the separatrix reconnection scenarios, similar to the scenar-
ios described for the SNM [34]. As the parameter increases
and the two chains of islands approach, a hyperbolic-elliptic
collision occurs. The upper (lower) chain of islands that was
above (below) the shearless curve changes its side after the
reconnection, and the lower chain of island is destroyed for
the largest value of qa considered. This sequence occurs for
both values of p, with the difference that for the larger value
of p we have a chaotic sea surrounding the lower chain.

With the results presented by the phase spaces in Fig. 4, we
can conclude that the increase of the perturbation parameter
p implies the eventual emergence of chaotic behavior in the
system, while the safety factor qa is related to the scenarios
of separatrix collision and/or reconnection. This scenario was
observed in Poincaré maps of numerically integrated magnetic
field line trajectories obtained for MHD equilibrium plasmas
in tokamaks [36]. In our simulation we observe that a variation
in the value of a changes the value of y in the position of the
islands. Then we choose a = 0.9, since the two twin islands
and the reconnection process, shown in Fig. 4, occurs for
the range of parameters p and qa chosen in this study. The
parameter m is related to the resonances and island periods.

III. HAMILTONIAN AND PENDULUM APPROXIMATION

The OMT map is area preserving, as much as it is not
directly derived from a Hamiltonian function. Portela and
coauthors treated the map as a near-integrable system and
were able to write the map as a perturbed twist mapping [3].
With this approach they were able to find the fixed points
for small values of p, study their stability, and estimate the
limiter strength threshold for the transition to global chaos as
previously analyzed by Martin and Taylor [3,4].

The Hamiltonian function H = H (x, y, n) for the EMT
map (3) is, for small values of p (see the Appendix for details),

H = 2π

∫
dy/q(y) + p/m2e−my cos(mx)δ(n), (10)

where the periodic δ function is included in order to transform
difference equations into differential equations, as shown in
Ref. [37] (p. 171).
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FIG. 4. The effect of the parameters p and qa in the phase space for the extended Martin-Taylor map. For the first line, we have p = 0.15,
while in the second line, p = 0.4. The first, second, and third columns are phase spaces for qa = 3.5, qa = 3.65, and qa = 3.75, respectively.
For all phase spaces, a = 0.9 and m = 3.

The Hamiltonian function (10) can be written in the
form H = H0(y) + εH1(x, y, n), as is usual for Hamiltonian
near-integrable systems constructed by the addition of a per-
turbation H1 with magnitude ε to the integrable systems H0

[37,38]. Using

δ(n) =
∞∑

k=−∞
δ(n − k) = 1 + 2

∞∑
k=1

cos(2πkn), (11)

the perturbation in (10) can be rewritten as

H1(x, y, n) = p

m2
e−my

∞∑
k=0

[cos(mx + 2πnk)

+ cos(mx − 2πnk)]. (12)

The resonance in the system happens when mx − 2πnk as-
sumes a constant value. This condition leads to the following
results:

(1) The terms cos(mx + 2πnk) vary rapidly with time and
vanish after an average performed over n. The Hamiltonian

(12), near a resonance, reduces to

H1 = p

m2
e−my

∞∑
k=0

cos(mx − 2πnk). (13)

(2) For a resonance k, the time evolution of x is governed
by

dx

dn
= 2πk

m
. (14)

(3) The safety factor profile for the unperturbed system, at
the resonance, is a rational number,

q(y∗) = m

k
, (15)

where y∗ is the location of the resonance in the phase space.
Next to the resonance, we can consider y = y∗ + �y,

where |�y| 
 |y∗|, and expand the Hamiltonian function
around the resonance point y∗. The resulting Hamiltonian
function is

�H = 2πk

m
�y + 2π

(
d

dy

1

q(y)

)∣∣∣∣
y∗

(�y)2

2
+ p e−my∗

cos(mx − 2πnk)

m2

(
1 − m�y + m2

2
(�y)2 + · · ·

)
. (16)

We perform a canonical transformation (�y, x, n) → (I, θ ) with the generating function

