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A lattice of coupled chaotic dynamical systems may exhibit a completely synchronized state, which defines
a low-dimensional invariant manifold in phase space. However, the high dimensionality of the latter typically
yields a complex dynamics with many features like chaos suppression, quasiperiodicity, multistability, and
intermittency. Such phenomena are described by considering the transversal dynamics to the synchronization
manifold for a coupled logistic map lattice with a long-range coupling prescription.
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Synchronization of chaos in coupled dynamical systems is
one of the most intensively investigated dynamical phenom-
ena because of its applications in communications, heartbeat
generation, and neural activity �1�. One outstanding feature
of the synchronized state of coupled chaotic systems, like
maps or continuous-time flows, is that this state lies in a
low-dimensional invariant subspace, the synchronization
manifold �2�. This greatly simplifies the dynamical behavior
of the coupled system, even though its phase space may be
high dimensional, allowing stability analysis to be done with
the help of a master function �3�. However, besides the com-
pletely synchronized states, there is also a plethora of other
possible asymptotic states. Such states, although not com-
pletely synchronized, may present a variable degree of spa-
tial coherence. In this Brief Report we consider one-
dimensional lattices of N coupled chaotic maps, whose
transversal dynamics involves N−1 degrees of freedom �4�.
Among the spatiotemporal features identified in coupled map
lattices we find synchronization of chaos �1�, pattern forma-
tion �5�, chaos suppression �6�, intermittency �7�, and multi-
stability �8�. We will focus on a nonlocal type of coupling for
which the interaction between sites decreases with their mu-
tual distances along the lattice in a power-law fashion �9�.

Let us consider a general form of a coupled map lattice
for a state variable xn

�i� at discrete time n and attached to the
site i=1,2 , . . . ,N:

xn+1
�i� = � j

Bij�f�xn
�j��� = f�xn

�i�� + � j
gij f�xn

�j�� , �1�

where the local dynamics is governed by the map f�x�,
x� �0,1�, and gij are coupling coefficients. The following
necessary and sufficient conditions must hold for all sites
i , j such that xn

�i� belong to the interval �0, 1� for all times:
Bij �0 and 0�� j=1

N Bij �1. We used a nonlocal coupling,
for which the �symmetric� coupling coefficients are

gij = �������−1��1 − �ij�rij
−� − �����ij� , �2�

where rij =min��Z�i− j+�N� is the minimum distance be-

tween sites i and j; and ����=2�r=1
N� r−� is the correspond-

ing normalization factor, with N�= �N−1� /2 �9�. The param-
eters �� �0,1� and �� �0,�� represent the strength and
effective range of the interactions, respectively. The latter

makes it possible to vary the coupling from a global �mean
field� �10� to a local �nearest-neighbor� scheme �11� in the
limits �=0 and �→�, respectively, with periodic boundary
conditions.

A completely synchronized state �xn
�1�=xn

�2�= ¯ =xn
�N�� de-

fines a one-dimensional synchronization manifold S in
N-dimensional phase space. This manifold is invariant if
�and only if� � j=1

N Bij is the same for all rows of the matrix
Bij. In the specific case of �1� this implies that � j=1

N gij =0,
which is fulfilled by the nonlocal prescription �2�. All the
remaining N−1 directions are said to be transversal to S.
Since N is usually a large integer, a direct approach to the
transversal dynamics is extremely difficult unless we resort
to some kind of approximation to reduce the number of de-
grees of freedom involved, such as computation of the trans-
versal distance to the synchronization manifold, dn=�n

�N,
where �n is the standard deviation of the state variable values
around their spatially averaged value at time n �12�. Thus
d=0 for a completely synchronized state.

