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In magnetically confined plasma, it is possible to qualitatively describe the magnetic field configuration via 
phase spaces of suitable symplectic maps. These phase spaces are of mixed type, where chaos coexists with 
regular motion, and the complete understanding of the complex dynamical evolution of chaotic trajectories 
is a challenge that, when overcome, may provide further knowledge into the behaviour of confined fusion 
plasma. This work presents two numerical investigations into characteristics of mixed phase spaces which model 
distinct magnetic configurations in tokamaks under different perturbation regimes. The first approach relies on a 
recurrence-based analysis of ensembles of chaotic trajectories to detect open field lines that widely differ from the 
average. The second focuses on the transient dynamical behaviour of field lines before they escape the systems. 
These two methods provide insights into the influence of stickiness and invariant manifolds on the evolution of 
chaotic trajectories, improving our understanding of how these features affect transport and diffusion properties 
in mixed phase spaces. These theoretical and numerical approaches may enhance our comprehension of confined 
plasma behaviour and plasma-wall interactions.

1. Introduction

Decades of research have been devoted to investigate Hamiltonian 
systems under small periodic perturbations, primarily due to their com-
plex and rich dynamical properties in both chaotic and periodic motion 
[1–3]. In particular cases, these systems can be described by symplec-
tic two-dimensional non-linear maps, which often replicate the general 
dynamical behaviour of higher dimensional dynamical systems in many 
areas of science [4–6]. Our current research focus on the application in 
plasma dynamics, specifically modelling the configuration of the mag-
netic field in tokamaks.

Tokamaks [7] are promising machines of magnetically confined 
plasma to achieve thermonuclear fusion. To efficiently produce energy, 
important problems are still under investigation, expected to have fur-
ther definitive results over the next few years in experiences on the 
ITER [8] tokamak. One of the most investigated subjects for enhanc-
ing the magnetic confinement in modern tokamaks is the topology of 
the magnetic field [9,10], the so called magnetic configuration of the 
system. These configurations are constantly perturbed by natural or in-
duced oscillations to control the plasma [11,12]. In the plasma core, the 
magnetic field lines often form stable toroidal magnetic surfaces. How-
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ever, resonant magnetic perturbations, especially on the plasma edge, 
can break those surfaces forming unstable regions with open field lines 
that escape the confinement, dragging particles from the plasma to the 
inner wall of the tokamak chamber. This process, when not controlled, 
may damage the machine.

In the context of nonlinear dynamical systems, open magnetic field 
lines are related to chaotic orbits [13] wandering through the chaotic 
sea in the phase space. Modelling magnetic field lines via Hamilto-
nian maps is to investigate magnetic configurations given by the phase 
spaces of the models. Moreover, open field lines in tokamaks can be con-
trolled by applying external electric currents or magnetic devices that 
alter the configuration on the plasma edge, altering the phase spaces of 
the models as well.

Different experimental evidence [14,15] and theoretical models 
[16,17] suggest that the control of the magnetic field lines acts on the 
transport of particles on the plasma edge. This transport is considered to 
be anomalous [18] because it is different from what is proposed by nor-
mal diffusion. In that sense, modelling the anomalous transport on the 
phase space of the field lines maps is a theoretical/numerical approach 
that helps on the understanding of the confined plasma behaviour and 
plasma-wall interactions.
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In regards to the dynamics of the charged particles from the plasma, 
it is important to mind that they do not necessarily follow the behaviour 
of the magnetic field lines. These particles are often subjected to drift 
effects [19], among other conditions that could allow chaotic motion 
within integrable field lines, or even regular dynamics in magnetic con-
figurations with strong chaotic regimes [20,21]. These discrepancies 
between the dynamics of charged particles and the general behaviour 
of the magnetic field emphasise that the modelling offered from the 
formalism of near-integrable Hamiltonian systems is a qualitative de-
scription for theoretically possible magnetic configurations that may, 
ultimately, interest some application scenarios.

Near-integrable Hamiltonian systems present area-preserving phase 
spaces that are composed by a local and/or global chaotic sea along 
with KAM islands of periodic dynamics [22]. These are called mixed 
phase spaces, where a chaotic orbit evolved from initial conditions (ICs) 
at the chaotic sea, may experience different dynamical behaviours in a 
given maximum iteration time, or until it escapes the system. In that 
sense, a transient dynamics is the evolution of a single orbit, or an en-
semble of orbits, until escape the systems.

Particularly for mixed phase spaces, there exist regions in which 
chaotic orbits spend an expressive amount of time experiencing succes-
sive dynamical traps. The trajectory, once free to explore all chaotic 
regions of the phase space, is now temporally confined in a quasi-
periodic motion in the vicinity around the stability islands. This is 
the well-known phenomenon of stickiness [23–25], that affects trans-
port and statistical properties of chaotic orbits. In that sense, prior 
knowledge if a given trajectory will or will not experience stickiness 
is important.

In addition to stickiness, mixed phase spaces of non-linear symplec-
tic maps present complicated intertwined underlying structures that 
strongly affect transport properties of the system. These structures are 
known as invariant manifolds and determining how these structures are 
spatially organised is essential to comprehend how different regions of 
a given phase space are linked or severed. Invariant manifolds often act 
as transport barriers, partial transport barriers and transport channels 
[26,27]. Indeed, Borgogno et al. [28] investigate influences of stable 
and unstable manifolds and the presence of stickiness in the context of 
magnetic configurations generated by nonlinear reconnection.

In this work, we combine two numerical investigations on the afore-
mentioned characteristics of mixed phase spaces; stickiness detection 
and organisation of invariant manifolds, considering the context of mag-
netic field lines in tokamaks under different perturbation regimes. The 
first approach, designed to study stickiness, is based on recurrence-
based analysis and detection of stickiness in large ensembles of chaotic 
trajectories [29]. The second, developed to investigate the transient 
behaviour of escaping field lines, shows the influence of invariant 
manifolds in the general dynamical behaviour [30]. These numerical 
investigations were carried out on selected symplectic maps for toka-
maks under two different configurations; The Single-null divertor map, 
or Boozer map [31], a phenomenological model that describes the mag-
netic configuration of a tokamak equipped with a poloidal divertor and; 
The Ergodic magnetic limiter map, or Ullmann map [32], a parametric 
adjustable map that describes the magnetic field lines of a tokamak as-
sembled with an ergodic magnetic limiter.