F2(I, x, n) = (mx − 2πnk)I. (17)
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In a first approximation, considering only the first term in expansion in parenthesis, the result is the pendulum Hamiltonian:

H = 2πm2

(
d

dy

1

q(y)

)∣∣∣∣
y∗

I2

2
+ p e−my∗

m2
cos(θ ) = G

I2

2
+ F cos(θ ). (18)

Using this result, we can relate the results obtained with
the pendulum approximation (18) with the actual results
for the EMT map (3), for small values of the perturbation
amplitude p. The half-width of an island, centered at y = y∗,
is computed by [37]

Imax = 2

√∣∣∣∣F

G

∣∣∣∣, (19)

while the frequency near the resonance is ω∗ = √
FG.

In this section we aim to study the validity of pendulum ap-
proximation for the OMT and EMT map, focusing on the first
resonance of the system. We are interested in the maximum
half-width of the islands with k = 1 for different values of m
and in the range of p where the approximation is valid. We
first study the approximation for the OMT map and compare
with the results for the EMT map in order to identify the effect
of nonmonotonicity in the resonance structure of the system.

For the purpose of relating the value of p with the parame-
ters related to the tokamak, we take the definition of p [3],

p = μ0�IL

B0b2π
, (20)

where � is the finite length of the EML, B0 is the toroidal
equilibrium field, and IL represents the magnitude of the lim-
iter current. The safety factor at the edge of the plasma is
computed by [1]

qa = 2πa2B0

μ0IPR0
, (21)

where IP is the total current of the plasma and R0 is the major
radius of the tokamak. Combining Eqs. (20) and (21), we
obtain the relation between the strength p and the ratio of the
currents IL/IP,

p = 2m2ξa2

qa

IL

IP
, (22)

where ξ = �/R0 and a/b → a. In the present paper we fixed
ξ = 0.163 according to the TCABR parameters � = 0.1 m
and R0 = 0.615 [8].

A. Original Martin-Taylor map

From Eq. (18) with the safety factor profile (4), we are able
to compute the Hamiltonian function for the OMT map near a
resonance, where the Hamiltonian is

HOMT = sm2

2
I2 + p

m
exp

[
−2π

s

(
k − m

qb

)]
cos θ, (23)

and the resonance k/m occurs at

y∗ = 2π (kqb − m)

smqb
. (24)

For the resonance to occur in the physical domain 0 � y � 1,
the parameters k, m, and qb must satisfy the relation

1 � kqb

m
� 1 + sqb

2π
. (25)

From the pendulum approximation, the half-width of the
island around the resonance for the OMT map given by
Eq. (19) is

Imax = 2

m2

{
2p

s
exp

[
−2π

s

(
k − m

qb

)]}1/2

∼ p1/2. (26)

In order to verify the validity of Eq. (26), we estimate
numerically the half-width of the largest island in the phase
space resultant of the map iteration. The half-width is calcu-
lated by the difference (ymax − ymin)/2, where ymax and ymin

are the maximum and the minimum value of y assumed by
the largest k/m island of the phase space, respectively. The
results of the half-width calculated by (26) and numerically
are shown in Fig. 5.

In Fig. 5 the continuous curves indicate the Imax computed
by (26), while the black squares are the half-width calculated
by the analysis of the islands in the phase space. Comparing
both Imax, we observe that for m = 1 and m = 2, Figs. 5(a) and
5(b), the numerical results agree with the theoretical estimate.
The half-width increases with (IL/IP )1/2, at least for the range
we analyzed. A different scenario is observed for m = 3 and
m = 4. For m = 3, Fig. 5(c), we observe that the numerical
values increase with (IL/IL )1/2 for IL/IP < 0.2. For larger
values of the ratio, the value of Imax varies somewhat close
to Imax = 0.083, indicating that if the limiter current is larger
than 20% of the plasma current, the pendulum approximation
is no longer valid.