As an additional numerical diagnostic of complete syn-
chronization we consider complex order parameter for the
lattice �13�:

zn = Rne2	i
n � �1/N�� j
e2	ixn

�j�
, �3�

where Rn and 
n are the amplitude and angle, respectively, of
a centroid phase vector �for a one-dimensional chain with
periodic boundary conditions�. A mean value of the order
parameter magnitude, Rm=limM→��1/M��n=0

M Rn, can be
computed over a time interval large enough to warrant that
the asymptotic state has been achieved by the lattice. A com-
pletely synchronized state implies Rm=1, whereas nonsyn-
chronized trajectories yield Rm�1. Since we found the need
of a further indication of the possibly existing attractors out-
side the synchronization manifold, we also computed the
Lyapunov spectrum of the coupled map lattice, so as to ob-
tain the corresponding Lyapunov dimension, which gives a
lower bound for the box-counting dimension of the system
attractor �14�. If there is a synchronized chaotic attractor in
S, it follows that D�1 corresponds to nonsynchronized cha-
otic trajectories.

The dependence of these quantities characterizing trans-
versal dynamics �d, D, and Rm� with the range parameter �,

PHYSICAL REVIEW E 76, 017202 �2007�

1539-3755/2007/76�1�/017202�4� ©2007 The American Physical Society017202-1

http://dx.doi.org/10.1103/PhysRevE.76.017202


keeping the coupling strength fixed at �=1.0, is illustrated in
the bifurcation diagrams depicted in Fig. 1, where we con-
sidered a lattice of N=5 coupled maps. For 0����c
	1.388 the distance to S is zero �Fig. 1�a��, such that the
system only exhibits a completely synchronized state, a fact
already expected since we are dealing with global couplings
and a large value of � �7�. The same conclusion comes from
Fig. 1�c�, where we plot the average order parameter magni-
tude as a function of �, since Rm=1 within this interval.
From the corresponding values of the Lyapunov dimension
�Fig. 1�b�� we conclude that either the phase space has non-
synchronized attractors coexisting with the synchronized one
or the computed values of D reflect a chaotic transient in-
stead of a true attractor. Since Fig. 1�a� was computed using
a large number of initial conditions, we favor the latter hy-
pothesis against the former; i.e., the synchronized attractor
seems to be unique. However, this does not rule out com-
pletely the possibility of having other nonsynchronized at-
tractors, but with extremely small basins of attraction. In
fact, a completely synchronized attractor for a coupled lattice
of one-dimensional maps would correspond to a dimension
of D=1 in the thermodynamical limit N→� �12�. The fact
that Fig. 1�b� indicates that 2.0
D
3.5 is a consequence of
the small lattice size we used.

Nonzero values of d in Fig. 1�a� start to appear only after
�c	1.388 and, except for a narrow period-2 window at
2.19
�
2.32, the chaotic values of dn remain so until �
=�P	2.464196, where a stable fixed-point attractor sud-
denly appears. According to Fig. 1�c�, the corresponding or-
der parameter takes on values lower than 1.0, which is con-
sistent with a loss of spatial coherence due to an intermittent
switching between synchronized and nonsynchronized states.
Since the synchronization manifold is invariant for our dy-
namical system, this phenomenon is an example of the so-
called on-off intermittency �15�. A fixed point for d appears
in the parameter interval �P����NS	3.845. This does not
imply necessarily that we also have a fixed point in the full
phase space, but merely that there is probably a low-
dimensional attractor for the transversal dynamics. We veri-
fied this fact by considering the corresponding Lyapunov di-
mension �Fig. 1�b��, which vanishes in the same parameter

interval for which there is a fixed point for d. This suggests a
fixed point of the dynamics in the full phase space, or sup-
pression of chaos. On the other hand, since the mean-order
parameter decreases abruptly to values in the range 0.4–0.3
�Fig. 1�c�� this fixed point represents a lattice pattern with
low spatial coherence.