Our results illustrate the differences between the behaviour of field 
lines in both models while considering induced magnetic configurations 
that either enhance or restrain the escaping field lines. The first anal-
ysis identifies trajectories that widely differs from the average chaotic 
behaviour, specifically detecting the stickiness phenomenon, which can 
be related to additional confinement regions in the nearest surround-
ings of magnetic islands in the plasma edge. The second shows how 
the spatial organisation of invariant manifolds creates fitting transport 
channels for the open field lines, influencing the average dynamical 
evolution in the correspondent magnetic configuration. These analyses 
may, ultimately, assist in selecting optimal experimental parameters to 
achieve specific goals in tokamak discharges.

Fig. 1. Schematics of a poloidal section of a divertor tokamak, showing the 
closed magnetic field lines (light blue), the region around the magnetic separa-
trix (grey region between the red lines), magnetic saddle (black cross) and the 
general rectangular coordinates (!, ψ). The inset shows the region around the 
magnetic saddle.

This manuscript is organised as follows: Next section is devoted to 
the description of the models and a escape analysis that provides a 
general methodology for comparing and studying different magnetic 
configurations; In the third section, we present the numerical methods, 
showing our results and observations; Finally, we draw our conclusions 
in the final section.

2. Models

In this section we present and discuss the two symplectic maps 
selected for modelling the magnetic configuration of tokamaks with dif-
ferent setups.

2.1. Single-null divertor map

The single-null divertor map, also known as the Boozer map (BM), 
was proposed by Punjabi, Verma and Boozer [31] as a phenomenologi-
cal model for the configuration of the magnetic field lines of a tokamak 
equipped with poloidal divertors. Divertors are external devices placed 
on poloidal sections of the tokamak, designed to exhaust unwanted 
particles from the plasma to maintain the fusion reaction inside the 
machine.

Technically, the divertor induces a magnetic configuration with a 
saddle point (x-point) known as the magnetic saddle. This setup allows 
particles to follow the field lines towards exit points precisely placed 
near the divertor targets. Due to perturbations in the magnetic field, a 
chaotic layer is formed around the saddle, allowing the open field lines 
to escape through the x-points, striking the divertor target. The striking 
points are commonly referred to as magnetic footprints, which form spe-
cific patterns explored in different works in the literature [33]. Indeed, 
experimental evidence [17] based on heat patterns at the divertor tar-
get, suggests that ions from the plasma may follow open magnetic field 
lines, striking the target and forming specific heat signatures compara-
ble to the theoretical magnetic footprints.

The behaviour of field lines around the magnetic saddle is studied 
via the symplectic separatrix map "BM given by the following equations

"BM ∶
{

!#+1 = !# − $ψ#(1−ψ#)
ψ#+1 = ψ# + $!#+1

, (1)

where the pair (!, ψ) are generic rectangular coordinates over a poloidal 
section surface, as depicted in Fig. 1; Note that ψ is positive from the 
centre of the poloidal section in the direction of the x-point.

The control parameter $ is related to the amplitude of toroidal asym-
metries that perturb the magnetic configuration. Indeed, there are a few 
works in the literature [31,33] that relates numerical values of $ to the 
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Fig. 2. Characteristic phase space of the BM considering $ = 0.6. (a) Full phase space with the inset showing the region around the magnetic saddle; (b) The inset 
amplified, showing the mixed chaotic-periodic states present in this region.

Fig. 3. Schematic example of the modelling process that begins at the torus (representing the tokamak), passing by the poloidal section near the limiter (ring placed 
in a section of the torus), showing also the calculated magnetic field lines (grey in the background), arriving at the rectangular coordinates (%, &) drawing the full 
phase space of the model; % = %′∕2'( = )∕2' and & = &′∕( = 1 − *∕(. The colour blue represents regions closer to the plasma core and the colour red regions around 
the plasma edge.

safety factor calculated at the plasma edge. Accordingly to these works, 
$ ≈ 0.6 is a fair value to simulate the diverted magnetic field configura-
tion while considering, specifically, large tokamaks like ITER.

The characteristic phase space of the model is shown in Fig. 2. In 
particular, panel (b) shows the amplified region of interest around the 
magnetic saddle located at (!⋆, ψ⋆) = (0, 1), where the separatrix chaotic 
layer, embedded with several highly-periodic island chains, is clearly 
visible. The chaotic layer is essentially composed of open field lines 
that will, eventually, escape through the x-point, hitting the divertor 
target. In that sense, the escape condition for these chaotic trajectories 
is satisfied when ψ# ≤ ψtarget ≤ ψ#+1; We consider ψtarget = 1.0 for our 
numerical simulations in Sec. 3 and 4.

Although simple, the BM is a very suitable model to perform ex-
tensive numerical simulations that might improve our understanding of 
the complex behaviour of field lines around magnetic saddles in diver-
tor tokamaks.

2.2. Ergodic magnetic limiter map

The ergodic magnetic limiter map, or the Ullmann map (UM), was 
proposed as a symplectic two-dimensional non-linear map that models 
the magnetic field lines of a tokamak assembled with an ergodic lim-
iter [32]. Inside the tokamak, in the plasma core, the magnetic field is 
strong and stable enough for the duration of a typical discharge. How-
ever, on the plasma edge, closer to the inner walls of the machine, 
the magnetic field lines are often perturbed, forming regions of strong 
instabilities. In many cases, to either control or change the magnetic 
configuration in this outer region, the tokamak is assembled with de-
vices placed at the border of the machine. This is the case of the ergodic 

magnetic limiter which is, basically, an outer ring composed of several 
helical coils that perturb the field lines at the plasma edge.

In the practical sense, there are a few features that make the UM 
a fitting model for our analysis: (i) Since it is a symplectic map, it 
can be derived from suitable generating functions that include the ap-
propriate periodic perturbation; (ii) The profile of the safety factor is 
freely adjustable for a given tokamak discharge, allowing also an anal-
ysis considering non-monotonic profiles [34]; (iii) The parameters of 
the model are directly linked to experimental parameters of a given 
tokamak. Fig. 3 displays a schematic example of the modelling process, 
along with the aforementioned parameters.

The full derivation of the UM is outlined in [32]. Essentially, 
the complete model is a composition of two maps " 0

UM◦" 1
UM(%#, &#) =

(%#+1, &#+1). The first part " 0
UM is the equilibrium dynamics with a 

toroidal correction, where it is assumed that the equilibrium magnetic 
field is !0 = (,0

* = 0, ,0
) = ,0

) (*), ,
0
- = ,0), and one may introduce a 

suitable generating function resulting into the first part of the map as 
follows

" 0
UM ∶

⎧
⎪
⎨
⎪⎩

&∗#+1 = 1− (1−&#)
1−.1 sin(%#)

%∗#+1 = %# +
2'

/0(&∗#+1)
+ .1 cos(%#)

, (2)

where .1 = −0.04 corresponds to the first term of a toroidal correction 
introduced by Ullmann to take into consideration small outward ra-
dial displacements of the centre of flux surfaces in the tokamak, usually 
caused by a phenomenon known as the Shafranov shift [32]. Addition-
ally, the term /0(&) refers to the safety factor calculated at the new 
dimensionless coordinate &.

