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Onset of symmetric plasma turbulence
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Abstract

We analyze the electrostatic turbulence in a stationary toroidal magnetoplasma, created by
radio-frequency waves and con4ned by a toroidal magnetic 4eld. The increase of toroidal mag-
netic 4eld leads to gradients in the mean plasma radial pro4les and to the enhancement of
electrostatic turbulence. Another consequence is the emergence of symmetry in the probability
distributions of 6uctuations and of the time in which they return to a speci4ed reference inter-
val of values. This symmetry as well as scaling laws reported here are typically observed in
low-dimensional chaotic dynamical systems. Decreasing the magnetic 4eld breaks the symmetry
in the probability distribution; however, it preserves the correlation properties of a few average
quantities. c© 2001 Elsevier Science B.V. All rights reserved.

PACS: 52.35.Ra; 47.27.Cn; 05.45.+b

1. Introduction

It is well known that 6uctuations excited in plasmas can lead to turbulence [1,2]. For
example, experimental works carried out on a linear device showed that drift waves can
destabilize the plasma and generate a turbulent spectrum [3]. Turbulence also develops
in a toroidal magnetoplasma due to drift waves destabilization by a large magnetic
con4nement 4eld [4]. Another experimental investigation showed that intermittence
was observed in a toroidal magnetoplasma without plasma current [5].
Recently, electrostatic turbulence was experimentally investigated in a stationary

toroidal magnetoplasma, created by radio frequency waves [6], con4ned by a toroidal
magnetic 4eld. To characterize turbulence and intermittency, spectral analyses were
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applied to 6uctuations obtained with electric probes. The increase of magnetic 4eld
leads to gradients in the mean plasma radial pro4les and enhancement of a continu-
ous power spectrum of higher frequency waves coupled to the driven radio frequency
waves. In order to characterize these two types of turbulent oscillations, in this work
we compare their statistics.
The understanding of chaos in deterministic systems suggests that a probabilistic

description of turbulence can be applied to describe our experimental results [7–11].
Here, we use a tool of analysis that measures the recurrence of the turbulent data [12].
Our analysis shows that the increasing of the toroidal magnetic 4eld creates a type
of turbulence, identi4ed by the presence of symmetry in the probability distributions
of two types of measurements. This symmetry is a property observed in fully chaotic
systems. 1

We observe that the transition to symmetric turbulence (from non-symmetric turbu-
lence) is similar to the transition to fully chaotic system (from chaos). This suggests
we interpret the mechanism for the onset of this symmetric turbulence by the dynamical
mechanisms responsible for the development of fully chaotic behavior.
For the low 4eld amplitude, symmetry is broken but a few statistical properties and

the correlation properties are preserved. In fact, for the two data sets, we see that an
average quantity of the two data sets calculated for 4nite time intervals is long-range
correlated.
Based on the observation that this type of turbulence has symmetric types of dis-

tributions, and presents recurrent properties of dynamical systems, we name it as the
symmetric-recurrent-type turbulence.
Once the symmetric-recurrent-type turbulence is found, a recurrent measure of chaotic

dynamics, the 4rst PoincarFe return time [12,13], can be used to simulate the 6uctua-
tion with the same distributions and scaling laws of those observed in the symmetric
turbulence.
This paper is organized as follows. In Section 2, we describe the experimental data

and, in Section 3, we present a statistical analysis of these turbulence data. In Sec-
tion 4, we present a new approach to explain these statistical properties, based on
low-dimensional chaotic systems. In Section 5, we show that the data present long-range
correlations, and 4nally, in Section 5, we present our conclusions.

