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(Received 20 May 2018; accepted 10 October 2018; published online 1 November 2018)

Two experimental bifurcation diagrams were obtained with two different control parameters. One
parameter was the faucet opening and the other one, keeping fixed the faucet opening, was an electri-
cal voltage (V) applied to a metallic cylinder that surrounds the pendant water column. In this way,
the drops are formed in an electrical field gradient that polarizes the water column altering the effec-
tive surface tension that is consistent with the observed decreasing of the drop mass as the potential is
increased, while the water flow rate remains constant. We observed that the two bifurcations are sim-
ilar for S � 65 and V � 2.05 kV; otherwise, the bifurcation evolutions are quite different. Published
by AIP Publishing. https://doi.org/10.1063/1.5040757

The dripping faucet experiment with the flow rate as a
control parameter has been suggested by Rössler to be a
paradigm of a chaotic system. As a system for examin-
ing some aspects of complex systems, the dripping faucet
experiment offers a collection of unique attractors and a
wide range of behaviors. The novelty reported in this work
is to let the drops to form in a nonuniform electrical field
but with fixed water flow. We obtained similar richness of
behaviors, but now with a change of a parameter that can
be easily controlled.

I. INTRODUCTION

While the dripping faucet experiment presentsn itself
as a paradigm of a chaotic system, its theoretical modeling
is a challenging task. Many ab initio models were devel-
oped to describe the systems with different hypotheses and/or
approaches. Schulkes1 considered the flow as irrotational and
described the system with a velocity potential. Fuchikami et
al.2 applied a Lagrangian description of the system. Shi et al.3

and Ambravaneswaran et al.4,5 constructed their model using
a slender-jet approximation to the Navier-Stokes equation.
The dripping faucet has also been described with spring-mass
models.6–9 These models can be seen as simplified versions
of the infinite-dimensional partial differential equation mod-
els that arise from the modeling using fluid dynamics. The
parameters from these models are usually estimated from the
experimental data or from simulations of more complex phys-
ical models. There are also studies that analyze variations
of the dripping faucet, exploring different control parameters
than the water flow rate. Ilarraza-Lomel et al.10 suggested in
a numerical experiment the use of the magnetic field to pro-
duce variations of a magneto-rheological fluid to control the
viscosity of this fluid. Reyes et al.11 studied experimentally
the topological aspect of the heteroclinic scenario using the
nozzle inclination as a control parameter, and D’Innocenzo
et al.12 studied the water column oscillations as well as the
dripping dynamics by breaking the cylindrical geometry of
the nozzle. The effect of an electrostatic field on the shape of
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hanging drops was studied by Harris and Basaran,13 and the
effects of a vertical electrical field on the dripping dynamics
were studied by Notz and Basaran.5

We are presenting the dynamics of the dripping faucet
having the water flux as a control parameter as a reference for
comparison against results obtained from the dripping faucet
experiment in a nonuniform electrical field. Since the elec-
trical field acts only in pendant drop, we are also showing
that the applied voltage can be used as an efficient control
parameter with mean water flow constant.

II. EXPERIMENTAL APPARATUS

Parts of the experimental apparatus diagram are shown in
Fig. 1 (for more details, see also Refs. 14 and 15). The system
operates with 1200 l of filtered and deionized water at room
temperature.

It consists of a large upper reservoir (not shown in Fig. 1)
that feeds an intermediary large reservoir shown in Fig. 1, in
which the tap is attached, whose level is finely controlled. The
tap has a linear opening gas valve driven by a step motor of
400 steps per revolution, with a reduction system that allowed
us to vary the water flux by �� = 1.3 g/s/step. Therefore, we
can write � = ��S + �0, where S is the number of motor
steps. The drops are collected in a lower reservoir (not shown
in Fig. 1) and are periodically pumped back to the upper reser-
voir closing, in this manner, the water circuit. To measure
the time between successive drops, we used a photo-diode in
series with a resistor, fed by 5 V. With a horizontal laser beam
focused in the photo-diode, we can detect when a falling drop
starts/ends crossing the laser beam by detecting the starts/ends
of the inducted pulses over the resistor. The time delays Tn

between successive drops were measured with a time counter
circuitry inserted in a computer slot with a time resolution of
1 μs. The dripping rate is defined as the inverse of the mean

drop delays f = 1/〈T〉, where 〈T〉 =
∑

1N Tn
N and N is the total

number of drops for every time series obtained. The glass
faucet pipe ends in a grounded metallic nozzle placed inside a
metallic cylinder tube at a potential V , as illustrated in Fig. 1,
whose equipotentials were estimated by the relaxation method
(see Ref. 5 for a more precise technique). To apply the voltage
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FIG. 1. Experimental apparatus diagram. Also showing details of the nozzle,
D0 = 4 mm diameter, inside a metallic cylinder of 2.54 cm diameter, while
the metallic nozzle is grounded. The equipotentials were calculated by the
relaxation method. The x axis was zoomed in twice for better visualization of
the equipotential lines.