Another low-dimensional attractor appears in the period-2
window of the bifurcation diagram of d in Fig. 1�a� at
2.19
�
2.32, which rapidly bifurcates through a subhar-
monic cascade generating chaotic bands that merge, restoring
the chaotic values of d. Since the corresponding Lyapunov
dimension is zero therein �Fig. 1�b��, we identify a period-2
nonsynchronized orbit in the full phase space and suppres-
sion of chaos takes place here again. For �NS	3.845��
��Q	4.250, while the bifurcation diagram indicates that
the values of d fill a continuous interval not approaching the
synchronization manifold, the Lyapunov dimension remains
zero. In this case we have another instance of chaos suppres-
sion, but this time yielding a quasiperiodic orbit; i.e., the
map iterations densely fill an invariant curve which is the
section of a high-dimensional torus. The emergence of such
an invariant curve from a fixed point occurs due to a
Neimark-Sacker bifurcation at �NS. This quasiperiodic orbit
breaks up at �Q, yielding a chaotic attractor whose dimen-
sion increases with �, except for tiny periodic windows in
the bifurcation diagram. The chaotic attractor itself is en-
larged by an interior crisis at �=�CR	5.8 and, after that, its
dimension achieves a large value �D=4 out of a maximum of
five dimensions�. Moreover, the post-critical trajectories
����CR� approach the synchronization manifold such that
we may have either a high-dimensional chaotic attractor or a
extremely long chaotic transient.

After having described qualitatively the transversal dy-
namics for a wide range of the range parameter, we shall
focus on some selected features, which, however, do not ex-
haust the variety of possible phenomena occurring outside
the synchronization manifold for a coupled system.

�i� Intermittent transition to a synchronized state. The
point �c in the bifurcation diagram of Fig. 1 marks the tran-
sition from a completely synchronized to a nonsynchronized
state. In other words, the synchronization manifold S loses
transversal stability such that randomly chosen initial condi-
tions do not generate trajectories which asymptote to S. For
���c we observe an intermittent switching between syn-
chronized and nonsynchronized behavior, characterized by
the alternation of laminar intervals off but near S with burst-
ing excursions far from S. It is convenient to work with the
logarithmic distances to S defined as yn=−log10�dn�, which
approach zero with a linear trend yn
−��T�n, where �T is the
largest transversal Lyapunov exponent of the system. Useful
information on the transversal dynamics can also be drawn
from the probability distributions of the logarithmic dis-
tances, denoted by P�y�, some of them being depicted in Fig.
2 for three values of the difference �−�c. In those cases the
numerical results are fitted by an exponential scaling law of
the form P�y�
e−�y ����c�, where �=2.182.

In addition to the linear trend of yn there are a large num-
ber of fractally distributed spikes due to the infinite number
of transversely unstable periodic orbits which coexist with
the transversely stable orbits embedded in the chaotic syn-
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FIG. 1. Bifurcation diagram for �a� d, �b� D, and �c� Rm versus
� for N=5 and �=1.0.
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chronized attractor in S �16�. The involved periodic-orbit
structure in S can be analyzed through computing the finite-

time Lyapunov transversal exponent �̃T�n�. They take on
positive �negative� values if the corresponding time-n sec-
tions of the trajectory are transversely repelling �attracting�
on average with respect to S �17�. In such cases we compute
the probability distribution of the time-n maximal transversal

Lyapunov exponent, or P��̃T�n�� �13�. The evolution of the
transversal distances from S can be described by a biased
random walk with a reflecting barrier, and the stationary so-
lution of such a stochastic model predicts an exponential
dependence for the logarithmic distances just like the one we
described, with an exponent ��2��T� /�2, where �2 is the

variance of the distribution P(�̃T�n�) �18�. It turned out that
the values predicted by this model agree with those obtained
from the least-squares fits in Fig. 2.

