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Plasma edge turbulence in Tokamak Chauffage Alfvén Brésilien (TCABR) [R. M. O. Galvio er al.,
Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the
fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this
signal is characterized by the full multifractal spectra determined by applying the wavelet transform
modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position
is presented. The multifractality degree inside the plasma increases with the radial position reaching
a maximum near the plasma edge and becoming almost constant in the scrape-off layer.
Comparisons between these results with those obtained for random test time series with the same
Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover,
the persistence of these signals, characterized by their Hurst exponent, present radial profile similar
to the deterministic component estimated from analysis based on dynamical recurrences.

© 2008 American Institute of Physics. [DOI: 10.1063/1.2973175]

I. INTRODUCTION

The knowledge of the electrostatic plasma turbulence in
the tokamak (specifically, in the region comprising the outer
portion of the plasma column and the region that separates it
from the vessel wall) is essential to improve the plasma
confinement.'™ Thus, several properties of the turbulent
fluctuations have been investigated. Similarities of these
properties in different devices have been found through dif-
ferent kinds of numerical analyses.“*9

Quantitative investigations of the electrostatic fluctua-
tions using spectral approaches like Fourier and wavelet
analysis show that drift waves are destabilized in the confin-
ing magnetic field so as to yield a turbulent spectrum.]’]o_12
On the other hand, dynamical diagnostics used to describe
fluid turbulence" have been applied to analyze the plasma
edge turbulence, as the return-time statistics®'* and recur-
rence analyses.15

Furthermore, the structure of intermittent plasma signals
can be studied using techniques as volatility clustering, fat
tails, and long-range correlations.*> Some of the methods to
characterize the long-range correlations from experimental
time series are the autocorrelation functions, power spectral
densities, and probability distribution functions (PDFs).> 16

Monofractal characteristics of the electrostatic fluctua-
tions in plasmas can be determined by means of the Hurst
exponents,7’16 which reveal that these fluctuations are persis-
tent. In addition, multifractal analyses provide further in-
sights on the self-affine scaling exponents. Moreover, these
analyses, performed by structure functions (SFs) and wavelet
transform modulus maxima (WTMM) methods show that
these fluctuations are multifractal®'® and their multiscale
nature is associated with the presence of different kinds of
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structures in the plasma edge.ls’19 The experimental signals
commonly used in these fractal analyses are the local density
and turbulent flux for which fat tails were clearly observed.*’
Therefore, several investigations present evidence of multi-
fractality in these signals, but for the fluctuating floating po-
tential there is less evidence of this behavior.

In tokamak Chauffage Alfvén Brésilien (TCABR), mul-
tifractal behavior for the density fluctuations has also been
found, similar to results observed in other tokamaks.” In this
work we analyze the multifractal properties of fluctuating
floating electrostatic potential (¢) measured by Langmuir
probes at the plasma edge of TCABR. By applying the
WTMM method we show the multifractal behavior present
in these fluctuations and its nonuniformity; i.e., its depen-
dence on the radial position. Moreover, the Hurst exponent
shows a peaked radial profile with a maximum value of
~0.85 located near the plasma radius (at r/a~1.05), indi-
cating a persistent fluctuation in this region. The importance
of this noticeable result should be emphasized by remember-
ing that the recurrence plot analyses of these fluctuations
show a similar radial profile determinism with a maximum in
the same region.15 These profiles” similarity may indicate
that these two properties found by different dynamical meth-
ods require a common dynamic explanation.

The paper is organized as follows. In Sec. II we describe
the experimental setup and present some statistical properties
related to the estimated probability distribution functions
(PDFs) and the moments’ radial dependence of the floating
electrostatic potential ¢. Section III explains the multifractal
concept and introduces the WTMM method used to distin-
guish the multifractal character of the experimental signal ¢
from a set of fractal test signals. The radial profiles of the
multifractal spectrum parameters are discussed in the Sec.
IV. Finally, in the last section we present our conclusions.

© 2008 American Institute of Physics
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FIG. 1. (Color online) Time evolution of plasma discharge in TCABR to-
kamak. (a) Plasma current, (b) central chord plasma mean density, and (c)
floating electrostatic potential ¢ for a typical discharge at r/a=1. The ver-
tical black lines indicate the time interval analyzed.

