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1.  Introduction

The brain is the most complex organ in the human body (Bullmore and Sporns 2009). The cerebral cortex is 
the brain region with the biggest superficial area and plays a key role in consciousness, memory, perception, 
thought, and cognition (Shaw et al 2008). It is interconnected by a network of cortico-cortical axonal pathways 
(Hagmann et al 2008). In the cortico-cortical connections, axons transmit excitatory stimulii from one cortical 
area to another (Ottersen and Storm-Mathisen 1986).

Brain network interactions can be analysed by means of a framework from the new interdisciplinary field of 
network physiology (Bashan et al 2012). Network physiology allows one to identify the relations between physio-
logical function and network topology (Ivanov and Bartsch 2014). The brain has communication channels with 
other organs, such as the channel of communication for brain–heart interactions (Ivanov et al 2016). Bartsch 
et al (2015) showed networked interactions within and across brain hemispheres. Liu et al (2015) found interac-
tions between physiologic states and network structure. They reported new aspects of functional plasticity as a 
consequence of brainwave interactions across the brain during different physiologic states.

In the brain, there is much experimental evidence of neuronal synchronisation, where the synchronous 
behaviour is related to the execution of several tasks (Tallon-Baudry 2009). When there are interactions among 
oscillatory activities of action potentials they adjust their phases and frequencies and can exhibit neuronal syn-
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Abstract
Objective: We consider a network topology according to the cortico-cortical connection network of 
the human brain, where each cortical area is composed of a random network of adaptive exponential 
integrate-and-fire neurons. Approach: Depending on the parameters, this neuron model can 
exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the 
coefficient of variation of the neuronal inter-spike interval. Main results: In our neuronal network, 
we verify the existence of spike and burst synchronisation in different cortical areas. Significance: Our 
simulations show that the network arrangement, i.e. its rich-club organisation, plays an important 
role in the transition of the areas from desynchronous to synchronous behaviours.
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chronisation (Erra et al 2017). According to Pikovsky et al (2001), synchronisation manifests itself via frequency 
and phase locking. Synchronisation of neuronal activity is involved in brain mechanisms such as perception 
(Rodriguez et al 1999) and memory processes (Fell and Axmacher 2011). However, certain brain disorders are 
associated with neuronal synchronisation (Uhlhass and Singer 2006). Parkinson’s disease is associated with syn-
chronised oscillatory activity (Brown 2003, Andres et al 2014). Epilepsy is characterised by an increase of syn-
chronous neuronal activity that happens in the majority of neurons in a local area (Traub and Wong 1982).

There are many ways in which one can build neuronal networks to study synchronisation. In the literature, 
mathematical models of various kinds of networks have been considered to simulate synchronous behaviours, 
for instance coupled Kuramoto-like phase oscillators (Zhang et al 2014, 2015). Different network topology 
and model parameters can lead different paths to synchronisation on network systems (Gómez-Gardeñes et al 
2007). In this work, we study synchronisation in a network with neurons connected according to the cortico-
cortical connection network constructed by Lo et al (2010). They used diffusion tensor image tractography to 
build human brain networks of healthy patients. The structural network was separated into 78 cortical areas. We 
consider a subnetwork in each cortical area, where the subnetwork connections are randomly distributed. Each 
neuron is described by the adaptive exponential integrate-and-fire model (aEIF) (Brette and Gerstner 2005). The 
aEIF model reproduces electrophysiological characteristics of neurons and its parameters have a physiological 
interpretation (Touboul and Brette 2008). Depending on the parameter values, it is possible to observe multiple 
firing patterns and transition from one firing type to another (Naud et al 2008). Borges et al (2017) studied fir-
ing patterns in a random network of aEIF. They analysed how spike or burst synchronous behaviour appears as a 
function of the coupling strength and the probability of connections.

