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Two Parts

• Undamped electrostatic plasma waves

described in Phys. Plasmas 19, 092103 (2012)

• Nonlinear structures

preliminary results in J. Sci. Computing 56, 319–349 (2013)



Part I:

Undamped Electrostatic Plasma Waves



Electron Acoustic Waves (EAW)

Holloway and Dorning (1991)

(@ linear mode)

Dr(k, ω) = 1−
1

k2
−
∫
dv

f ′M
v − vφ

DI(k, ω) = −
π

k2
f ′M(vφ)
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Shadwick and pjm (1994)

(∃ linear mode - stationary inflection point)



Plateau Distribution

fp(v) = N
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fM(v)−

fM(v)− fM(V0)

1 + [(v − V0)/∆Vp]np

)



Corner Modes

∃ sensitivity to vφ



Corner Modes



Corner Mode Density



Chop Chop

Chopped Plateau:

fep = NMfM

[
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)
]

+Np
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H(v − v−)−H(v − v+)

)
]

Rule of Thumb:
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M
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M

)
(V0 − vφ)2 − (∆V/2)2

,

Determines frequency shifts in non-neutral plasma experiments



Numerics



Driving → Dynamically Accessible IC

Vlasov with Drive:

ft = −vfx +
(
E + Ed(x, t)

)
fv , Ex = 1−

∫
IR
dv f

External Drive:

Ed(x, t) = EDA g(t) cos(kx− ωt)
Drive Created IC:

used for the PF drive, there is a rough threshold for the PF
drive strength, above which KEEN wave can be produced
readily and below which no enduring KEEN wave would
result. Conversely, for a given PF drive strength, a suffi-
ciently long PF drive envelope effective duration Teff is re-
quired for producing a self-sustaining KEEN wave �here we
define the effective drive duration as Teff=Tplateau+Ttrans,
which is the effective time during which the drive is at its
maximum�.

The available simulation results suggest that a criterion
of necessary drive strength and duration for producing a sur-
viving KEEN wave can be established in terms of the char-
acteristic electron bounce �or trapping� time �B relevant to
the formation of an electron trapping vortex in �X ,V� phase
space. When electron trapping is discussed, usually only
electrostatic electric fields are involved. In calculating the
electron bounce �trapping� time �B when both ponderomotive
drive and the induced electrostatic field coexist, as here, one
needs to obtain the result including the dynamics of coexist-
ence in a self-consistent way. A reasonable concept is to
estimate the response of the untrapped particles using linear
theory. It turns out that the electron plasma response for un-
trapped electrons proves to be well approximated by linear
theory over a sufficiently long �up to �B /2� time during the
drive. The resulting normalized electron bounce �or trapping�
time �B�p in the plasma is obtained �see Appendix A� as
�B�p=2��p /�B=2���1+	e� /k�Da�1/2, where a is the nor-
malized �dimensionless� ponderomotive drive amplitude
and 	e�� /�p ,k�D� is the electron susceptibility. The factor
1+	e is a large correction at the low frequencies for the case
at hand. The plasma response is essentially that of an
imperfect but fairly effective shield. For our usual param-
eters � /�p=0.37, k�D=0.26 we have 	e=−1.21+9.59i, and
the normalized trapping time is then �B�p

=2��9.6 / �0.26a��1/2=38.2a−1/2. This is the formula used to
indicate �B in Figs. 1–3 �and later for Figs. 6 and 7�.

First, in Fig. 1, one has a typical subthreshold result
when the drive is evidently unsuccessful in producing a long-
lived KEEN wave. The trapping period �B �as indicated by
the length of the double-headed arrow labeled �B in Fig. 1,
between the EF �electrostatic force� and PF �ponderomotive
force� frames� for the net force during the drive is in this case
considerably greater than the effective drive duration �about
twice� and the drive is ineffective. For unsuccessful drive
cases like this, after the drive is switched off, the electrostatic
field in the plasma becomes far less than the value induced
during the drive, being rather comparable to the net force
during the drive, and decreases in an irregular manner. Note
also that during the drive period, as predicted from the linear
response theory, the net force acting on electrons �EF+PF� is
far less than either the drive or the resultant electrostatic
force EF, which in fact acts mostly to cancel the ponderomo-
tive drive. To produce a KEEN wave one would have to
drive harder or longer or both.