Il. PLASMA EDGE ELECTROSTATIC TURBULENCE
IN TCABR

A. The experimental setup

The experiments analyzed in this work were performed
in a hydrogen circular plasma in the Brazilian tokamak
TCABRY (major radius R=61 cm and minor radius
a=18 cm). The plasma current reaches a maximum value of
100 kA, with duration 100 ms, the hydrogen filling pressure
is 3% 107* Pa, and toroidal magnetic field By=1.1 T. The
floating potential was measured by two Langmuir probes,
poloidally separated by 0.4 cm. The probes are mounted on a
movable shaft that can be displaced radially from
r=15 to 23 cm, with respect to the center of the plasma col-
umn. In this work we shall focus on the range from
16.5 to 21 cm so as to cover both the plasma edge and the
so-called scrape-off layer (SOL), the latter comprising part
of the vacuum layer existing between the plasma column and
the vessel wall.

The probe displacement, however, occurs only for sepa-
rate discharges, in order not to disturb the plasma due to the
movement of the probe. The measurements were performed
at a sampling frequency of 1 MHz, and the measuring circuit
has a 300 kHz bandwidth to avoid aliasing, such that in ev-
ery discharge up to 10° points can be recorded.'*?! Figure 1
shows the typical time evolution of a plasma discharge in
TCABR. The plasma current Fig. 1(a) grows rapidly in the
first 20 ms and reaches a plateau where the current stays at a
100 kA level, decaying slowly after that. The electron den-
sity evolution, indicated by Fig. 1(b), exhibits a similar evo-
lution, with a plateau level of n,~ 10" m™3. The signals we
are particularly interested in studying are the floating elec-
trostatic potential ¢, a representative example being depicted
by Fig. 1(c), which shows highly irregular fluctuations. All
analyzed data were chosen during the plasma current plateau
in equal time intervals like the one represented by the win-
dow indicated by vertical lines in Fig. 1. We chose this win-
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FIG. 2. (Color online) (a) PDFs of the differences, 8,,(¢) = ¢(t+m)— ¢(t), for
the floating electrostatic potential ¢ for different scales m at r/a=1.17. Dots
represent experimental data and the lines are Gaussian fits. The PDFs were
vertical shifted for comparison. (b) Kurtosis and skewness dependence with
scale m.

dow so as to avoid the discharge phase where external per-
turbations are wusually applied for other kinds of
investigations. Figure 1, however, is rather exceptional since
it represents a tokamak discharge where no such perturba-
tions have been applied to the plasma.

B. Basic statistical characterization

An intermittent fluctuation can be recognized in Fig.
1(c). A basic statistical characterization of this intermittency
is presented in Figs. 2 and 3. PDFs of the differences,
S, (1)=p(t+m)— (1), for the floating electrostatic potential
signal of Fig. 1(c) were computed for different scales m
(Fig. 2). The deviation from a Gaussian distribution (skew-
ness S=0 and kurtosis K=3) is accentuated for small scales
and diminishes for large scales [Fig. 2(b)]. This behavior
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FIG. 3. (Color online) PDFs’ central moments as function of the radius. The
dots are for different plasma discharges and the lines are polynomial fits to
guide the eyes. Plots (c) and (d) show that the PDF asymmetry and kurtosis
increase to the wall.
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indicates the coexistence of different characteristic scales,
motivating a detailed multifractal analyses.lg’lg’22