In our neuronal network, we observe the coexistence of different firing patterns, namely some cortical areas 
exhibiting spike and others burst behaviours at the same time (Connors and Gutnick 1990). We also observe 
spike and burst synchronous behaviours in the network. We verify that there are areas with synchronous behav-
iour embedded in the desynchronised network. It is shown that the transition of the areas from desynchronous 
to synchronous patterns is related to the rich-club organisation of our neuronal network. There is experimental 
evidence that some brain regions form a rich-club (van den Heuvel and Sporns 2011). A rich-club is a group of 
neurons with more connections than others.

This paper is organised as follows. In section 2, we present the adaptive exponential integrate-and-fire model 
and introduce the neuronal network. In section 3, we study the spike and burst synchronisation. In the last sec-
tion, we draw our conclusions.

2.  Neuronal network of aEIF

In this section we introduce the considered model for a neuron, namely the adaptive exponential integrate-and-
fire (aEIF), given by Brette and Gerstner (2005):

C
dV

dt
= −gL(V − EL) + gL∆Texp

(
V − VT

∆T

)
+ I − µ,� (1)

τµ
dµ

dt
= a(V − EL)− µ,� (2)

where C is the membrane capacitance, V  is the membrane potential, I is the injected current, gL is the leak 
conductance, EL is the resting potential, ∆T is the slope factor, VT  is the threshold potential, μ is the adaptation 
variable, τµ is the time constant, and a is the level of subthreshold adaptation. A reset condition is applied when 
V  arrives at a threshold Vpeak : V = Vr and µ = µr = µ+ b. We use in our simulations C  =  200 pF, gL  =  12 nS, 
EL  =  −70 mV, ∆T = 2 mV, VT = −50 mV, I  =  509.7 pA, τµ = 300 ms, a  =  2 nS, Vr = −60 mV and Vpeak = 20 mV  
(Naud et al 2008).

We utilise the coefficient of variation (CV) of the neuronal inter-spike interval (ISI) as a diagnostic tool to 
identify spike and burst patterns, that is given by

CV =
σISI

MISI
,� (3)

where σISI corresponds to the standard deviation of the ISI normalised by the mean MISI (Gabbiani and Koch 
1998). Spike and burst patterns have CV < 0.5 and CV � 0.5, respectively. In our simulations, we verify that 
the threshold value of CV equal to 0.5 is enough to separate the patterns into spike and burst. Figure 1 shows the 
temporal evolution of the membrane potential of the aEIF neuron. Figures 1(a) and (b) show spikes (CV ≈ 0.05) 
and bursts (CV ≈ 0.8), respectively.

We built a neuronal network according to the cortico-cortical connection network of the human brain 
obtained by Lo et al (2010). These authors determined the nodes of brain networks by means of an automated 
anatomical labeling template, and the edges were determined using diffusion magnetic resonance imaging trac-
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tography methods. The fibers tracking was performed though fiber assignment by a continuous tracking algo-
rithm. Figure 2 displays the 78 cortical areas and the number of detected fibers (connections) between them in 
the human brain. The colours represent the number of fibers. In our simulations, we consider that one fiber cor-
responds to one connection.

Rich-club organisation is characterised by a tendency of highly connected neurons of the network to be very 
well-connected to each other. In order to examine the connectivity profile of the network we use the weighted 
rich-club parameter (Colizza et al 2006, Opsahl et al 2008)

φw(r) =
W>r∑E>r

l=1 wrank
l

,� (4)

where r is the richness index obtained from the sum of the weights attached to the connections originating from a 

neuron, wrank
l � wrank

l+1  (l = 1, 2, ..., E) are the ranked weights on the connections of the network, and E is the total 
number of connections. For each r value is selected a set (club) of nodes with a richness index larger than r. E>r 
is the number of connections between the rich club members, and W>r is the sum of the weights associated with 
these connections. Therefore, φw(r) is the ratio between W>r and the sum of the weights attached to the strongest 
connections E>r within the whole network. However, φw(r) is not sufficient to characterise the rich-club due to 
the fact that networks with random connections can have a non-zero φw(r) value. Then, to identify the rich-club 
we calculate the ratio