(V) to the external cylinder, we used a dc source 5 kV/10 mA
whose output can be varied in multiples of 25 V.

III. RESULTS AND DISCUSSION

A. Details of drop formation in a nonuniform electric
field

Our aim is to show that the voltage V applied to such
a metallic cylinder can be in fact used as another control
parameter in the dripping faucet experiment.16 A complete
description of the dynamics may be done in various ways, e.g.,
by a Lagrangian description of the system2 or by assuming an
irrotational flow.1,4 As the numerical integration of this sys-
tem is expensive and outside of the scope of this work, we
will focus the discussion on a more simple and known version
of the problem, that is, the equilibrium case. For that, first, we
present the Fuchikami et al.2 model to obtain the pendant drop
profile, as sketched in Fig. 2, and then, we generalize for the
case of a nonuniform electric field.

Considering that for the equilibrium case the pressure
difference between the internal and external regions

�p = pint − pext = 2H� − ρgz, (1)

where g is the gravity acceleration, � is the surface tension,
H is the mean curvature of the interface air-drop, ρ is the
water density, and z is the vertical position of the interface.
The pendant drop profile equations are given by

dr

dI
= sin(θ),

dz

dI
= − cos(θ),

dθ

dI
= cos(θ)

r
− z

ρg

�
.

(2)

FIG. 2. Sketch of the hanging water column and the variables r, z, I, θ to be
used to obtain its profile integrating numerically Eq. (2).

Therefore, the volume Vg of the pendant drop is obtained by
solving Eq. (2) and integrating the following equation:

Vg = m

ρ
=

∫ Lmax

0
πr(z)2dz (3)

until r = r(Lmax) = D0/2, the faucet radius that is the bound-
ary condition of the pendant drop.

When we apply an electrical potential in the cylinder
around the grounded faucet, the interface water/air becomes
electrified; in this way, the pressure difference between the
internal and the external region of the drop attached to the
faucet becomes

�p = pint − pext = 2H� − σeE − ρgz, (4)

where σe is the charge density of the pending water column
and E is the absolute value of the electrical field just outside
the drop.

This equation suggests that the electrical field effect is
to pull the droplet out of the faucet, accelerating its detach-
ment. Simulations of a slightly different geometric setup
confirm that an increase of the electrical field decreases the
detached drops volume.4 We can insert a very simplified, but
dimensionally accurate, version of the curvature dependence
supposing that σeE can be rewritten as σeE = 2HαV 2, where
α is a constant to be determined, so we can write Eq. (4) as

�p = 2H(� − αV 2) − ρgz. (5)

From here, we can see that the electrical potential makes
the system behave as it has modified the surface tension to
�′ = (� − αV 2) that is smaller than the water surface ten-
sion, and by applying it to Eqs. (2) and (3), the correspondent
pendant drop mass was obtained.

The effect of lowering the surface tension can be seen
in Fig. 3, where the attached drop mass is shown as a func-
tion of the excess pressure pint − pext, for z = 0 at the bottom
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FIG. 3. Mass of the pendant drop as a function of �p at the drop bottom for
two different surface tension values. The large circles represent the critical
points when the drop is detached; above these points, the pendant drop is no
longer stable.

of the drop, by solving Eqs. (2) and after integrating using
Eq. (3). When there are more than one equilibrium pres-
sure for a hanging drop volume, the stable shape is the one
with smaller �p (large circles in Fig. 3).2 It can be seen
that the reduced surface tension (blue circles) curve has a
smaller maximum mass than the usual value for water (red
dots). So, the expected effect of inserting the electric potential
is the reduction of the drops’ volumes (and masses), as the
maximum stable volume gets smaller.

For each of 30 values of the applied voltage (V) in the
range [0 4.5] kV, and after waiting adequate transient times,
we obtained the time delays series Tn of successive drops
until a volume Vol was filled with Ndrops. The mean drop mass
was obtained by 〈m〉 = ρVol/Ndrops, and the mean time of the
delays between successive drops is given by 〈T〉.

The experimental mean mass 〈m〉 vs. V (top axis-filled
circles) is shown in Fig. 4, as we can see that the mass drop (or
size) decreases by increasing the dc voltage. We also plotted,
in the same frame, 〈m〉 vs. 〈T〉 (bottom axis-empty circles).
However, the mean mass 〈m〉 increases linearly with 〈T〉 in
order to keep constant the mean water flux 〈�〉 = 〈 dm

dt 〉 =
1.258 g/s as shown by the straight line 〈m〉 vs. 〈T〉 fitted to
the experimental data also drawn in Fig. 4.