In tokamaks, the electrostatic turbulence at the vicinity
of the plasma radius shows such a significant radial depen-
dence that even its nature may be different in the plasma
edge and in the SOL. Thus, the statistical properties of the
floating electrostatic potential depend on the radial location
where the probe is placed. This dependence can be seen in
Fig. 3 for the floating electrostatic potential radial profiles of
some signal statistical parameters: mean (a), standard devia-
tion (b), skewness (c), and kurtosis (d). Each profile of Fig. 3
contains points obtained from different discharges and the
lines were obtained from polynomial fits. The mean value of
¢ presents a peak near the plasma radius, inside the plasma,
with a nonuniform standard deviation with a peak just out-
side the plasma. So, at the plasma edge, the standard devia-
tion is comparable to the mean value, indicating a high tur-
bulence level in this region. In this region, according to Figs.
3(c) and 3(d), the fluctuation distribution shows a skewness
and a kurtosis values that are not much different from those
obtained for a Gaussian distribution (S=0, K=3). In fact, in
the vicinity of the plasma radius, i.e., r/a~ 1, the kurtosis is
slighted lower than 3, indicating a low contribution of the
extreme events. However, outside the plasma there is a ten-
dency of § and K to increase with the distance from the
plasma limiter. Thus, Fig. 3 confirms that the turbulence be-
havior changes significantly with the radial position in the
region where the probe measurements are done.

To improve the understanding of the turbulence in this
region, in the following we introduce the wavelet transform
modulus maxima (WTMM) technique commonly used to
perform the multifractal analysis, and finally, we apply the
WTMM method to obtain the associated multifractal spec-
trum and its radial dependence.

Ill. MULTIFRACTAL ANALYSIS

The multifractal scaling analysis has been used largely in
the study of turbulence of fluids>? and, more recently, also in
plasma turbulence.'® A first access to the multifractal scaling
can be done using the structure function (SF) analysis. The
SFs are defined in the following way:24

S,Y, 1) =(|Y(t+ 1) - Y(1)|9) o 721D, (1)

where Y(t)=2§,=1¢(t’), 7 is the scale of analysis and (---)
denotes the ensemble average. A signal that is scale invariant
and self-similar is said to be a fractal if the exponent A(g), in
Eq. (1), has the same value for all g. Otherwise, if h(g) varies
with ¢, then the signal is said to be multifractal.”*® When
g=2 the SF is the correlation function; otherwise, it can be
regarded as a generalization of the correlation functions.
Also for g=2, we obtain the Hurst exponent H=h,, origi-
nally defined from R/S analysis.27 One way to interpret the
Hurst exponent in a physical sense is by comparison with its
values expected for known signals, for instance, the frac-
tional Brownian motion.***® The fractional Brownian motion
can be classified following the probabilities of its fluctua-
tions: the usual Brownian motion, obtained from the integra-
tion of a Gaussian distributed white noise, has the same
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probability of having positive or negative fluctuations and
has H=0.5. A fractional Brownian motion with H<0.5 is
more likely to have the next fluctuation with opposite sign of
the last one—it is said to be antipersistent. Conversely, a
fractional Brownian motion with H>0.5 is more likely to
have the next fluctuation with the same sign of the last
one—it is said to be persistent. Antipersistent signals have
more local fluctuations and seem to be more irregular in
small scales. Their variance diverges with time slower than
the variance of the persistent signals. The latter ones fluctu-
ate on larger scales and seem to be smoother. This discussion
is done in Ref. 29 and a similar but more detailed interpre-
tation is given in Ref. 30.

The scaling exponent / is known as the Holder exponent
and, although it can be computed using the structure function
approach,24 this method has the disadvantage of not being
able to obtain the scalings of the negative moments. To ob-
tain the full multifractal spectrum, i.e., positive and negative
g moments, we make use of the wavelet transform Modulus
maxima (WTMM).>"*? The wavelet transform of a signal
X(7) is defined as

1o t—b
T.p(T,bo):;_E X()y* — ) (2)
t=1

where 7>0 is the scale being analyzed, ¢ is the mother
wavelet, and N is the number of discretized time steps. We
used the nth-derivative of Gaussian (DOGn), whose wavelet
transform has n vanishing moments and removes polynomial
trends of order n—1 from the signal. Because the scaling
properties of the signal are preserved by the wavelet trans-
form, it is possible to obtain its multifractal spectrum using
this method. The number of vanishing moments for the
wavelet basis used in this paper was n=2.