Figure 1.  Membrane potential as a function of time for one aEIF. (a) Spikes and (b) bursts.
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Figure 2.  Connectivity matrix in accordance with Lo et al (2010), where the colour bar represents the number of fibers.
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ρw(r) =
φw(r)

φw
Random(r)

.� (5)

When ρw(r) > 1 over a range of r, there is a rich-club organisation in the network.
Figure 3(a) shows the number of fibers S for each area k. The areas 25, 64, 76, 37, and 39 have the largest num-

ber of fibers (descending order). In figure 3(b), we calculate the weighted rich-club parameter ρw(S) as a function 
of S. We find ρw > 1 for S  >  100; as a result, our neuronal network is organised as a rich-club. In addition, the 
areas 25, 29, 30, 37, 64, and 76 (red squares) are the most interconnected and have the higher values of ρw

Local  (local 
rich-club), as shown in figure 3(c).

For each area we consider a subnetwork with Nk  =  100 neurons randomly connected with probability 
p  =  0.4. This way, the network has a total of N  =  7800 neurons, and the neuronal dynamics are given by

C
dVi

dt
= −gL(Vi − EL) + gL∆Texp

(
Vi − VT

∆T

)
+ Ii − µi

+ gex(Vex − Vi)

Nex∑
j=1

Aijsj + gin(Vin − Vi)

Nin∑
j=1

Bijsj,
�

(6)

τµ
dµi

dt
= ai(Vi − EL)− µi,� (7)

τs
dsi

dt
= −si,� (8)

where Vi is the membrane potential of the neuron i, gex (gin) is the excitatory (inhibitory) synaptic conductance, 
Nex (Nin) is the number of excitatory (inhibitory) neurons, Vex = 0 (Vin = −80 ms) is the excitatory (inhibitory) 
synaptic reversal potential, τs = 2.728 ms is the synaptic time constant, si is the synaptic weight, and ai is 
randomly distributed in the interval [1.9, 2.1] to simulate a network with different neurons. The solution to 
equation (8) is an exponential decay, where we consider the initial value of the solution si(0)  =  0 and si = si + 1 
when the neuron i spikes. Aij and Bij are the excitatory and inhibitory adjacency matrices, respectively. Inside the 
subnetworks, we randomly distribute 80% of excitatory and 20% of inhibitory connections (Noback et al 2005), 
while the connections among the subnetworks are excitatory.
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Figure 3.  (a) Strength S (number of fibers) for each area k. (b) Weighted rich-club parameter ρw(S) as a function of S. (c) Local 
weighted rich-club parameter ρw

Local  for each area k.
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3.  Synchronous behaviour

Synchronous behaviour has been found throughout the brain in task and rest conditions (Deco et al 2011). We 
use the complex phase order parameter as a diagnostic tool to identify neuronal synchronisation (Kuramoto 
1984) in each area,

Zk(t) = Rk(t)e
iψ(k)(t) =

1

Nk

Nk∑
j=1

eiθ(k)
j (t),� (9)

where

θ
(k)
j (t) = 2π

t − tj,m

tj,m+1 − tj,m�
(10)

is the phase of the neuron j in the area k, 1 � k � 78, with tj,m < t < tj,m+1, and Nk is the number of neurons of 

the area k. The time tj,m denotes the mth spike of the neuron j, and ψ(k)(t) is the average phase of all neurons in 
each subnetwork. The order parameter averaged over the time interval from tinitial to tfinal is given by

Rk =
tstep

tfinal − tinitial

tfinal∑
tinitial

∣∣∣∣∣∣
1

Nk

Nk∑
j=1

eiθ(k)
j (t)

∣∣∣∣∣∣� (11)

where tinitial = 80 s, tfinal = 100 s, and tstep = 0.5 ms. The Rk value is equal to 1 in complete synchronised 
behaviour. For Rk � 0.9 the network exhibits an intensely synchronised regime.