The scenario for m = 4 is shown in Fig. 5(d). We observe
an agreement between the theoretical and numerical solution
up to IL/IP ≈ 0.1. For larger values, the numerical value
of Imax fluctuates about Imax ≈ 0.06 and then decreases for
IL/IP > 0.3. Computing the phase spaces for the system in
the range where the decrease happens, there is an enlargement
of the chaotic sea around the islands and, consequently, their
shrinkage. Calculating the position of the resonance, given
by (24), for m = 3, m = 4, and the parameters used for the
results in Fig. 5, we obtain y∗

m=3 = 1/9 and y∗
m=4 = 1/36,

respectively, indicating that the islands are close to the wall
(y = 0). Once the chaotic solutions first emerge in this region,
the islands for m = 3 and m = 4 suffer the effect of the onset
of chaos for smaller values of IP/IL, compared to the magnetic
islands for m = 1 and m = 2. Therefore we conclude that the
existence of the stable orbits around the resonances is not
affected only by the strength of the perturbation but mostly
because of their radial position y that is a consequence of the
safety factor qb in the edge of the plasma.
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FIG. 5. For the OMT map, comparison between the half-width of the islands related to the resonance k = 1 obtained numerically (black
squares) and by Eq. (26) from the pendulum approximation ( continuous curve), in relation to the ratio between the limiter current (IL) and the
total plasma current (IP), for qb = 4.5. The half-widths were computed for four values of m: (a) m = 1, (b) m = 2, (c) m = 3, and (d) m = 4.

B. Extended Martin-Taylor map

Due to a more complicated function of the nonmonotonic
profile q(y) of (6), the Hamiltonian function (18) for the EMT
map is given in an implicit form. The terms G and F of the
pendulum approximation are given by

G = 2πm2a2

qa

dq−1(y)

dy

∣∣∣∣
y∗

, F = pe−my∗

m2
, (27)

respectively, where q(y) is given by the profile (6), and y∗ is
the solution of the equation

kqa

ma2
(1 − y∗)2 + 1 −

(
1 + β ′ (1 − y)2

a2

)(
1 − (1 − y)2

a2

)μ+1

�(a + y∗ − 1) = 0. (28)

Since G and y∗ do not depend on p, the Imax (by the pendulum
approximation for the EMT map) also increases with p1/2.

Considering μ = 1, we are able to find analytically the
value of y∗ and, consequently, of G, as follows:

y∗ = 1 − a

[
2β ′ − 1 ± √

1 + 4β ′(1 − kqa/m)

2β ′

]1/2

,

G = ±4πm2

aqa

√
1 + 4β ′

(
1 − kqa

m

)

×
[

2β ′ − 1 ± √
1 + 4β ′(1 − kqa/m)

2β ′

]1/2

. (29)

From the definition of y∗, in (29) we observed two values
of y∗ for each set of parameters, one for each chain of the
twin islands, a scenario observed in Fig. 2(b). The existence
and the position of the islands depend on qa. For this reason,
once we want to analyze the half-width of the twin islands
with k = 1, we choose appropriate values of qa for which both
chains exist. For the twin islands to be located in the physical
domain 0 � y � 1, the resonance position y∗ belongs to this

domain if

3

a2
− 1

a4
− 1 � kqa

m
� 1 + 1

4β ′ . (30)

We emphasize that y∗, defined by (24) and (29) as the con-
ditions (25) and (30), were computed not considering the
perturbation. Thus, the islands associated with the resonance
can present different y∗, and they may already have been
destroyed by the perturbation effect even if conditions (25)
and (30) are satisfied.

As performed for the OMT map, we computed the half-
width Imax of the largest island in the phase space for different
values of IL/IP and verify whether the scale law p1/2 is
observed. Once the system violates the twist condition, we
computed the half-width for islands at both sides of the shear-
less curve. The islands in the upper and lower region of the
phase space are named upper and lower islands, and their
half-widths are indicated by the green (diamond symbol) and
magenta (squares) in Fig. 6, respectively. The values of Imax as
a function of IL/IP, for the EMT map with m = 3, are shown
in Fig. 6. The results observed for m = 1, 2, and 4 are similar.