The safety factor may be interpreted as the ratio between the num-
ber of toroidal cycles to the poloidal ones for any field line on a given 
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Table 1
Main parameters of the TCABR [35].

Parameter Symbol Value
Larger radius 00 0,615 m
Minor radius ( 0,21 m
Plasma column radius . 0,18 m
Toroidal magnetic field ,0 1,07 T
Plasma current (equilibrium) 12 < 100 kA
Safety factor (equilibrium at * = .) /0(.) ≈ 5.0

magnetic surface. In practical terms, it is obtained from the poloidal 
magnetic field1 ,0

) (*).In order to model the periodic perturbation caused by the ergodic 
magnetic limiter, it is assumed that the limiter is sufficiently narrow 
in relation to the torus, ensuring a pinpoint perturbation where would 
be defined a poloidal section of interest. That way, the perturbed mag-
netic field is written as !1 = (,1

* = ,1
* (*, ), -), ,1

) = ,1
) (*, ), -), ,

1
- = ,0), 

where the full expressions of ,1
* and ,1

) can be found in [32]. Once de-
fined the perturbed magnetic field, one may introduce another suitable 
generating function resulting into the second part of the map " pert

UM as 
follows

" 1
UM ∶

{
&# = &∗#+1 +

3
3−14(1− &#)3−1 sin(3%∗#)

%#+1 = %∗# −4(1− &#)3−2 cos(3%∗#)
, (4)

where the dimensionless constant 4 arrange all main parameters of the 
model, relating them in the following way

4 = 2'
/0(.)

( (
.

)3−2 ,1(.)
,0
) (.)

= 43'
/0(.)

(.
(

)2 1ℎ
12

. (5)

Parameters 3, 1ℎ and 12 are, respectively, the number of coils (also 
referred to as the perturbation mode), the helical current induced in 
the limiter, and the plasma current (at equilibrium). The term ,1(.) is 
the amplitude of the perturbed magnetic field calculated at the plasma 
edge (& = 1 − .∕().

Defining 6, = ,1(.)∕,0
) (.) and 61 = 1ℎ∕12, we finally reach the 

proper control parameter of the model: 6, defined as the relative per-
turbation of the poloidal magnetic field or; 61 as the relative current 
factor. In practical terms, 6, = 1.0% means that the intensity of the mag-
netic field caused by the limiter is 1.0% of the intensity of the poloidal 
magnetic field at the plasma edge or, 61 = 0.5% means that the electric 
current of the limiter is 0.5% of the plasma current.

With that, all parameters of the model can be set for a specific toka-
mak and, the iteration of the maps " 0

UM◦" 1
UM provide different magnetic 

field configurations considering different values of 6, or 61 . In our nu-
merical simulations, we use the parameters of the TCABR, the tokamak 
of the Physics Institute, University of São Paulo, show in Table 1.

The full phase space of the model was presented in the last panel 
of Fig. 3 however, from now on, we focus only on the region of the 
plasma edge 0.0 < & < 0.4. Fig. 4 displays the characteristic phase space 
of the UM considering the perturbation mode 3 = 7, the safety factor 
/0(.) = 5.0 and 6, = 1.5% (61 ≈ 0.45%).

The chaotic region, depicted by the extended connected black sea 
around the periodic islands in white, present in phase space drawn in 
Fig. 4 will be an essential framework for all phase space analyses in 
next sections. It’s worth noting that the open field lines, that compose 

1 The expression of ,0
) (*) can be obtained via Ampere’s law while considering 

an electric current density function ". In our case, we selected the following 
density function

" = 70
(
1− *2

.2

)8

Θ(.− *):̂ , (3)

where 70 and 8 are adjustable parameters for a given discharge, . is the radius 
of the plasma column and Θ(⋅) is the Heavyside function that assures that the 
current is absent outside the plasma column (* > .).

Fig. 4. Characteristic phase space of the UM considering 3 = 7, /0(.) = 5.0 and 
6, = 1.5% (61 ≈ 0.45%).

the aforementioned chaotic sea, can eventually escape hitting the inner 
wall of the tokamak at & = 0. Therefore, the model’s escape condition is 
satisfied when &# < 0 < &#+1.

Escaping field lines, featured in both BM and UM models, are the 
main focus of the methodology proposed in the next section.

3. Escape analysis

The methodology outlined here was developed to address one fun-
damental practical question: Which values of control parameters should 
be selected for all numerical simulations of the models?

Our approach to addressing this question is based on the escape rate 
;0, which is defined as the proportion of escaping trajectories #< that 
correspond to the escaping magnetic field lines, relative to the total 
number = of initial conditions (ICs) provided to the models; ;0 =
#<∕= . By defining ;0, we can analyse it as a function of the control 
parameters, $ (for the BM) and 6, (for the UM). To do so, we establish 
suitable ranges of parameters’ values that do not drastically modify their 
respective phase spaces. For the BM, we select $ between the interval 
$ ∈ [0.53, 0.63], and for the UM, 6, between 6, ∈ [1.2%, 2.2%]. These 
parameters’ values preserve the main aspects of their phase spaces that 
we are interested to study.

Before analysing the ;0 as a function of the control parameters, it is 
necessary to ensure that the escape conditions can be, indeed, satisfied 
by the evolved trajectories. Since only chaotic trajectories can escape, 
a suitable chaotic region must be found in the phase spaces. For that, 
Figs. 5 and 6 draw phase spaces for the BM and UM considering three 
different parameter values. It is important to note how the phase space 
configuration changes while increasing the value of the control param-
eter.

Once the ranges of parameters of interest are established and the 
phase spaces are drawn, it is possible to identify a region where all 
given ICs can be placed within the chaotic sea. However, it is essential 
that this specific chaotic region is maintained throughout the entire 
parameter range.2 These conditions assured, only chaotic trajectories 
are evolved and, therefore, the escape conditions can be satisfied.

Now, dividing the ranges of parameters into > different values, it 
is possible to analyse the behaviour of ;0 as a function of the control 
parameters. First, for the BM, = = 105 ICs placed at !0 = 0 and ψ0 ∈
[1 − 10−9, 1 − 10−10], were evolved up to 103 iterations of the map. The 
computed ;0 = ;0($), considering > = 250, 500 and 1000 parameters 
distributed at $ ∈ [0.53, 0.63], is shown in Fig. 7(a). It is worth noting 
that the general behaviour of ;0($) is the same for the tree values of >.