�ii� Type-I intermittent transition preceding suppression of
chaos. A transition from a chaotic to a periodic �fixed point�
attractor occurs at �P	2.464 196 �see Fig. 1�a��. For �

�P there is an intermittent switching between laminar in-
tervals for d�0 and bursts, the former being related to sta-
tionary but nonsynchronized states of the system �Fig. 3�b��.
The nonsynchronized behavior of the laminar intervals is
confirmed by the oscillating behavior of the corresponding
order parameter magnitude �Fig. 3�c��. The laminar intervals
have different durations �i, and in Fig. 3�a� we plotted the
mean laminar duration ��� versus the parameter distance to
the transition point, our numerical results supporting the
power-law scaling ���
��−�P�−�, where �	0.5162. This
value compares well with that predicted by the type-I inter-
mittency for one-dimensional maps �14�, suggesting that the
essential transversal dynamics is low dimensional.

�iii� Neimark-Sacker bifurcation to a high-dimensional
torus. One outstanding feature of the bifurcation diagram
�Fig. 1�a�� is the existence of a quasiperiodic orbit for
�NS����Q. Some of these orbits are shown Fig. 4�a�,
where we plot the first return map of d for three values of the
� within this interval, yielding invariant curves or two-
dimensional sections of a high-dimensional torus outside the
synchronization manifold. These curves are topological
circles with radius ��dn� and centered at dNS=0.536 91,
which is the stable fixed point existing just before a
Neimark-Sacker bifurcation occurring at �NS. Just after the
bifurcation the radius of the invariant circles increases as
�
��−�NS�1/2 �19�, which agrees with the mean radii ��� of
the invariant curves we have numerically determined �Fig.
4�b��.

�iv� Multistability in periodic windows. There is an in-
volved periodic window in the interval �� �4.4,5.1� of Fig.
1�a� within the one-band chaotic attractor evolving from the
quasiperiodic orbit breakup at �Q and which we magnify in
Figs. 5�a� and 5�b�. Moreover, while the former was gener-
ated using a new set of initial conditions for each value of �
considered, the latter was plotted using, as initial conditions
for a given value of �, the final points of the trajectory ob-
tained for the previous value of �. As a result, while in Fig.
5�a� we sample a larger fraction of the phase space and find
a large number of coexisting periodic and chaotic attractors,
in Fig. 5�b� we isolate a single period-4 orbit which subse-
quently evolves through a period-doubling cascade to chaos.
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FIG. 2. P�y� for values of � in the vicinity of �c	1.388 for
N=5 and �=1.0.

FIG. 3. �a� ���� ��p−��, where �P	2.464196, with N=5 and
�=1.0. Time series of �b� d and �c� R for �=�p−10−3.
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FIG. 5. Periodic window in the bifurcation diagram of Fig. 1
using �a� new sets of initial conditions for each � value and �b� the
final state for a given �-value as the initial condition for the next �.
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This is a single example of the richness of the behavior ob-
served in the transversal dynamics.

In conclusion, we described in this Brief Report a view of
the complexity present in the nonsynchronized dynamics of a
coupled chaotic system, focusing on the transversal direc-
tions to the synchronized manifold. The Lyapunov spectrum
of the system is used in two ways. First, it gives a lower
bound on the dimension of the transversal dynamics attractor
by means of the Lyapunov dimension. The second is the
maximum transversal exponent, in both its infinite- and
finite-time versions. While the former is important to de-
scribe the overall approach to the synchronized state, the
latter can be used to characterize statistically the distribution
of the logarithmic distances to the synchronization manifold.
These facts are not limited to the special coupled map lattice
we have chosen, but can be useful in any coupled chain of

maps or oscillators. For the specific system we investigated,
we were able to describe qualitatively and quantitatively the
dynamics after the loss of transversal stability of the syn-
chronized state. In particular, the distribution we found of the
logarithmic distances to the synchronization manifold gives
results in agreement with a general stochastic model and the
intermittency related to a transition to chaos suppression loss
presents features of the type-I Pomeau-Manneville scenario.
These features suggest that there are low-dimensional fea-
tures of the transversal dynamics which can be explored by
means of indicators like those used in this work, constituting
ways to explore the richness of the dynamics of high-
dimensional systems.
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