The half-widths presented in Fig. 6(a) are calculated nu-
merically, observing the phase space for each value of IL/IP.
Once we choose appropriate values of qa in order to obtain
the two chains of islands, the islands are not immersed in a
large chaotic sea. In fact, for most values of (IL/IP ) the chaotic
behavior around the lower islands is restricted. Therefore Imax

does not change significantly for higher values of IL/IP, as was
observed for the OMT map for m = 3 and m = 4 in Figs. 5(c)
and 5(d).

Comparing the values obtained numerically with the pen-
dulum approximation Imax ∝ (IL/IP )1/2, represented by the
black curves in Fig. 6(a), we observe a disagreement between
them for larger values of the ratio, IL/IP > 0.2. However,
unlike it was observed in the case of the OMT map for m = 3
and m = 4, shown in Figs. 5(c) and 5(d), the half-width of
the islands for the EMT map does not decrease or fluctuate
about a certain value. In fact, for the upper island chain,
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FIG. 6. Half-width of the islands for the EMT map. The values shown in (a) are associated to the islands from the lower (squares) and
upper (diamond symbol) island chains for the extended Martin-Taylor map, related to the resonance k = 1, in relation to the ratio IL/IP. The
half-widths are calculated numerically for m = 3 and qa = 3.5. The black lines indicate the pendulum approximation (19). The phase spaces
in (b) and (c) are related to the highlighted points in (a), IL/IP = 0.06 and IL/IP = 0.3, respectively.

the half-width continues to increase but does not follow the
pendulum approximation relation. The same is identified for
the lower island; we observe a general increase behavior, but
the half-width does not increase with (IL/IP )1/2.

We choose two values of IL/IP and construct the re-
spective phase spaces. The ratio IL/IP = 0.06 represents the
case where the numerical value is close to that predicted by
the pendulum approximation. The phase space is shown in
Fig. 6(b). For the scenario where the numerical and expected
value of Imax are comparatively more different, we chose
IL/IP = 0.3 and the phase space is presented in Fig. 6(c).
Both chosen values of IL/IP are highlighted in Fig. 6(a) by
the symbols with black outline.

Comparing the islands presented in Figs. 6(b) and 6(c),
we observe differences in size and shape. The larger size
presented by the islands for IL/IP = 0.3 is the result predicted
by the pendulum approximation. The shape of the islands
presented in Fig. 6(b) resembles pendular islands resulting
from the pendulum equations. A different scenario is observed
in Fig. 6(c): the shape of the upper (green) islands is slightly
triangular, while the lower (magenta) islands have their center
apparently displaced. In order to emphasize the difference, we
directly compare the island obtained from the integration of
the pendulum equation and the islands of the phase space in
Fig. 6(c) (see Fig. 7).

FIG. 7. Comparison between the islands obtained as a solution
for the (a) pendulum equations and (b, c) for the EMT map. The
islands exhibited in (b) and (c) are characteristic of the lower and
upper chains of islands in the extended map, respectively.

The islands observed in Fig. 7(a) are computed by the
numerical integration of pendulum equations of motion. The
islands present an ellipse-shaped form and are concentric
around the center of the ellipse. The two chains of islands
presented by the EMT map have the same period and winding
number but not the same shape. This result is expected, since
the map is asymmetric, which was also observed for the ex-
tended standard nontwist map [35]. The lower islands, shown
in Fig. 7(b), are deformed ellipses: the upper arc resembles
an elliptic arc, whereas the lower arc is not symmetric with
respect to the vertical ellipse axis, and thus the islands are
distorted and no longer concentric.

A similar scenario is observed for the islands of the up-
per chain of islands, indicated in the Fig. 7(c). The islands
are apparently concentric, but their shape is slightly trian-
gular. Different from the lower islands discussed before, the
lower “arc” of the island is symmetric to a vertical axis. The
structure of chain of lightly triangular islands is reported in
Refs. [16,36] and is related to the approximation of the two
chains of islands during the reconnection process.

We conclude that the ratio of the increase in the half-width
of the island does not follow the pendulum approximation,
since the shape of the islands becomes nonpendular as (IL/IP )
increases. Similar results were found for other values of m in
the same range of IL/IP, and qa = 1.1 for m = 1, qa = 2.3 for
m = 2, and qa = 4.7 for m = 4.