2 Identifying this robust chaotic region is a meticulous procedure specifically 
for the BM. As evidenced by Fig. 5, both the topology and the size of the phase 
space are highly sensitive to the parameter change.
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Fig. 5. Phase spaces of the BM considering $ = 0.53 (left), $ = 0.58 (centre) and $ = 0.63 (right). The selected ICs are represented by the green points and their 
evolution was up to 5 × 105 iterations of the map "BM. All three phase spaces are drawn considering only the region ! ∈ [−0.0025, 0.0025] and ψ ∈ [0.995, 1.0].

Fig. 6. Phase spaces of the UM considering 6, = 1.2% (left), 6, = 1.7% (centre) and 6, = 2.2% (right). The selected ICs are represented by the green points and their 
evolution was up to 2 × 104 iterations of the composed map " 0

UM◦" 1
UM. All three phase spaces are drawn considering the region % ∈ [0, 1] and & ∈ [0, 0.4].

Fig. 7. Behaviour of the escape rate as a function of the control parameters for both the BM (a) and UM (b) models. Their defined ranges were divided into >
different parameters and, the colour lines show the behaviour of 1000 (black), 500 (green) and 250 (violet) parameters.

For the UM, = = 103 ICs were placed at %0 ∈ [10−6, 10−5] and &0 = 0.3
and evolved up to 105 iterations. The computed ;0 = ;0(6,), consid-
ering > = 250, 500 and 1000 parameters distributed at 6, ∈ [1.2%, 2.2%], 
is shown in Fig. 7(b). It is also worth noting that the general behaviour 
of ;0(6,) is the same for the tree selected values of >.

In general terms, the escape analysis illustrated in Fig. 7 yields pre-
cise parameters’ values that indicate configurations which enhance or 
restrain escaping field lines. For the BM, $ = $− = 0.5930 and $ = $+ =
0.6056 are the parameters of interest because ;0($+) is a local high 
around $ ≈ 0.6, which not only provides phase spaces comparable to 
other studies [30,33], but also is a convenient value for large tokamaks 
as discussed in Sec. 2.1 and, ;0($−) a local low around the same re-
gion. For the UM, 6, = 6,− = 1.334% and 6, = 6,+ = 1.836% are the 
parameters of interest because ;0(6,+) is the global high and, ;0($−)

is the global low that also indicates the first parameter value that es-
capes occurs.

Furthermore, it is worth remarking that the general behaviour dis-
played in both panels of Fig. 7 provides additional relevant interpreta-
tions. On one hand, the analysis of the BM shows a curious oscillatory 
behaviour that might be related to intrinsic dynamical structures, such 
as homoclinic tangles that arises and vanishes, around the saddle point. 
On the other hand, the analysis of the UM yields an expected growth 
while increasing the parameter value, however, there is a maximum 
followed by an arguably puzzling decay. Nevertheless, these interesting 
features would be further and properly investigated in other opportuni-
ties.

Finally, once defined the values of interest $+ and $− for the BM 
and, analogously 6,+ 6,− for the UM, it is possible to thoroughly in-
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Fig. 8. 00 distributions as a function of the ICs for the BM. In (a) ψ0 =ψ? is fixed, varying !0 between the defined interval for both $− (upper panel) and $+ (lower 
panel). In (b) !0 = !? is fixed, varying ψ0 in the defined interval for $− and $+. Their corresponding values of ⟨00⟩ (average recurrence rate over the ensemble), the 
upper limit ⟨00⟩ + 3@ depicted by the red line, where @ is the standard deviation of the average, and the count of peaks are displayed in all panels.

vestigate their respective phase spaces via two of our original methods. 
Next section is devoted to presenting the results.

4. Numerical results

We discuss and present in this section our numerical results from the 
two selected methods to investigate the differences between the mag-
netic configurations of the models. In the first subsection, we employ 
the recurrence method outlined in [29] to pinpoint orbits that will expe-
rience stickiness on both models. Additionally, in the second subsection 
we investigate the average transient behaviour of escaping trajectories 
via the method described in [30].

4.1. Recurrence and stickiness

Accordingly to [29], by defining an ensemble of ICs, evolving them 
until a given maximum iteration time and computing the Recurrence 
Rate (00) of each orbit, it is possible to find particular trajectories that 
widely differ from the average behaviour. This procedure is based on 
the number of recurrences of a given trajectory, marking how many 
times it returns into a A-neighbourhood of a region that the orbit al-
ready visited [36], where A is often referred to as the recurrence threshold 
distance. On this basis, it is possible to verify that orbits with high re-
currence rates are the ones that experience stickiness. Indeed, we verify 
the existence of stickiness separately for the BM and the UM as follows.

4.1.1. Single-null divertor map
First, for the BM we selected an ensemble E formed by = = 4.9 × 107

ICs uniformly distributed3 between !E
0 ∈ [!?−10−10, !?+10−10] and ψE

0 ∈
[ψ?−10−10, ψ?+10−10], where (!?, ψ?) = (0.00066855, 0.99774007) are the 
coordinates of the first Unstable Periodic Orbit (UPO) found within the 
chaotic portion of the phase space for $ = $−.

Considering the phase space $ = $+, an analogous ensemble was 
placed again in the closest vicinity of the first UPO found within the 
chaotic separatrix; !E

0 ∈ [!? − 10−10, !? +10−10 and ψE
0 ∈ [ψ? − 10−10, ψ? +

10−10], with (!?, ψ?) = (0.00000001, 0.99698287).
It is worth mentioning that, in practice, comparing the behaviour of 

trajectories from ensembles of ICs for different phase space configura-
tions is a meticulous task. In that sense, both ensembles defined above 
were constructed considering the same number of ICs = , placed within 

3 A technical observation regarding the total number of ICs is in order: It 
is actually = = 3% × 3&, with 3% = 3& = 7 × 103 ICs; In that sense, the actual 
coordinates of the ICs are calculated over the intervals !0 ∈ [!min

0 , !max
0 ]∕3% and 

ψ0 ∈ [ψmin
0 , ψmax

0 ]∕3& .

small squares with the same width and height, centred around the com-
puted coordinates (up to 10−8 numerical precision) of the first UPO 
found in their respective phase spaces. For $ = $−, it was found a pe-
riod 29 UPO and, for $ = $+ a period 55 UPO. The UPOs’ close vicinity 
is a convenient location because it warrants only chaotic orbits.