2. Experimental data

The experiment [6] was performed with a magnetized hydrogen plasma in the
toroidal device of the TCABR tokamak (major radius R0 = 0:610 m and minor

1 This mechanism is the appearance of all sort of periodic orbits, bifurcation usually associated to the creation
of an homoclinic orbit in the surrounding of a chaotic set. Full chaos has trajectories which generates all
possible symbolic sequences.
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Fig. 1. Samples of 6uctuating ion saturation current, I , at a radial position r=a=0:85 for the applied magnetic
4eld, (a) B’ =1:00 T and (b) B’ =0:04 T.

radius a=0:175 m). The stationary plasma was obtained by a (16 kHz) radio-frequency
oscillator with pulse length of 25 ms. Hydrogen pressure was 10−4 Pa. Typically plasma
edge parameters were T ¡ 30 eV and n¡ 5 × 1016 m−3. In order to study the
turbulence enhancement, we applied a toroidal magnetic 4eld with two intensities,
namely, B’ =0:04 or 1:00 T.
The data were collected from a multi-pin Langmuir probe that measured the 6uc-

tuating plasma potential and density, and the mean density, electron temperature, and
plasma potential. The probe signals were digitally recorded at a sampling frequency of
1 MHz. Here, we analyze the density 6uctuations, I; for intervals of 20 ms during the
recorded pulses, with frequencies higher than 20 kHz.
Density and temperature for the magnetic 4eld of 1 T were n ≈ (2–7)× 10−17 m−3

and Te =12–30 eV. In the scrape-oI-layer, the radial decay coeJcients are �n = −
n=|∇n| ≈ 2:9× 10−2 m for density, and �Te =− Te=|∇Te| ≈ 4:0× 10−2 m for electron
temperature.
Fig. 1(a) and (b) show samples of 6uctuating ion saturation current, I; at a radial

position r=a=0:85 for the applied magnetic 4elds, B’ =1:00 (a) and 0:04 T (b). The
6uctuation amplitude increases with the magnetic 4eld. Fig. 2 presents the frequency
power spectra of the same 6uctuations for magnetic 4elds of 1 and 0:04 T. This 4gure
shows a continuous broad band of frequencies from 20 to 60 kHz (the 16 kHz frequency
of the radio-frequency oscillator does not appear in these 4gures). For all frequencies
the 6uctuation amplitudes increase with the magnetic 4eld. This 4gure shows that the
increasing of the 4eld enhances the turbulent state.
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Fig. 2. Frequency power spectra for the 6uctuations with magnetoplasma con4ned with the magnetic 4eld
of (a) 1:00 T and (b) 0:04 T.

3. Statistical analysis of turbulence

We de4ne In for the value of the 6uctuating density I(n�) at time t= n�, where �
is the sampling rate. Fig. 3 shows the evolution of the diIerence

Rn = In+1 − In : (1)

These 6uctuating diIerences are recurrent, i.e., their amplitudes eventually come back
to a reference interval of values with size of 2� at �=0. Next, in this 4gure, we de4ne
the returning time, Tn, as the interval of time in which Rn repeats a value inside the
chosen reference interval. The procedure to obtain these returning times is illustrated in
Fig. 3, where we show a schematic representation of the Tn. The probability distribution
of Tn in normalized units �(Tn), obtained for the turbulent 6uctuations, can be seen in
Fig. 4. For B=1 T the distribution corresponds to a Poisson (Fig. 4(a)) [13] of the
form

�[Tn(�)]=
1

2〈Tn〉e
−Tn(�)=〈Tn(�)〉 : (2)

However, the distribution of Fig. 4(b), for B=0:04 T, is not a Poisson distribution.
Note also, that the distribution in (a) is invariant to diIerent time intervals.
The average return time 〈Tn〉 depends on the width 2� of the reference interval and

on the position � of this interval. Figs. 5 and 6 show these dependences for the two
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Fig. 3. Schematic representation of two return times, Tn, the time the oscillation takes to return to a given
interval with size (2�) centered at � and �=0:5 �s. Data from Fig. 1(a).

Fig. 4. The probability distribution of Tn in normalized units �(Tn), for B=1:00 T (a), the distribution
corresponds to a Poisson, and for B=0:04 T (b), the distribution is unknown.

values of the magnetic 4eld. For the high magnetic 4eld, 〈Tn〉 increases exponentially
with �, but this variation is not exponential for the low magnetic 4eld (Fig. 5). For
�=0, the exponential decay of 〈Tn〉 with � is almost the same for these two 4elds, and
follows an inverse law (Fig. 6). So, this last variation is not sensitive to the increase
of turbulence.
To explain the results of Figs. 5 and 6, for the cases where B=1:00 T, we use the

fact that the probability distribution of Rn (for B=1:0 T), �(Rn), shown in Fig. 7a is
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Fig. 5. Dependence of the experimental average return time 〈TN 〉 on the reference interval position �, which
for B=1:00 T follows an exponential law.