IV. SHEARLESS CURVE

The EMT map violates the twist condition ∂xn+1/∂yn �= 0,
which results in a set of points in the phase space where the
shear is null and the winding number takes on an extreme
value. This set of points belongs to the shearless curve, a
characteristic solution of degenerate (nontwist) systems. In
this last section we focus on the position of the shearless curve
and its response to the perturbation of the ergodic limiter.

As discussed in Sec. II, the point (x, y) = (x0, yS ) in
the shearless curve can be detected by the winding number
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FIG. 8. The effect of the control parameters on the winding number profile for the EMT map. The position ys corresponds to the point
(x0 = 0, ys ) in the shearless curve for different values of IL/IP and qa for m = 3, (a) qa = 3.5 and (d) IL/IP = 0.1, respectively. The respective
shearless curve for the parameters indicated by the violet (black), blue (dark gray), green (light gray), and red (gray) dashed lines in (a) and
(d) are presented in (b, c) and (e, f), respectively.

profile, where x = x0 is the line in which the profile is com-
puted and yS is the coordinate where the extreme in the profile
takes place. In order to analyze the effect of the perturbation of
the ergodic limiter in the position of the shearless curve, we
compute the winding number profile at x0 = 0 for different
values of IL/IP and qa and identify the extreme value yS . The
winding number was calculated as presented in Sec. II. The
results related to the position of the shearless curve in x0 = 0
are shown in Fig. 8.

The position yS of the shearless curve, at x = 0, for a fixed
value of qa = 3.5 decreases monotonically with the increase
of the ratio IL/IP, as observed in Fig. 8(a). We can also observe
small “steps,” indicating the position yS is fixed for a small
variation in the parameter. A different scenario is observed
in Fig. 8(d), in which the position yS is calculated varying
the parameter qa for a fixed IL/IP = 0.1. The values of yS

have an alternating sequence of divergences, where we have
a asymptotic behavior at the “left” and “right.” This behavior
repeats itself for all the analyzed range of qa, where the central
horizontal part increases consecutively.

In order to understand what happens with the shearless
curve, we choose four points in the graphs of Figs. 8(a)
and 8(d) and compute the respective shearless curves. In
Fig. 8(b) we plot the shearless curve for IL/IP = 0.035 and
0.1 as the violet and blue curves, respectively. In Fig. 8(c)
the respective values are IL/IP = 0.4 and 0.7 for the green
and red curve, respectively. We observe that increasing the
ratio IL/IP implies the widening of “oscillation” of each
curve. With this increase the value of y at x = 0 goes to
smaller values. We also observe that the maximum and the
minimums of the oscillation coincide for all analyzed values
of IL/IP.

For Fig. 8(d) we choose four values, namely, qa = 2.49,
3.6, 3.6825, and 3.75, indicated by the respective violet, blue,
green, and red dashed lines in Fig. 8(d) and curves in Figs. 8(e)
and 8(f). Comparing the curves in Figs. 8(b) and 8(e), we
observe a similar scenario: the shearless curves oscillate, and

for a larger value of the parameter, the amplitude of the
oscillation is also greater. However, unlike the observations
for a fixed value of qa [Fig. 8(b)], the minima and maxima
of the curves in Fig. 8(e) do not coincide. An even differ-
ent scenario is observed in Fig. 8(f). The green (red) curve
corresponds to a minimum (maximum) value in the graph
ys × qa in Fig. 8(d). The shape of the two presented curves is
different. While the green curve resembles a triangular signal,
the red one appears to circulate around an island of period 3,
similar to that observed in Fig. 4(b). We can conclude that the
transition between a minimum and a maximum in Fig. 8(d)
refers to the reconnection process of separatrix, reinforcing
the observation that the variation of the parameter qa is
responsible for the separatrix reconnection and/or collision
process, as also observed in Fig. 4. In Fig. 8 we present the
results for m = 3. As it happens for the analysis of the twin
islands in Fig. 6, the same scenario of Fig. 8 is also observed
for m = 1, 2, and 4.