Once the ensembles are well-defined, we begin the recurrence anal-
ysis considering all = = 4.9 × 107 ICs, evolved until B = 104 iterations 
and the recurrence threshold distance A = 0.01. Fig. 8 presents the first 
results of the computed 00 for all trajectories in the ensembles.

Since the defined ICs were placed on intervals in both axis, Fig. 8(a) 
and (b) separates the analysis fixing ψ0 and !0 respectively and vary-
ing the other coordinate within the ensemble’s size. We define relative 
distances Δ!0 and Δψ0, taking as a reference the coordinates of their 
corresponding UPOs (!?, ψ?), as Δ(!0, ψ0) = [(!E

0 , ψ
E
0 ) − (!?, ψ?)] × 1010. 

Then, the upper and lower panels of Fig. 8 (a) show the recurrence rate 
distribution over the interval of ICs on ! for $− and $+ respectively. 
Analogously the panels of Fig. 8 (b) display the same distributions now 
over the interval of ICs on ψ.

By defining an upper limit, calculated by ⟨00⟩ + 3@ i.e. the average 
recurrence rate over the ensemble of ICs plus three times the standard 
deviation of the average, it is possible to perform a 3@ detection on how 
many peaks are in the distributions. A peak is associated with a specific 
value of IC that provides a highly recurrent trajectory.

The foremost important outcome of Fig. 8 is the difference between 
the number of peaks for $− and $+. It was established that $− is the 
value of the perturbation strength that gives a phase space configuration 
which restrains escape orbits. In that regard, it is reasonable to expect 
that this phase space configuration would present many trajectories that 
experience stickiness and, due to this trapping time, they might not 
escape the system until the considered evolution time. The opposite is 
to be expected for $+, being associated with a phase space that enhances 
escaping trajectories. All four distributions shown in Fig. 8 and their 
respective peak counts notably agree with these expectations.

Furthermore, Fig. 9 (a) combines prior recurrence analyses for $− on 
both intervals into one considering 0̃0 as a function of Δ14 , where we 
define 0̃0 = 00 − ⟨00⟩ as the corrected 00 in respect to its ensemble 
average, and Δ14 =Δ!0+Δψ0 as the combined intervals for the ICs. The 
upper limit is depicted by the red line at 3@ since the 0̃0 distribution 
is null at ⟨00⟩ by construction. All ICs that, when evolved up to B
iterations, produce trajectories with computed 00 larger than the upper 
limit are suitable candidates to present stickiness, so we label these ICs 
as (!D0 , ψD

0 ).Essentially, the analysis of the 00 distribution over the ICs pro-
vides a subset D of the ensemble E, composed solely of ICs that, when 
evolved, will produce highly recurrent trajectories. For the case of 
$ = $− the subset D is formed by 305 ICs and their evolution is shown 
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Fig. 9. (a) 0̃0 distribution as a function of all = = 4.9 × 107 ICs evolved until B = 104 iterations of the BM, considering $ = $− and the threshold distance A = 0.01. 
The IC (!ℎ0 , ψℎ

0 ) with the highest 00 is marked by the dashed circle; (b) 305 trajectories evolved from all (!D0 , ψD
0 ) determined from the 3@ limit in (a). The position 

of the ensemble is depicted by the green square (out of scale) and the inset shows the amplified region inside the black square.

Fig. 10. (a) 0̃0 distribution as a function of all = = 4.9 × 107 ICs evolved until B = 104 iterations of the BM, considering $ = $+ and the threshold distance A = 0.01. 
(b) 60 trajectories evolved from all (!D0 , ψD

0 ) determined in (a). The position of the ensemble is depicted by the green square (out of scale) and the inset shows the 
amplified region inside the black square.

in Fig. 9 (b). These 305 trajectories do not visit the upper regions of 
the chaotic separatrix, being dynamically trapped in the chaotic area 
around the more visible islands, finishing their evolution by visiting 
the neighbourhood of all embedded periodic islands. By this numeri-
cal observation, these are indeed trajectories that experience stickiness 
phenomena.

In the same direction, Fig. 10 (a) presents the results of the distribu-
tion 0̃0 ×Δ14 considering $ = $+, where the subset D is roughly three 
times smaller than the previous analysis, composed of 60 ICs. Never-
theless, the evolution of these special trajectories is shown in Fig. 10
(b).

The evolution of the subset D displayed in Fig. 10 (b) displays all tra-
jectories in the initial chaotic surroundings, never visiting upper regions 
of the phase space. The inset reveals that these 60 orbits are trapped 
around many small periodic structures, indicating stickiness once more.

The final numerical observation for the BM is shown in Fig. 11, 
where we evolve the IC (!ℎ0 , ψ

ℎ
0 ) with the highest 00 from the distri-

bution in Fig. 9 (a) and we display the exact place in which this highly 
recurrent trajectory is trapped in the phase space. The inset shows more 
clearly this fine chaotic vicinity around the periodic islands.

4.1.2. Ergodic magnetic limiter map
As the recurrence-based detection approach proved to be effective 

in identifying stickiness for the BM, we employ a similar analysis for the 
UM. An ensemble E formed by = = 2.5 ×107 ICs is uniformly distributed 
between small intervals in both % and &-axis; %E

0 ∈ [%?−10−10, %?+10−10]
and &E

0 ∈ [&? −10−10, &? +10−10], where (%?, &?) are the coordinates of the 
period 7 UPO found in the upper chaotic area of the phase space. Un-
likely the BM, the phase space of the UM is more robust to changes in 
the control parameter of the map, given by the relative perturbation of 

Fig. 11. Phase space for $ = $− (grey on the background) along with the trajec-
tory started from (!ℎ0 , ψℎ

0 ). The inset shows the region around the small periodic 
island.

the magnetic field 6,, making it easier to find a suitable location for po-
sitioning E while considering the two different configurations 6,− and 
6,+. Specifically, E is centred at (%?, &?) = (0.420363188, 0.321734626) for 
6,− and at (%?, &?) = (0.420594827, 0.321787496) for 6,+.

Now that the ensembles are well-defined we analyse all = = 2.5 ×
107 ICs, evolved until B = 104 iterations, considering the recurrence 
threshold distance A = 0.005 to compute their corresponding 00. To 
further investigate the adaptability of our method, we consider now a 
different value of the recurrence threshold distance A = 0.005 and we 
perform a 2.5@ detection to pinpoint special ICs for stickiness in the 
UM. We present in Fig. 12 the results for the 00 distribution over %0



)XQGDPHQWDO 3ODVPD 3K\VLFV � ������ ������

�

M.S. Palmero and I.L. Caldas

Fig. 12. 00 distributions as a function of the ICs for the UM. In (a) &0 = &? is fixed, varying %0 between the defined interval for both 6,− (upper panel) and 6,+

(lower panel). In (b) %0 = %? is fixed, varying &0 in the defined interval for 6,− and 6,+. Their corresponding values of ⟨00⟩ (average recurrence rate over the 
ensemble), the upper limit ⟨00⟩ + 2.5@ depicted by the red line, where @ is the standard deviation of the average, and the count of peaks are displayed in all panels.