Fig. 6. Inverse scaling law relating the experimental average return time 〈TN 〉 with respect to the interval
size � for small �.

a Poisson-like distribution represented as [13]

�[Rn(�)]=
1

2〈R+
n 〉

exp−(|Rn−〈Rn〉|=〈R+
n 〉) ; (3)

which corresponds to a sum of two Poisson distributions, where 〈Rn〉 is the average
of the Rn’s and R+

n represents Rn bigger than 〈Rn〉. This Poisson-like distribution is
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Fig. 7. Experimental probability distribution of 6uctuations Rn for B=1:00 T (a) and B=0:04 T (b), and
respective simulations in (c) and (d).

characterized by the average width of the distribution which is equal to 〈R+
n 〉. Note

that the distribution form is invariant to diIerent time intervals of the discharge.
The probability, E(�; �), of 4nding Rn within the interval O= [ − � + �; � + �] is

given by

E(�; �)=
∫ �+�

�−�

1
2〈R+

n 〉
exp(−|�−〈Rn〉|)=〈R+

n 〉 d� : (4)

Once the probability E is found, the average recurrent time of the return is obtained
by

〈Tn(�; �)〉= 1
E(�; �)

(5)

what results in

〈Tn〉=2
exp(�−〈Rn〉)=〈R+

n 〉

exp�=〈R+
n 〉 − exp−�=〈R+

n 〉
: (6)

Eq. (6) can be rewritten as

〈Tn(�; �)〉= 〈Tn(�; �= 〈Rn〉)〉 exp(�−〈Rn〉)=〈R+
n 〉 : (7)

Another simpli4cation can be done in Eq. (7),

〈Tn(�; �)〉= 〈Tn(�=0)〉 exp�=〈R+
n 〉 ; (8)

once 〈Rn〉 is very small, and 〈Tn(�=0)〉 ∼= 〈Tn(�= 〈Rn〉)〉.
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Eqs. (7) and (8) are a consequence of the Poisson-like distribution of �(Rn). In
Fig. 6, for B=1:00 T, we 4nd such exponential relation, which does not happen for
B=0:04 T.

For �= 〈Rn〉 and small �, we can approximate Eq. (6) by

〈Tn〉 ∼= 〈R+
n 〉
�

: (9)

This inverse law is observed experimentally as one can see in Fig. 6.

4. Dynamical analysis

The Poisson distribution obtained from data can be explained by means of the return
times of a dynamical variable of a chaotic system. In contrast to statistical theory which
demonstrates the existence of a Poisson distribution in the return time by the assumption
of only probabilistic measures, 2 the dynamical theory demonstrates the existence of
this distribution assuming that there are periodic orbits embedded in the chaotic set.
Thus, following Ref. [14], naming T ′

n the return time of a chaotic trajectory, what in
this case is named by the 4rst PoincarFe return time, we obtain the Poisson distribution

�[T ′
n(�)]=

1
2〈T ′

n〉
e−T ′

n (�)=〈T ′
n (�)〉 (10)

which is similar to the one shown in Fig. 4(a), whose distribution is given by Eq. (2).
The inverse law of Fig. 6 is explained by assuming that the return time Tn is a

result of dynamically recurrent cycles, and therefore, the Tn is equivalent to the 4rst
PoincarFe return time, T ′

n.
As shown in Ref. [17], for the Logistic mapping [15,16], de4ned as

xn+1 = bxn(1− x) ; (11)

the 4rst PoincarFe return time, T ′
n, which is the time for the trajectory to fall twice in

the interval with size �, has a scaling given by

〈T ′
n〉˙ �−D0 ; (12)

which agrees with Eq. (9), once D0
∼= 1:0.