B. Similar bifurcation diagrams S ≤ 65 and V ≤ 2.05 kV

First, for V = 0, we measured the time Tn between suc-
cessive drops, having as a control parameter the faucet open-
ing to construct a bifurcation diagram, Tn vs. S, shown in
Fig. 5(a). As a second control parameter, we used the applied
voltage V to the external cylinder while the nozzle is kept
grounded, so we constructed the bifurcation diagram Tn vs.
V , in steps of 25 V, shown in Fig. 5(b). Therefore, the pendant
water column grows in a non-uniform electric field.

We have set up the dripping rate ranging from f = 25.9
drops/s corresponding to the S1 position up to f ≈ 44 drops/s
close to the maximum value of f when the hanging water
column becomes continuous at the laser level. In Fig. 5(a),

FIG. 4. 〈m〉 vs. V (top scale—blue) and 〈m〉 vs. 〈T〉 (bottom scale—red). The
continuous line is the fitting to the experimental data showing that the mean
water flux �〈m〉

�〈T〉 is constant.

the letters close to the bottom x-axis refer to the following:
F = fixed point, 2 = period-2, 4 = period-4, B = two chaotic
bands, C = chaotic behavior, and K = also chaotic behavior.
IC1 and IC2 are interior crises chaotic to chaotic, and C1 and
C2 are interior/boundary periodic to chaotic crises. C3 cor-
responds to an interior crisis from chaotic to period-1 and to
a boundary crisis from chaos to limit cycle. Examples of the
chaotic profiles C can be seen in Fig. 6 and examples of K
types in Figs. 7 and 8.

Keeping fixed the faucet opening corresponding to the
S1 position [shown in Fig. 5(a)], we applied the electric volt-
age to the external cylinder and we obtained the diagram Tn

vs. V [shown in Fig. 5(b)], and similar behaviors such as
period doubling, crises, and chaotic behavior can be observed
as before. Therefore, this second bifurcation diagram shows
that the electric potential can be used as an efficient control
parameter in a route to chaos.

For the relative faucet opening from S = 0 up to S = 65
steps (IC2 crisis), and for the applied voltage from 0 up to
2.05 kV (IC2 crisis), both bifurcation diagrams present similar

FIG. 5. Experimental bifurcation diagrams. In (a), Tn vs. S, S = the number
of steps for tap opening. In (b), by keeping fixed the faucet opening corre-
sponding to the S1 position, we applied the voltage V in the external cylinder,
and we obtained the bifurcation diagram, Tn vs. V , having V as the control
parameter, but above 3 kV some electrical sparking has occurred and the data
to construct the bifurcation diagram become unstable.
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FIG. 6. On the left, attractors having the voltage as a control parameter, show-
ing that they are similar to the ones on the right, having the faucet opening as a
control parameter. In (a) and (A) examples of two chaotic bands, and below,
examples of chaotic attractors type C. The centers of the black pentagons
correspond to unstable fixed points.

behaviors, that is, they start in period-1 =⇒ period doubling
=⇒ two chaotic bands =⇒ IC1 =⇒chaotic type-C =⇒ IC2
=⇒ for the opening case finishing in two chaotic bands but
for the applied voltage in a different chaotic attractor type-K;
thereafter, they follow different paths. To compare details of
the two bifurcation diagrams, we reconstructed some attrac-
tors with first return maps for some values of the control
parameters roughly indicated by the arrows and the labels
in Fig. 5. Therefore, we are calling chaotic attractors type K
the ones with different profiles of chaotic attractors type C as
shown in Fig. 6.

For V > 1 kV and S � 42, the similarities are less
obvious. For comparison, we reconstructed the attractors
for V4 = 1.250 kV, V5 = 1.350 kV, and V6 = 1.800 kV as
shown on the left of Fig. 6 and they are to be compared
with the reconstructions for the relative faucet openings S4,
S5, and S6, respectively, also shown on the right of Fig. 6.
From V = 0 up to ≈1.6 kV, the mean mass of the drops
(so their sizes) decreases slowly (see Fig. 2), and the sys-
tem follows a similar dynamics to the one having the faucet
opening as a control parameter up to the ∼S5 position. The
attractors have similar topologies and sizes, see Fig. 6, but
around V = 1.8 kV, and the attractors size V6 is bigger than
the S6 one (see Fig. 6).

FIG. 7. Crisis C1. On the left column, we have an interior crisis from period-
2 to chaos type K. Note that the period-2 attractor is embedded in the chaotic
one [see red cycles in (b)]. On the right column, a boundary crisis also from
period-2 to chaos type K, but the period-2 attractor is not embedded in the
chaotic one.