The statistical scaling properties of the singular mea-
sures found in time series are characterized by the singularity
spectrum, D(%), of the Holder exponents (4) obtained with
the WTMM method*'*? by the following equations:

1 .
h(g)=lim — > TJq;nb(DIn|T[7.b(D],  (3)
=0 In 745,z
1 . .
D(h)=1im — > T/[q;7.b(D]In|T [q;7.b(D]|, (4)
=0 T g (1)}
where
A |T¢[T’bi(7)]|q
5 ,bi = s 5
T)q:7.bi(7)] E{bi(r)}|Tw[T’bi(T)]q (5)

and the summing is over the set of the WT modulus
maxima® at scale 7, {b,(7)}. The singularity spectrum D(h)
and the Holder exponents & are obtained from the scaling
range on the linear-log plots of Egs. (3) and (4). The whole
procedure is now a standard”’ and, for brevity, it is not re-
peated here.

Figure 4 shows the multifractal spectra for two different
radial positions: inside the plasma (r/@=0.92) and in the



082311-4 Neto et al.

—o0— /a=092 ||
—v— rla=117

0.9 A hIBm =0.56

0.8

0.7+

0.6

0.41 q

0.21 q

0.1 q

0 I I I I I I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h

FIG. 4. (Color online) Multifractal spectrum D(h) of Holder exponent A for
r/a=0.92 and r/a=1.17. For comparison, the multifractal spectrum for a
fractal Brownian motion is also shown, with 2=0.56 and with the same
length of the experimental signal.

scrape-off layer (r/a=1.17). For sake of comparison, it also
shows a multifractal spectrum for a fractal Brownian motion
(fBm) signal of the same length: as expected, this fractal
signal does not show a single point spectrum, since finite
effects are expected. The next section shows the radial de-
pendence of the multifractal spectrum.

IV. MULTIFRACTAL SPECTRUM RADIAL PROFILES

In the previous section, we utilized the WTMM ap-
proach to identify the multifractal character of the floating
electrostatic potential ¢. Now we will look for the multifrac-
tal properties of the system dynamics as a function of the
radius r.

The multifractal spectrum may be represented by its
Holder exponents 4 at their extrema points; i.e., its minima
on the left (i;) and on the right (%,), as well as on the maxi-
mum (top), hy, shown in Fig. 5. In Figs. 5(a)-5(c) the dots
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FIG. 5. (Color online) Multifractal spectrum dependence with r. The dots in
the plots (a), (b), and (c) are from two probes for 57 plasma discharges. The
error bars in the plot (d) are the estimated uncertainties of the mean values
obtained from all analyzed plasma discharges.
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FIG. 6. (Color online) Radial profile of the multifractal spectrum width. The
dotted line is a polynomial fit to indicate the average behavior. For compari-
son, the continuous line represents the same for ten realizations of fBm
series with the same length. Experimental and fBm series were normalized
to zero mean and unit standard deviation before obtaining the multifractal
spectrum width.

correspond to values obtained from each of two probes in 57
plasma discharges. The mean values obtained from the val-
ues shown in Figs. 5(a)-5(c), for each radial position, are
represented in Fig. 5(d) with error bars corresponding to the
estimated standard deviation of the mean (standard deviation
over square root of the number of values). It worth noting
that the point /; shows the scaling of the large fluctuations on
the time series, while the %, captures the scaling of the small
fluctuations. Moreover, the multifractality is higher for wider
spectrum; i.e., for bigger differences between h, and h;.

The multifractal character of the time series is more evi-
dent from the plot for the spectrum width as a function of r,
shown in Fig. 6. This figure shows the difference between
the maximum and the minimum values of A, (h,—h;), for
each value of r, for all the radii studied. For intermediary
values of r, the multifractal spectrum gets wider, a sign of
multifractality, and maintains this multifractal dynamics for
higher radii. Also, the experimental signal spectrum width is
wider than the monofractal fBm, plotted as a continuous line,
statistically confirming its multifractality. Thus, as it can be
recognized in Figs. 5 and 6, for the smallest value of r mea-
sured, the system dynamics is almost fractal, with 7,~0.5, a
value characteristic of a random Brownian walk, as was al-
ready expected, since the time series for ¢ are almost Gauss-
ian (see Fig. 3) at that r value.