Now, we consider three properties which we notice as we increase the magnetic 4eld,
the onset of symmetry in the distribution form of Rn, the preservation of the scaling
law of Fig. 4 (other statistical quantities are also preserved as short and long range
correlation described in the next section), and 4nally, invariance of the distributions
form for diIerent time intervals.
The observed turbulent 6uctuations present statistics that can be found in low-

dimensional chaotic systems. These properties are due to a common recurrent property

2 From statistical theory, given a random variable with smooth probability distribution functions and stable
statistics, the time between two events, meaning, the recurrent time for small �, might have a Poissonian
probability distribution.
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present in these systems. So, we show how these observed statistical properties emerge
from measures of the simple dynamical system of Eq. (11). For that we consider a
measurement of the chaotic system, R′

n, which has statistical properties similar to those
observed in Rn. We found R′

n to be a measurement of how unstable=stable the trajectory
point xn is, i.e., R′

n is the 4nite time Lyapunov exponent [18] of the point xn.
Analogous to what we observe in the data, where the increasing of the magnetic

4eld makes �(Rn) to become a symmetric Poisson-like, �(R′
n) becomes a symmetric

Poisson-like distribution for b=4. This will not occur for any other parameter value.
The reason for the onset of symmetry is due to the fact that, for b=4, the Logistic
equation is conjugate to a Bernoulli shift [16]. Thus, the chaotic trajectory can encode
the maximum amount of information; the system possesses the highest value of the
Lyapunov exponent in (2), and there is a maximum amount of periodic orbits with a
given period.
On the other hand, changing the parameter for b¡ 4 does not alter the Poissonian

distribution form for the 4rst PoincarFe return time, T ′
n, as well as the data scaling shown

in Fig. 6. Similar properties are common to 6uctuations with low and high magnetic
4elds.
The distributions for T ′

n and R′
n are invariant to diIerent sets of xn. This property

is similar to what we observe in the data for which the distributions of Rn and Tn are
invariant to the use of diIerent time intervals.
In the symmetric regime, �(Tn) is statistically equivalent to �(Rn). From previous

considerations, we see that measurements of Eq. (11), namely T ′
n and R′

n, for b=4,
are not only symmetric but statistically equivalent to the symmetric experimental dis-
tributions. This suggests that the 4rst PoincarFe return time of a chaotic trajectory, T ′

n,
can be used to simulate the evolution of the experimental Rn. Thus, we say that Rn is
equivalent to a linear combination of two 4rst PoincarFe return time:

Rn =(T ′
n − bT ′

n+1)=F ; (13)

F =
〈T ′

n〉
〈R+

n 〉
; (14)

b=
F〈R−

n 〉〈R+
n 〉

〈T ′
n〉(〈R−

n 〉 − 〈Rn〉)
; (15)

where 〈R+
n 〉, 〈R−

n 〉, and 〈Rn〉 are the average values calculated for an assembling of the
m successive values, where R−

n are the values of Rn smaller than 〈Rn〉.
Fig. 7 shows that the experimental distribution (a) is reproduced by the distribution

(b) of values calculated by Eq. (13). On the other hand, the distribution of Fig. 7(c)
cannot be reproduced by using this same equation.

5. Undetermined and long range correlations

These two turbulent data sets have the peculiar property of having both invariant
statistics and also quasi-stationary statistics. As we observe the data using diIerent 4nite
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Fig. 8. Fluctuation of the experimental average 〈R̃+
n 〉, for both data sets, calculated within a time interval

1= 1000 �s.

time intervals within the discharge, the distribution form is preserved but the distribu-
tion width and its peak position are slowly altered in time. We observe that with the
increase in the toroidal 4eld, the distribution width oscillates within a large amplitude
interval, while with low amplitude 4eld, the distribution width remains nearly station-
ary. However, the increasing of the 4eld does not destroy the presence of long-range
correlations and correlations with undetermined correlation time, in the slow variation
of the distribution width and peak position. By undetermined correlation we mean
that the correlation oscillates over and below zero, and therefore has more than one
correlation time.
In Fig. 8 we show, for both magnetic 4eld amplitudes, the variations of the average

width of the Poisson-like distribution, 〈R+
n 〉, obtained for each 1 �s, along the plasma

discharge, for previous time intervals, l, of 1 ms. In other words, to determine these
variations, we calculate the average 〈R+

n 〉 on each window of length l (which corre-
sponds to l data points), as we shift forward this window for a time interval 1 �s.
The 6uctuation of these averages are represented by 〈R̃+

n 〉. The width of 〈R̃+
n 〉 changes

in time for the symmetric-recurrent-type of turbulent data of the higher magnetic 4eld
and is more stationary for the lower magnetic 4eld. So, the statistic is less stationary
for higher 4elds.
Now we calculate the linear correlation of this variation for the two data sets, using

the following de4nition:

C(Mt)=
〈w(t +Mt)w(t)〉

w(t)2
; (16)

where w(t) represents the variation 〈 ]R+
n (t)〉.
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Fig. 9. Normalized linear correlation for the 6uctuations of the experimental average 〈R̃+
n 〉 shown in Fig. 8.