V. CONCLUSIONS

The original Martin-Taylor map, proposed in Ref. [4], can
be extended as an area-preserving two-dimensional map with
a generic safety profile factor. In this paper we considered
an extended Martin-Taylor map (without the change of origin)
whose phase space represents the entire radial extension of the
Tokamak chamber. We also consider a nonmonotonic safety
factor profile, since the map maintains its area-preserving
property for any profile

Our results emphasize the relation between the parameter
m, the number of toroidal pairs of coil segments in the limiter,
and the period of the islands in the phase space. For a certain
value of m, the map presents a m number of islands, for both
the monotonic and nonmonotonic maps. The winding num-
ber profile exhibits a maximum point for the extended map,
corresponding to the shearless curve. As expected for a map
that violates the twist condition, the extended Martin-Taylor
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map also presents the twin island chain scenario as well as
the separatrix reconnection and collision process. The latter is
related to the changes on the parameter qa, the value of the
safety factor in the edge of the plasma.

We observe that the pendulum approximation is a good ap-
proximation for a range of the perturbation parameter, for the
OMT, as long as the magnetic islands in the resonance k = 1
are distant from the wall, y = 0. The chaotic sea emerges
around y = 0; therefore islands in this region experience the
effect of the increase of the chaotic region for smaller values
of the perturbation parameters.

For the extended map, we observe two points of resonance
y∗, corresponding to the two islands of chains due to the
nonmonotonic behavior of the safety factor profile. The half-
width for the islands of both chains increases monotonically
with IL/IP, but they do not follow the scale rule predicted by
the pendulum approximation. This results from the fact that
the islands do not have a pendular form.

Since the extended map presents a nonmonotonic safety
factor profile, it also exhibits a shearless curve. From the
position of the curve in the phase space, we observed that
for a fixed value of qa, the position of the shearless curve
at x = 0 decreases monotonically with the increase of IL/IP.
This is due to the increase in the amplitude of the oscilla-
tion presented by the curve. For a fixed value of IL/IP, the
graph of the position of the shearless curve in relation to the
increase of the parameter qa is similar to a “− tan x” graph.
The transition between a minimum and maximum point of the
graph corresponds to a reconnection process of the shearless
curve in the phase space. Thus the analysis of the position of
the shearless curve for a fixed value of IL/IP can give us an
idea of where it occurs the reconnection of separatrix in the
extended map.

The map presented in this paper is based on the Martin-
Taylor map, which has a physical interpretation in terms of
toroidal plasma confinement. We showed that the extended
Martin-Taylor map presents the same nontwist properties of
other nontwist maps with small or no physical background.
With this, the extended map is a suitable model for the study
of properties and phenomenons related to degenerate systems
in physical applications.

The source code and data are openly available online in the
Oscillations Control Group Data Repository [39].
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APPENDIX

For the integrable scenario p = 0, Eqs. (3) are reduced to

xn+1 = xn + 2π

q(yn+1)
, yn+1 = yn, (A1)

with the respective equation of motion,
dx

dn
= ∂H0

∂y
= 2π

q(y)
,

dy

dn
= −∂H0

∂x
= 0, (A2)

where H0 refers to the unperturbed system. Integrating (A2)
yields

H0 = 2π

∫
dy

q(y)
. (A3)

Once the perturbation is considered (p �= 0), the Hamiltonian
equations take the form

dx

dn
= ∂H

∂y
= − p

m
e−my cos(mx)δ(n) + 2π

q(y)
,

dy

dn
= −∂H

∂x
= 1

m
ln

{
cos[mx − pe−my cos(mx)]

cos(mx)

}
δ(n),

(A4)

and the respective Hamiltonian function is obtained by inte-
gration of (A4),

H = H0(y) + p

m2
cos(mx)e−myδ(n), (A5)

where H0 is given by (A3), the logarithmic function in the last
equation is expanded around p = 0, and the terms O(p2) have
been dropped.
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