The probe results for the case when the drive is suffi-
ciently strong to produce a sustained KEEN wave are shown
in Fig. 2, obtained with a drive which is five times stronger
than that of Fig. 1. For this drive the trapping time is found
to be about the effective duration of the drive. For successful

drive cases like this, the net force �EF+PF� initially follows
the linear theory prediction, being far less than the drive PF
or the electrostatic force EF, but, at about half the trapping
period �B, when the nonlinearity becomes significant, the net
force on the electrons begins to rise dramatically, approach-
ing the sustaining amplitude and shape before the drive ends.

We found that the electron trapping and the associated
nonlinearity, essential for the formation of a self-sustaining
KEEN wave, is fairly well established during the driving
phase by t=�B /2, but that to reach a well-established KEEN
state, one should at least continue to drive the plasma to
about t=�B. This is the threshold criterion we adopt for the
PF-driven KEEN waves. As shown directly in Fig. 2 �and
also in Fig. 3 to be discussed next�, between �B /2 and �B the
waveforms of the plasma field become markedly nonsinusoi-
dal, indicating nonlinearity, and there is also �in Figs. 2 and
3� a very characteristic change in the net force which be-
comes comparable to the maximum ponderomotive driving
force. Further increasing the drive amplitude nearly always
gives little increase in KEEN amplitude. �We return to this
topic in Sec. VI, when discussing emergent resonance.�

In Fig. 3 the behavior during and just after the driving
phase is examined in greater detail. In Fig. 3�a� the energy

FIG. 1. �Color online� Unsuccessful KEEN wave field results for subthresh-
old drive �plateau drive time of 150�p

−1 �transitions of 50�p
−1�, tFP=150�p

−1�,
with the trapping time �B�380�p

−1 �as shown by double-headed arrow be-
low the EF plot� being about 2.5 times the effective drive duration. Shown
�vs T= t�p

−1�, from the top down, are the frequency �FREQ�, the net force
�EF and PF or EF+PF�, the EF, and the ponderomotive drive force �PF�.
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EDA(t) = .052 and Td = 200

Rose, pjm & Pfrisch, Johnston et al., Afeyan, ... Friedland, ....

Dichotomies:

Weak vs. Strong - Adiabatic vs. Slap - Short vs. Long (ω, k)



Driving fp: Weak-Adiabatic-Shortish

Nonlinear simulations → linear theory



Part II:

Nonlinear Structures



The Program

• Vlasov is Hamiltonian wrt noncanonical Poisson Bracket, e.g.
Vlasov-Poisson (pjm 1980)

{F,G} =
∫
dxdv f

[
δF

δf
,
δF

δf
,

]

• Do for infinite degree-of-freedom Hamiltonian systems that
which can be done for finite.

• Example: Krein-Moser theorem. Discrete spectrum pretty
easy. Continuous spectrum? Not so easy. Analysis necessary.
Signature pjm Pfirsch (1992); Krein’s theorem G. Hagstrom
and pjm (2011, 2013).

• Here: Lyapunov, Weinstein, Moser, ... Theorem about peri-
odic orbits



LWM Theorem

• Finite-Dimensional Hamiltonian Systems:

. ∃ other periodic orbits near stable periodic orbit (equilib-

rium)

• Infinite-Dimensional Hamiltonian Systems:

. precedent → for KdV soliton solution ∃ N-soliton solution,

i.e., motion on an N-torus



Solitons on N-Tori

1-soliton →

2-soliton ↓



Driving fM: Weak - Adiabatic

Ad(t) = .052 and Td = 200

Appears to settle into periodic orbit – travelling BGK hole.



Driving fM: Weak - Adiabatic



Central periodic orbit is BGK mode



Strong Drive
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E(t) at x−center point−  Basis functions P2

Ad(t) = .4 and Td = 200

Higher Order Periodic/Quasiperiodic Orbit: E(t) = A(t)E0(t)

A(t) = A(t+ T/4) with E0(t) = E0(t+ T )

E0(t) like weak drive



Strong Drive Fourier



2 interacting BGK modes [Demeio and Zweifel (1990)]



mpg1(phase space 2.mpg,shade surf.mpg)





Periodic and Quasiperiodic orbits



Multimode Drive

Ed(x, t) = E
(1)
DA g1(t) cos(k1x− ω1t) + E

(2)
DA g2(t) cos(k2x+ ω2t)



mpg2(movie 1)

Recalcitrance



Strong Slap

Ed(x, t) = E
(1)
DA g1(t) cos(k1x− ω1t)



mpg2(movie 2)
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