Fig. 13. (a) 0̃0 distribution as a function of all ICs evolved until B = 104 iterations of the UM, considering 6,− and the threshold distance A = 0.005; (b) 307 
trajectories evolved from all (%D0 , &D ) determined from the 2.5@ detection in (a). The position of the ensemble is depicted by the green square (out of scale).

Fig. 14. (a) 0̃0 distribution as a function of all ICs evolved until B = 104 iterations of the UM, considering 6,+ and the threshold distance A = 0.005. The IC (%ℎ0 , &ℎ0 )
with the highest 00 is marked by the dashed circle; (b) 228 trajectories evolved from all (%D0 , &D ) from the 2.5@ detection in (a). The position of the ensemble is 
depicted by the green square (out of scale).

and &0 intervals separately and for the two configurations 6,− and 6,+

of the UM.
Fig. 12 shows that, although the number of peaks for 6,− is higher 

than for 6,+ in both % and & distributions, the difference is not as high 
as for $− and $+ previously shown in Fig. 8 for the BM. Nevertheless, 
the relatively high number of peaks for the configuration 6,+ indicates 
that we will find strong stickiness in the corresponding phase space as 
well.

From both upper panels of Fig. 12 we found 307 ICs that compose 
a special subset D of our initial ensemble E. These special ICs are la-
belled (%D0 , &

D
0 ) in Fig. 13 (a), where we combine previous distributions 

on both intervals into one while considering the aforementioned cor-
rected 0̃0 recurrence rate. In Fig. 13 (b) we display the evolution of 
(%D0 , &

D
0 ) in the corresponding phase space configuration 6,−, where the 

colour gradient from the number of iterations reveals that most of these 
special trajectories spend an expressive amount of time around the KAM 
islands embedded in this upper region of the phase space.

Moreover, Fig. 14 shows the same results now considering the con-
figuration 6,+. The 2.5@ detection in (a) selects 228 ICs, now labelled 
(%D0 , &

D ), that are evolved up to 104 iterations in panel (b). Addition-
ally, Fig. 14 (a) highlights a special IC (%ℎ0 , &

ℎ
0 ) that presents a com-

puted 00 ≈ 3.6% about forty times the average over the ensemble 
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Fig. 15. Phase space for 6, = 6,+ (grey on the background) along with the 
trajectory started from (%ℎ0 , &ℎ0 ). The inset shows the region around the small 
periodic island.

⟨00⟩ = 0.09%, meaning that an orbit started from (%ℎ0 , &
ℎ
0 ) is an ex-

tremely recurrent chaotic trajectory that will be further inspected in 
Fig. 15.

The phase space with the sub-ensemble’s D evolution depicted in 
Fig. 14 (b) is again marked by trajectories that spend much time 
around periodic structures, all highlighted by the yellow points, indi-
cating stickiness phenomena. Furthermore, it is interesting to note a 
pronounced separation between the upper region, mostly in purple-like 
colours, and the lower region in red/yellow. This separation is often 
associated with strong transport barriers found in phase spaces of gen-
eral non-linear symplectic maps [37], which once analysed from the 
magnetic confinement point of view, have important implications for 
tokamaks and plasma-wall interactions [38].

Finally, Fig. 15 presents the final numerical observation from the 
recurrence-based detection approach for the UM. Analogous to what 
was presented for the BM in Fig. 11, it displays the trajectory with 
highest computed 00 on the phase space, where the trapping region is 
highlighted. The inset shows more clearly the narrow chaotic vicinity 
around the periodic islands.

4.2. Transient motion

The transient motion analysis offers a visual aid for the hidden 
transient dynamics of escaping trajectories. The method is detailed de-
scribed in [30] and, essentially, is based on a finite-time version of the 
natural measure, namely the transient measure E. The natural measure is 
defined in the asymptotic limit B →∞, and is usually associated with 
dissipative dynamics near chaotic attractors [2]. However, since we are 
interested in the transient dynamics of escaping trajectories, instead of 

the asymptotic limit, we consider the time that it takes for an evolved 
trajectory to reach a predefined escape condition.

In order to investigate the transient motion, the analysed phase 
space must be covered by a fine grid composed of a suitable number 
of boxes of side-length F. Then, the transient measure E is designed 
to count every box visited at least once by an evolved chaotic trajec-
tory until the escape condition is satisfied. Since E is, by definition, 
a measure, it is possible to compute the visitation frequency in each 
box throughout the phase space. The visited boxes reflect the orbit’s 
path before escaping the system. The problem, however, is that a single 
chaotic trajectory will visit only a small portion of the available chaotic 
area, making it hard to understand the collective general behaviour by 
looking solely at the E. We define, thereby, the mean transient measure
⟨EG⟩, as the average of the transient measure over an ensemble com-
posed of = ICs. In practice, = is large enough so that the orbits visit 
a sufficient number of boxes, accurately depicting the general transient 
behaviour in the phase space. We address the total visitation frequency 
as the profile of the mean transient measure, which essentially portrays a 
spatial distribution of ⟨EG⟩ throughout the phase space. Regions of the 
phase space that are more visited than others reflect preferable paths 
taken by the trajectories. Following the procedure outlined in [30] and 
considering both BM and UM models, we show the results in the next 
subsections.

4.2.1. Single-null divertor map
The topology of the magnetic field lines induced by the single-null 

poloidal divertor, represented via the characteristic phase space of the 
BM shown in Fig. 2, presents a saddle point at (!⋆, ψ⋆) = (0, 1). Ac-
cordingly, the position of the divertor target is considered ψtarget = 1.0
to be the nearest to the saddle point, imposing the escape condition 
ψ# < 1.0 < ψ#+1 to the map equations.

Once defined the escape condition, we select an ensemble of = =
105 ICs, uniformly distributed in a dense small line positioned at !0 = 0, 
ψ0 ∈ [1 − 1 × 10−4, 1 − 1 × 10−6] evolved up to 107 iterations of the map. 
For the computation of the transient measure, it was considered a grid 
composed of 1024 ×1024 boxes of side-length F = 10−5 over the region of 
interest ! ∈ [−0.0025, 0.0025] and ψ ∈ [0.995, 1.0]. Then, we compute the 
profile of the mean transient measure ⟨EG⟩ throughout the phase space of 
the BM, considering the two special values of the control parameter: $ =
$−, the perturbation strength that gives a low escape rate and; $ = $+, 
the perturbation strength that gives a high escape rate. Fig. 16 displays 
the results.