Another representative point of the multifractal spectrum
is the Hurst exponent, obtained from £,. The radial profile of
this exponent is show in Fig. 7(a). We see that the Hurst
exponent presents a continuous peaked radial profile with
a maximum value ~0.85 near the plasma radius (at
r/a~1.05). At this position the floating potential is clearly
persistent while at smallest and highest r the Hurst exponent
is close to 0.5, the value expected for Brownian random
walks. However, according to Fig. 6, at the scrape-off layer
(r/a>1) the multifractality is higher than inside the plasma
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FIG. 7. (Color online) Radial profiles of (a) the Hurst exponent and (b) the
deterministic character of the time series from the recurrent plot analysis
(Ref. 15). The dots represent data from 57 different plasma discharges and
the lines are polynomial fits to guide the eyes.

(rla<1), besides the similar persistence interpretation in-
ferred from Fig. 7(a).

At this point, it is interesting to compare the results
shown in Fig. 7(a) with that obtained for the same data in
another analysis based on the recurrence quantification
analysis (RQA). The RQA is a dynamical tool introduced
to quantify the recurrent structures in a given time series. For
a time series sampled at equally spaced time intervals x;
=x(t=ih), and its embedding series )2[=x,-,xi+r, e Xin(d-1)m
where d is the embedding dimension and 7 is the time
delay, it is possible to obtain recurrence plots (RPs). These
RPs are graphical representations of the matrix'>**
Ri’jZ(S—”)Zi—)ZA ), i,j=1,2,...,N, where ¢ is the thresh-
old, ©(.) is the unit step function, |- --|| stands for the Euclid-
ean norm, and N is the total number of points. The RP is thus
obtained by assigning a black (white) dot to the points for
which R; ;=1(0). The many kinds of structures present in a
recurrence plot are used to characterize the dynamical prop-
erties of the underlying time series.”* One measure of these
structures is the determinism (DET), i.e., the fraction of re-
currence points belonging to diagonal lines, which are struc-
tures parallel to the main diagonal line. Along a diagonal
line, two pieces of a trajectory undergo for a certain time (the
length of the diagonal) a similar evolution and visit the same
region of phase space at different times. Hence the existence
of many diagonal lines is a signature of determinism. The
quantity DET is related with the predictability of the dynami-
cal system, because a random process would have a recur-
rence plot with almost only single dots and very few diago-
nal lines, whereas a deterministic process has a recurrence
plot with very few single dots but many long diagonal lines.

Thus, we perform this analysis to estimate the radial
profile of the floating potential determinism using the DET.
Figure 7(b) shows the DET radial profile (chosen values re-
quired to perform the RQA analysis are the same as those
used in Ref. 15). The obtained profile has a maximum near
the plasma radius (r/a~ 1.05), indicating a large determin-
istic turbulence component in this region.

Comparing the results shown in Figs. 7(a) and 7(b), we
identify that the Hurst exponent and DET have similar radial
profiles. Thus, following the interpretation of these profiles,
we conjecture that the persistence and the determinism may
be associated to a common dynamical property that could be
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identified in a proper turbulence theory. Therefore, it seems
worthwhile to try to identify this dynamical property in the
models that describe plasma edge turbulence.

V. CONCLUSION

The focus of this work was to detect the multifractal
character of the floating electrostatic potential at the TCABR
plasma edge and to characterize its radial dependence. We
started obtaining the radial dependence of the statistical mo-
ments, which shed some light on the plasma nonuniformities
and pointed the non-Gaussian behavior of the fluctuating po-
tential on small scales.

Using the wavelet transform modulus maxima approach,
we compared the width of the multifractal spectrum of the
analyzed signals with that of the fractional Brownian motion
signals, to conclude positively towards the multifractal char-
acter of the fluctuating potential. We also obtain the multi-
fractal spectrum dependence on the radial position. Finally,
we show that the persistence radial profile is similar to the
profile of the determinism obtained from recurrent plots
analysis in a previous work."?

The approach presented in this paper can be followed to
evaluate the dynamical models used to describe plasma edge
turbulence in tokamaks. Namely, these models should repro-
duce the reported radial dependence of the fractality and re-
currence observed in the turbulence signals.
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