Sculpting Vlasov Phase Space

P. J. Morrison

Department of Physics and Institute for Fusion Studies The University of Texas at Austin

morrison@physics.utexas.edu

http://www.ph.utexas.edu/~morrison/

Sao Paulo, July 30, 2015

<u>Collaborators</u>:

F. Califano, T. M. O'Neil, F. Pegoraro, D. Perrone, F. Valentini,P. Veltri, Y. Cheng, I. Gamba

Two Parts

• Undamped electrostatic plasma waves described in Phys. Plasmas **19**, 092103 (2012)

• Nonlinear structures

preliminary results in J. Sci. Computing 56, 319–349 (2013)

Part I:

Undamped Electrostatic Plasma Waves

Electron Acoustic Waves (EAW)

1,4

1.2

Holloway and Dorning (1991)
(∄ linear mode)

$$D_r(k,\omega) = 1 - \frac{1}{k^2} \int dv \frac{f'_M}{v - v_\phi}$$
$$D_I(k,\omega) = -\frac{\pi}{k^2} f'_M(v_\phi)$$
$$v_\phi = \omega/k$$

LAN

Shadwick and pjm (1994) [°] (∃ linear mode - stationary inflection point)

Plateau Distribution

Corner Modes

Corner Modes

Corner Mode Density

Chop Chop

Chopped Plateau:

$$f_{ep} = N_M f_M \left[H(v - v_+) + H(v_- - v) \right] \\ + N_p \left[H(v - v_-) - H(v - v_+) \right]$$

Rule of Thumb:

$$k^{2} = M(v_{\phi}) + \frac{(V_{0} - v_{\phi}) \left(f_{M}^{(+)} - f_{M}^{(-)}\right)}{(V_{0} - v_{\phi})^{2} - (\Delta V/2)^{2}},$$

Determines frequency shifts in non-neutral plasma experiments

Numerics

$\textbf{Driving} \rightarrow \textbf{Dynamically Accessible IC}$

Vlasov with Drive:

$$f_t = -vf_x + (E + E_d(x, t))f_v, \qquad E_x = 1 - \int_{I\!\!R} dv f$$

External Drive:

$$E_d(x,t) = E_{DA}g(t)\cos(kx - \omega t)$$

Drive Created IC:

$$E_{DA}(t) = .052$$
 and $T_d = 200$

Rose, pjm & Pfrisch, Johnston et al., Afeyan, ... Friedland, Dichotomies:

Weak vs. Strong - Adiabatic vs. Slap - Short vs. Long (ω, k)

Driving f_p : Weak-Adiabatic-Shortish

Nonlinear simulations \rightarrow linear theory

Part II:

Nonlinear Structures

The Program

 Vlasov is Hamiltonian wrt noncanonical Poisson Bracket, e.g. Vlasov-Poisson (pjm 1980)

$$\{F,G\} = \int dx dv f\left[\frac{\delta F}{\delta f}, \frac{\delta F}{\delta f}, \right]$$

- Do for infinite degree-of-freedom Hamiltonian systems that which can be done for finite.
- Example: Krein-Moser theorem. Discrete spectrum pretty easy. Continuous spectrum? Not so easy. Analysis necessary. Signature pjm Pfirsch (1992); Krein's theorem *G. Hagstrom and pjm (2011, 2013)*.
- <u>Here</u>: Lyapunov, Weinstein, Moser, ... Theorem about periodic orbits

LWM Theorem

• Finite-Dimensional Hamiltonian Systems:

▷ ∃ other periodic orbits near stable periodic orbit (equilibrium)

• Infinite-Dimensional Hamiltonian Systems:

 \triangleright precedent \rightarrow for KdV soliton solution \exists N-soliton solution, i.e., motion on an N-torus

Solitons on N-Tori

Driving f_M : Weak - Adiabatic

$$A_d(t) = .052$$
 and $T_d = 200$

Appears to settle into periodic orbit – travelling BGK hole.

Driving f_M : Weak - Adiabatic

Central periodic orbit is BGK mode

Strong Drive

Higher Order Periodic/Quasiperiodic Orbit: $E(t) = A(t)E_0(t)$ A(t) = A(t + T/4) with $E_0(t) = E_0(t + T)$ $E_0(t)$ like weak drive

Strong Drive Fourier

2 interacting BGK modes [Demeio and Zweifel (1990)]

mpg1(phase_space_2.mpg,shade_surf.mpg)

Periodic and Quasiperiodic orbits

Multimode Drive

$$E_d(x,t) = E_{DA}^{(1)} g_1(t) \cos(k_1 x - \omega_1 t) + E_{DA}^{(2)} g_2(t) \cos(k_2 x + \omega_2 t)$$

mpg2(movie_1)

Recalcitrance

Strong Slap

$$E_d(x,t) = E_{DA}^{(1)} g_1(t) \cos(k_1 x - \omega_1 t)$$

mpg2(movie_2)

Two Parts

• Undamped electrostatic plasma waves described in Phys. Plasmas **19**, 092103 (2012)

• Nonlinear structures

preliminary results in J. Sci. Computing 56, 319–349 (2013)