From Fig. 16 we readily observe that the ⟨EG⟩ profile, depicted by the 
logarithmic colour scale, highlights the differences between both cases. 
As expected, since $+ > $−, the available chaotic portion of the phase 
space for $ = $+ is larger than the phase space for $ = $−. However, the 
gradient from the colour scales provides better insights into how the 
chaotic orbits are experiencing these chaotic regions before escaping 

Fig. 16. Profiles of the mean transient measure ⟨EG⟩ in logarithmic scale for the BM, calculated on a 1024 × 1024 grid, considering $ = $− = 0.5930 (left) and 
$ = $+ = 0.6056 (right). Their respective phase spaces are depicted in grey on the background. The ensemble of ICs and the colour range for the mean transient 
measure were kept the same for both cases.
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Fig. 17. Histogram distributions of the mean transient measure ⟨EG⟩ for the escape trajectories of the BM, considering both $ = $− = 0.5930 (left) and $ = $+ = 0.6056
(right). All parameters were kept the same as for Fig. 16.

Fig. 18. Comparison between the ⟨EG⟩ profile (left panels) and invariant manifolds H I,? (right panels) associated with the saddle point and nearest UPOs of interest. 
Their respective phase spaces are depicted in grey on the background. All parameters and the colour scale (omitted) are the same as in Fig. 16.

the system. On one hand, for $− escape orbits frequently visits re-
gions around upper smaller islands, as depicted by the surrounding blue 
colours, strongly indicating the presence of stickiness. On the other, $+
presents a relatively thinner profile, where most of the previous islands 
are already destroyed and the gradient from yellow to dark red reveals 
more visible gaps (in white) farther from the saddle.

Before diving into the comparison between the complicated struc-
tures uncovered by the profile and the correspondingly invariant man-
ifolds, it is possible to statistically investigate the mean transient mea-
sure profiles by computing their histograms. Considering only the boxes 
visited at least once by the simulated dynamics for both cases, the result 
is shown in Fig. 17.

The calculated histogram distributions stress the different transient 
behaviours that emerge from the complex dynamical scenario of the 
system, especially while comparing different perturbation strengths. 
Confronting both panels of Fig. 17 to their respective profiles on the 
phase space, shown in Fig. 16, we note that, indeed, orbits within $ = $−
frequently visit regions that are not available in $ = $+. The smaller 
peak around ⟨EG⟩ ≈ 10−8 indicates a relatively high concentration for all 
possible paths in areas coloured blue (respective colour for ⟨EG⟩ ≈ 10−8) 
in Fig. 16. Still in $ = $−, the higher peak, around ⟨EG⟩ ≈ 10−6 is sharper 

compared to the broader distribution for $ = $+. This suggests a some-
what contra-intuitive realisation that although the phase space of $−
presents a smaller chaotic region compared to $+, escaping chaotic tra-
jectories from $− are experiencing thoroughly most of the available 
regions and, in that sense, enabling stickiness phenomena, in compari-
son to a more erratic visitation of the orbits in $+ .

Finally, as a last visual investigation for the BM, we compare the 
uncovered structural details shown in Fig. 16 to the relevant invari-
ant manifolds present in both phase spaces. As detailed in [30], we use 
the method proposed by Ciro et al. [39] to calculate and trace the se-
lected manifolds. To further improve the visualisation, we consider an 
amplified region ! ∈ [−0.0008, 0.0008] and ψ ∈ [0.9975, 1.0] where the re-
spective details are more evident. Fig. 18 shows, on the left panels, the 
computed profile throughout this region of the phase space and, on the 
right, the same region covered by stable and unstable invariant mani-
folds associated with the saddle (!⋆, ψ⋆) = (0, 1) and the nearest UPOs 
from the last visible chain of islands. For $−, the nearest UPO is asso-
ciated with a period 31 chain of islands and, for $+ it is a period 29 
UPO.

The colour gradient of ⟨EG⟩ depicts, in both cases, complex geomet-
rical structures, formed by seemingly erratic curves, that are embedded 
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Fig. 19. Profiles of the mean transient measure ⟨EG⟩ in logarithmic scale for the UM, calculated on a 1024 × 1024 grid, considering 6, = 6,− = 1.334% (left) and 
6, = 6,+ = 1.836% (right). Their respective phase spaces are depicted in grey on the background. The ensemble of ICs and the colour range for the mean transient 
measure were kept the same for both cases.

in their respective phase spaces. These structures accurately agree with 
the invariant manifolds shown in the right panels of Fig. 18. Curiously, 
the structures revealed by the mean transient measure are consistent not 
only with the unstable manifolds but also with the stable ones. More-
over, while comparing both cases of $, it is possible to note that the 
traced manifolds for $+ seem more interconnected4 than the ones pre-
sented in $−. Of course, knowing that the manifolds are often related 
to transport channels, the strong interconnected structures behind the 
phase space for $+ might explain why it is a configuration that enhances 
the escape, differently from what is observed for $−.

4.2.2. Ergodic magnetic limiter map
Analogously to what was presented for the BM, depending on the 

values for the perturbation strength, provided either by 6, or 61 , it 
was shown that escape field lines may be found, considering the escape 
condition &# < 0 < &#+1, meaning that a field line crossed the inner wall 
at & = 0.

To numerically calculate the transient measure and the respective 
mean transient profile, we select an ensemble of = = 104 ICs, uniformly 
distributed in a dense small square in %0 ∈ [−1 × 10−7, 1 × 10−7] and &0 ∈
[0.3 −1 ×10−7, 0.3 +1 ×10−7] evolved up to 105 iterations. Only the lower 
region & < 0.4 with % ∈ [0, 1] was selected for the analysis, considering a 
grid composed of 1024 × 1024 boxes with side-length F = 10−5. Then, the 
profile of the mean transient measure ⟨EG⟩ for the UM was computed for 
the two special values: 6, = 6,−, the perturbation strength that gives 
a low escape rate and; 6, = 6,+, the perturbation strength that gives a 
high escape rate. Fig. 19 displays the results.