Figure 4 exhibits the Rk (black circles) and CV (red triangles) for a network with excitatory and inhibitory 
synapses. For ε = 0.05 (ε = gex = gin), we see all areas with Rk  <  0.9 and CV < 0.5 due to the fact that the neu-
rons inside the subnetwork display desynchronised spikes (figure 4(a)). The areas change from desynchronous 
to synchronous behaviours when ε values are increased to 0.2 (figure 4(b)). As CV < 0.5 for all areas, the subnet-
works have a spike pattern. As shown in figure 4(c), considering ε = 0.55 the network changes its behaviour from 
synchronised to desynchronised spikes (Borges et al 2017).

After the transition of all areas to desynchronised spikes, increasing ε, the areas 25, 29, 30, 37, 64, and 76 not 
only synchronise but also they change from spike to burst patterns before other areas (figure 5(a)). These areas 
correspond to areas with higher values of ρw

Local , as shown in figure 3(c). For ε = 0.7 we observe that all areas 
change to burst synchronisation (figure 5(b)).
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Figure 4.  Rk (black circles) and CV (red triangles) for (a) ε = 0.05, (b) ε = 0.2, (c) ε = 0.55, where ε = gex = gin. We consider that 
the area is synchronised when the average order parameter value is larger than Rk  =  0.9 (green line). In all cases spike dynamics are 
observed (CV < 0.5).
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In order to identify the synchronisation between areas k and k′, we consider the time average order parameter

Rk,k′ =
tstep

tfinal − tinitial

tfinal∑
tinitial

∣∣∣∣∣∣
1

Nk + Nk′




Nk∑
j=1

eiθ(k)
j (t) +

Nk′∑
j=1

eiθ(k′)
j (t)



∣∣∣∣∣∣

.� (12)

The mean of Rk,k′ for different initial conditions is given by Rk,k′. In figure 6(a), we see that almost all Rk,k′ values 
are less than 0.9. Nevertheless, the most interconnected areas (25, 29, 30, 37, 64, and 76) exhibit Rk,k′ > 0.9 and 
CV > 0.5 (figure 5(a)), indicating not only synchronised bursts inside the subnetworks but also that these areas 
are synchronised among themselves. We also calculate the phase correlation R∗

k,k′ between the areas k and k′ by 
means of the equations

R∗
k,k =

1

Nk(Nk − 1)

∑
i,j∈k,j �=i

Rij,� (13)

when k = k′, and

R∗
k,k′ =

1

NkNk′

∑
i∈k

∑
j∈k′

Rij,� (14)

when k �= k′, where Rij is the local order parameter used to analyse the phase correlation between neurons i and j 
(Gómez-Gardeñes et al 2007, Zhang et al 2014),

Rij =
tstep

tfinal − tinitial

tfinal∑
tinitial

∣∣∣ei[θi(t)−θj(t)]
∣∣∣ .� (15)

Figure 6(b) shows the mean of R∗
k,k′, where the average is taken over eight different initial conditions. We verify 

that the most interconnected areas have a strong phase correlation among themselves.
Next, we calculate the phase locking value (PLV) to analyse the synchrony level between the areas. The PLV is 

given by
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Figure 6.  (a) Rk,k′ and (b) R∗
k,k′ for ε = 0.63 and eight different initial conditions. The most interconnected areas 25, 29, 30, 37, 64, 

and 76 have Rk,k′ > 0.9 and R∗
k,k′ > 0.85, namely they are synchronised and have a strong phase correlation among themselves. 

According to figure 5(a) these areas exhibit a burst pattern.

Figure 5.  Rk (black circles) and CV (red triangles) for (a) ε = 0.63 and (b) ε = 0.7.
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PLVk,k′ =
tstep

tfinal − tinitial

∣∣∣∣∣
tfinal∑
tinitial

eiΘk,k′ (t)

∣∣∣∣∣ ,� (16)

where Θk,k′(t) = Θk(t)−Θk′(t) is the phase difference computed between the areas k and k′ (Lachaux et al 1999, 
Lowet et al 2016). Figure 7 displays the mean of PLVk,k′ for different initial conditions. We verify that there are 
collective modes in the neuronal network. In figures 7(a) and (b), we calculate the PLVk,k′ values for the areas with 
R  >  0.5 and R  >  0.9, respectively. We observe that the areas with burst synchronisation have the larger values of 
PLVk,k′.