Fig. 10. Exponential scaling law relating the lowest correlation time, Mtc, over the time interval l, to l.

In Fig. 9, we show that the linear correlation for both data sets has undetermined
correlation time. Thus, we de4ne the correlation time, Mtc, to be the lowest Mt for
which the correlation function decays 1=e. Calculating this correlation time as we con-
sider diIerent time intervals l, we 4nd that the quantity Mtc=l has an exponential decay
with respect to l, with characteristic exponent −1, as shown in Fig. 10. Therefore, even
for a long time interval l, there exists linear correlation among the variations 〈 ]R+

n (t)〉.
In addition, the transition to symmetry-recurrent-type turbulence does not change the
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dynamics of the analyzed system, rather it changes the distribution form of Rn, trans-
forming it in the same symmetric form of the distribution of Tn.

6. Conclusions

Increasing the toroidal magnetic 4eld that con4nes a toroidal magnetoplasma created
by radio frequency waves, we observe gradients in the plasma pro4les [6]. Spectral
components, with frequencies higher than those injected in the plasma, are excited
generating broader continuous frequency spectra. In this work, we show that the in-
crease of 6uctuation amplitude with the magnetic 4eld gives rise to the onset of a
special type of turbulence named symmetric-recurrent-type turbulence. This turbulence
is said to be symmetric due to the symmetry in the probability distributions intro-
duced in this work. This turbulence is said to be recurrent because the statistics of
the return time is completely equivalent to the statistics of return times of chaotic
trajectories.
The emergence of symmetric distribution observed in the turbulent data, by increas-

ing the 4eld, can be compared to the onset of symmetry in the variable distribution
when the dynamical system passes from a chaotic to a fully chaotic system. In this last
transition, the symbolic space suIers a crisis, passing from a state with limited number
of encoding symbols to an unlimited number of encoding symbolic sequences, which
means that an uncountable number of periodic orbits is created. Based on this compar-
ison, we suggest that the emergence of symmetry in the experimental measurements is
a relevant step for the turbulence onset.
Even though some statistics properties are modi4ed as we increase the toroidal 4eld,

we 4nd that the linear correlation of the average width of the turbulent oscillations
for a 4nite time interval preserves the property of long-range correlation. Analogously,
in dynamical system, there are no substantial modi4cations on the attractor geometry
when the system becomes fully chaotic, which means correlation measures should be
preserved. More speci4cally, very small alterations in parameters may lead to strong
alterations in the invariant probabilistic measures, as is the case of the transition to
fully chaotic state, which creates symmetric and Poisson form distributions for these
invariant measures.
The invariance in the correlation property and also the similar shape of the power

spectra suggest that the dynamics behind the onset of this symmetric turbulent state is
slightly changed, in comparison with the dynamics of the non-symmetric case.
Assuming that the Poisson-like distribution for Rn is a result of an uncountable set

of many periodic orbits of the analyzed system, and therefore, there is a dynamical
system ruling out the observed oscillations, using a result of Ref. [19], we can say that
the asymptotic behavior of the distribution for Rn (Fig. 7a) follows a power law of the
type

�(Rn) ∼ R−!
n ; Rn → ∞ ; (17)
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where !¿ 2. Therefore, we suggest that experiments should be performed to measure
this asymptotic behavior, which is very diJcult to measure, but very important to the
understanding of turbulence diIusion, once this rare events are responsible for the type
of diIusion the system might present.
Finally, the equivalence between the recurrence in dynamical systems and the

recurrence in this special turbulent regime, allows us to describe the evolution of mea-
surements in this type of turbulence with measurements of low-dimensional dynamical
systems.
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