It is possible to readily observe that the ⟨EG⟩ profile, depicted by the 
logarithmic colour scale in Fig. 19, highlights the differences between 
both cases similarly to results for the BM. However, one main difference 
between the simulation of the UM and the BM is the selected location 
for the ensemble of ICs. For the UM, ICs are located at & ≈ 0.3, far from 
the escape condition at & = 0, whereas the ensemble of ICs for the BM 
was set much closer to its respective escape condition. This discrepancy 
is due to the fact that the standard phase space configuration for the 
UM is more robust to changes in the perturbation strength, compared 
to the phase spaces for the BM. Nevertheless, investigating the transient 
behaviour of escape field lines originating from a region closer to the 
highly confined magnetic fields (modelled by & > 0.5 on the UM) may 
have important implications for further understanding of plasma-wall 
interactions in tokamaks.

4 As a technical remark: It is known that, since these invariant manifolds are 
composed by infinite sets, both homo/heteroclinic intersections are, by theo-
retical definition, also invariant and infinite sets. That being said, we discuss 
the interconnectivity of these manifolds focusing only on what was possible to 
compute in our numerical simulations and display in the figures.

Fig. 20. Histogram distributions of the mean transient measure ⟨EG⟩ for the 
escape trajectories of the UM, considering both 6, = 6,− = 1.334% (left) and 
6, = 6,+ = 1.836% (right). All parameters were kept the same as for Fig. 19.

As a complementary statistical result to Fig. 19, we show in Fig. 20
the computed histogram distributions associated with the ⟨EG⟩ profiles.

Fig. 20 displays rather different distributions in comparison to 
Fig. 17 for the BM. This is expected since for the UM we analyse ICs 
placed far from the escape condition. We note that the average be-
haviour of escaping trajectories has similar high peaks around 10−5, 
depicted by dark red colours in both panels of Fig. 19 that are related 
to the area nearest to the ensemble of ICs. However, other minor peaks 
are in different positions on the ⟨EG⟩ range; While 6,− presents sec-
ondary peaks far from the first one, around 10−7, the secondary peaks 
of the distribution for 6,+ are closer to the primary. One way to inter-
pret this result is that the average behaviour of the escaping orbits for 
6,− is more influenced by regions depicted in dark green (⟨EG⟩ ≈ 10−7), 
while for 6,+ the regions of influence are closer to the area where the 
ensemble of ICs was set, namely the regions depicted in red and yellow 
on the right panel of Fig. 19.

Moreover, Fig. 21 portrays the last result related to the transient 
analysis for the UM. We present, in a similar fashion to what was shown 
for the BM, the comparison between the uncovered structural details 
and the relevant invariant manifolds over an amplified region of the 
phase space. It was set % ∈ [2.3, 3.9] and & ∈ [0, 14, 0.36] to make the 
highlighted structures more evident and, differently from the analysis 
for the BM, we trace only the unstable manifolds associated with four 
distinct chains of islands present in the phase space of the UM. Trac-
ing the correspondingly stable manifolds altogether would impair the 
visualisation, undermining the proposed visual comparison.

Fig. 21 stress the straightforward link between the average be-
haviour of all escaping orbits and the underlining invariant manifolds 
associated with the UM dynamics. Initially, for both values of 6,, the 
upper region is heavily occupied, as expected for areas closer to the ICs. 
However, due to the different phase space configurations, the path ex-
perienced by all escaping orbits differs in each case; For 6,− regions 
depicted by the colour gradient are well-defined and separated, while 
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Fig. 21. Comparison between the ⟨EG⟩ profile (left panels) and unstable invariant manifolds H ? (right panels) associated with four different chains of islands. Their 
respective phase spaces are depicted in grey on the background. All parameters and the colour scale (omitted) are the same as in Fig. 19.

for 6,+ we easily observe a stronger mixing of colours, especially for 
green and yellow (⟨EG⟩ ≈ 107 to 106). This difference is also revealed by 
the shapes of all traced unstable manifolds that, for 6,−, are signifi-
cantly more restrained in comparison to 6,+. The strong mixing of the 
erratic unstable manifolds outlined in the last panel of Fig. 21 might be 
a fitting explanation of why 6,+ is a value for the perturbation strength 
that enhances the escape of this system.

As a final general comment, it is worth paying close attention to all 
highlighted areas surrounding islands in both systems. The first panel 
of Fig. 18 provides an explicit example for the BM, while the first panel 
of Fig. 21 highlights the closer neighbourhood of the upper chain of 
islands in the UM with a red colour gradient. This observation is also 
closely related to stickiness phenomena.

5. Conclusions

In this work, we investigate differences between distinct magnetic 
configurations, represented by the phase spaces of two symplectic maps, 
namely Boozer and Ullmann maps. Our study initially relies on an 
escape analysis that determines values for the models’ perturbation 
strengths which produces magnetic configurations that either enhance 
or restrict escaping field lines. Once these values are determined, we 
employ two different numerical methods, developed to study important 
aspects of mixed phase spaces, to compare and illustrate the general 
behaviour of open field lines in these two different magnetic configura-
tions.

First, the recurrence-based approach proved to be suitable for de-
tecting stickiness in both models. The numerical results shown in Sec. 4
compare the presence of sticky trajectories considering the aforemen-
tioned magnetic configurations. Based on these results, it is possible 
to infer that the stickiness phenomena are relatively more noticeable 
on magnetic configurations that restrict escaping field lines. In addi-
tion, the method allows an efficient detection of trajectories that widely 
differs from the average chaotic behaviour. This result has important 
implications while considering that, due to the magnetic configuration, 
escaping particles from the plasma may access additional confinement 
regions in the nearest surroundings of magnetic islands, specifically at 
the plasma edge.

The second analysis, based on a practical numerical method that 
visually illustrates distinct transient behaviour of escaping field lines, 
shows how the spatial organisation of relevant invariant manifolds 
can be linked to the average dynamical evolution considering differ-
ent magnetic configurations on both models. For configurations that 
enhance the escape, the computed invariant manifolds present much 
more erratic and intertwined, creating notable transport channels that 
are absent when compared to the behaviour of the manifolds for con-
figurations that restrict escaping field lines. These results suggest that 
the manifolds’ complex organisation may construct suitable transport 
channels that can exhaust unwanted particles from the plasma edge in 
a controlled manner, preventing the thermal load in locations at the in-
ner wall that are not prepared for extracting the high heat flux from the 
plasma.

The two selected methods explore chaotic trajectories that either ex-
perience stickiness, or are constantly influenced by underlying invariant 
manifolds present in the mixed phase spaces. These two important as-
pects are inherently connected to transport and diffusion properties that 
change depending on the given magnetic configuration. These analyses 
may improve our understanding of the general behaviour of magnetic 
field lines that confines fusion plasma in tokamaks.
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