C. Crises C1, C2, and C3

Above 2.05 kV and above ∼65 steps, the two routes
do not have any similarities (see Fig. 5), i.e., they present
different periodic windows, crises, etc.

As an illustration, in Fig. 7 is shown the crisis labeled
as C1 in Fig. 5. By increasing V by 25 V, a sudden change

FIG. 8. Crisis C2. On the left, boundary crisis from period-1 to chaos type K.
On the right, interior crisis from period-3 to chaos type K. In (b) and (B), the
centers of the magenta pentagons correspond to unstable fixed points. In (B),
the red cycles are related to the regions of visitation of period-3.
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FIG. 9. Crisis C3. On the left, interior crisis from chaos to period-1. In (b),
the red cycle corresponds to the period-1 region that is also visited in (a).
On the right, a boundary crisis from chaos to limit cycle. The centers of the
magenta pentagons, in (a) and (A), correspond to unstable fixed points.

occurs from a period-2 attractor [Fig. 7(a)] to a chaotic attrac-
tor [Fig. 7(b)], but this chaotic attractor evolution continues
to visit the previous period-2 attractor regions, which means
that its basin of attraction was not destroyed and that is a
characteristic of interior crisis. Other crisis C1, from period-
2 to chaotic attractors, occurs when we increase the opening
faucet from S = 108 → 109. In this case, the evolution of the
chaotic attractor does not visit the period-2 regions, character-
izing boundary crisis since the basin of attraction of period-2
was destroyed and replaced by the chaotic basin attractor.

The crisis labeled as C2 is shown in Fig. 8. On the left,
we have a boundary crisis with the applied voltage, and on the
right, an interior crisis, from period-3 to chaos, with the faucet
opening.

On the left of Fig. 9, an interior crisis is shown, in which
the system goes from chaotic to a fixed point at V= 2.9 kV.
We stopped the experiment at V= 3.0 kV because the sys-
tem becomes unstable due to electric sparking. On the right
of Fig. 9, a boundary crisis from a chaotic attractor to a limit
cycle is shown, which soon evolves to a period-1 attractor by
a Hopf bifurcation until the water flux becomes continuous at
the laser level and the dripping is no longer detected.

Guckenheimer and Holmes17 describe a Hopf bifurcation
by a two-dimensional map (r, θ) → (r′, θ ′)

r′ = [1 + d(μ − μ0)]r + ar3, θ ′ = θ + c + br2, (6)

where μ is a control parameter, μ0 is a critical control, and a,
b, c, and d are constants. Thus, as long as μ ≤ μ0, the maps
display quasiperiodic limit cycles of radius r0 and rotation
number ω.

As already observed by Pinto et al.,14 an inverse sec-
ondary Hopf bifurcation with a glass nozzle of the same
internal diameter but not so sharp as the present metallic one,
we also observed such bifurcation in the same region of the

FIG. 10. Symbols correspond to the experimental data r2
0 vs. S (bottom scale-

red), a continuous line is the linear fitting of Eq. (7). Plotted in the same frame
r2

0 vs. ω (top scale—blue), a continuous line is the curve fitting of Eq. (8).

dripping rate, that is, above 40 drops/s

r2
0 = d

a
(μ0 − μ) = A(S0 − S). (7)

We choose r0 = (Tmax − Tmin)/2, where Tmax and Tmin are
the mean values of Tn calculated in the last (first) bin of the
ten-bin Tn histogram. The rotation numbers (in units of 2π )
are obtained by the main peak position of the Fourier trans-
forms of each time series Tn and are also related to squared
radius r2

0 by

r2
0 = ω − c

b
= C(ω − ω0). (8)

The experimental data of r2
0 vs. S and r2

0 vs. ω are plotted
in Fig. 10. The continuous lines are the linear curve fittings
of Eqs. (7) and (8) to the respective data r2

0(s
2) = 0.0086(S-

148.7) s2, and r2
0(s

2) = 7.267[ω/(2π) − 0.178].

IV. CONCLUSIONS

Below a critical value of the applied voltage as well as
of a faucet opening without applying the potential, we have
observed the same dynamical behavior in the water drop for-
mation. Above these critical values, the bifurcation evolutions
are quite different. We found that the average drop mass
decreases as the potential is increased, despite the water flow
rate being kept constant, which is consistent with decreas-
ing of the water surface tension due to the electric potential
applied to the external cylinder. Therefore, the applied volt-
age can be seen as an additional control parameter related
to the variation of a physical parameter of the water. As the
interaction of the nonuniform electric field occurs only in the
hanging water column, we have short transient times that will
allow us to study synchronizations with the oscillatory com-
ponent added to the dc external electrical field and will also
allow studies of parametric oscillations.
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