Figure 8(a) shows the cortico-cortical connection network, where the cortical areas are located in the left or 
right cerebral hemispheres. Each hemisphere is separated into regions: central (C), frontal (F), temporal (T), 
parietal (P), occipital (O), limbic (L), and insula (I). Considering ε = 0.7, as shown in figure 5(b), all subnet-
works display burst dynamics and there are synchronous behaviours among neurons in the same subnetwork. 
We calculate the average order parameter of each region, given by

R̄Region =
1

NRegion

∑
k,k′∈IRegion

R̄k,k′ .� (17)

R̄Region is computed between the areas belonging to a set IRegion with NRegion areas, where IRegion corresponds to one 
region. By means of RRegion, we identify that the cortical areas in the occipital regions (O) are synchronised among 
themselves (figure 8(b)), due to the fact that these regions have areas with higher inter-connectivity than other 
regions and there are areas connected with highly connected neurons.

We plot the synchronisation patterns in the parameter space g × gex , where g = gin/gex. Figure 9(a) displays 
the number of synchronised areas in colour scale as a function of gex and g. For 0.2 � gex � 0.4 and g � 2 all areas 
have synchronised spikes (region I), while for gex � 0.6 and g � 2 the areas present synchronised bursts (region 
II). There is a transition region (black) between spike and burst synchronisation, where all areas are desyn-
chronised. In addition, synchronous behaviours for g  >  5 are not observed, namely for gin greater than 5gex. In  
figure 9(b), we plot the percentage of areas synchronised among themselves in the network. Our simulations 
show that the range of gex and g in which this percentage is large is narrow.

4.  Conclusions

We have studied synchronisation in a neuronal network built according to the cortico-cortical connection 
network of the human brain. The network is composed of coupled random subnetworks with aEIF neurons. 
Depending on the control parameter, the aEIF neuron can spike or burst. In our network of networks we identify 
spike and burst synchronisation using as diagnostic tools CV and R.

We verify that the connectivity matrix has a rich-club organisation. There are six areas which are the most 
interconnected. They correspond to the rich-club elements and have many connections with other brain areas. 
Due to the particular properties of the chosen neuronal network model, the transition between desynchronised 
and synchronised patterns occurs first in the highly connected neurons. For small ε all areas have desynchronised 
spikes. Increasing ε, we observe that the areas pass through different synchronous behaviours according to the 
following sequence: (i) synchronised spikes, (ii) desynchronised spikes, (iii) burst synchronisation among the 
rich-club elements, and (iv) synchronised bursts. For large ε all areas show synchronised bursts, and the areas in 
the occipital region are synchronised among themselves. Liu et al (2015) reported that synchronous and desyn-
chronous cortical activation can be associated with low δ-wave frequency during deep sleep and high frequency 
α-wave during quiet wake, respectively. They found different network dynamics of brainwave interactions in dif-
ferent brain areas during different sleep stages, as a result of interactions across brain locations.

We also show the influence of the relative inhibitory and excitatory conductance on synchronisation. In the 
parameter space g × gex  we find regions with spike and burst synchronisation, and a transition region character-
ised by areas with desynchronised spikes. In addition, no strong synchronisation is possible for gin � gex . Large 
percentages of areas synchronised among themselves appear for few values of gin and gex.

In future works we plan to analyse cluster synchronisation in our neuronal network model. Cluster synchro-
nisation is characterised by different groups of neurons with distinct synchronous behaviours. Studies about 
cluster synchronisation have a physiological relevance due to the fact that this phenomenon can be associated not 

only with cognitive functions but also with long-range synchronisation.
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