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A B S T R A C T

In this work, we investigate the synchronization of neuronal activity through a model of a clustered network
formed by scale-free subnetworks. These simulate the areas of the cerebral cortex and capture the spatial
distribution of the vertices. The growth of the scale-free subnetworks takes place according to the fitness model,
and the architecture of the clustered network presents internal and external links to simulate connections inside
and between cortical areas. The corticocortical connections are established according to a human connectivity
matrix obtained through experimental data. The model also considers electrical and chemical synapses. A
two-dimensional map, in the bursting regime, simulates the dynamic behavior of the neuron. The high
synchronization of neuronal activity is revealed by the Kuramoto order parameter. To corroborate the analyses
using the order parameter, we calculate a suppression measure. In order to suppress this synchronization, we
propose a three-stage switching control as a function of the delayed mean-field in each subnetwork. This
suppressor agent is effective in two scenarios, whether applied according to the spatial distribution of neurons
or in the emitting hubs of the subnetworks. Our results show that the fitness model has a relevant role in the
study of neuronal activity suppression, allied to the application of a three-stage switching control by means
of a time-delayed feedback method being an efficient way to suppress synchronization in clustered networks.
1. Introduction

The investigation of the collective behavior of several systems al-
lows us to understand their emergent behavior, like synchronization,
which is a phenomenon present in many real systems [1,2]. Study it
has a fundamental role in many fields of knowledge, such as physics,
biology, chemistry and medicine [3,4]. It is possible to observe synchro-
nization phenomena in complex networks and, in particular, neuronal
network systems [5–7]. The implementation of graphs as a means of
simulating neuronal networks has been widely used in recent years [8].
This mathematical resource allows us to optimally build a model of
a neuronal network whose architecture of their connections is com-
plex, thus being able to observe the dynamic characteristics associated
with these systems [9]. Currently, to study neuronal networks by
means of computational simulations, there are models that consider
small-world [10,11], scale-free [12–14] and random networks [15].
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In general, there is no way of knowing whether the synchronized ac-
tivities of neurons can cause any damage to the human brain. However,
recent studies have indicated that some synchronized neuronal activi-
ties, in certain areas of the cortex, can lead to motor dysfunctions such
as epilepsy, essential tremors, and Parkinson disease [16–21]. Thus,
the study of synchronization in networks of neurons has been of great
interest in neuroscience [22], being used mainly to understand syn-
chronization in several systems that consider small-world [23–25] and
scale-free networks [26,27], that can be related, in some simulations,
to models with connectivity maps [28,29].

Usually, small-world networks are used to simulate a neuronal
network. Nevertheless, construction through scale-free networks is also
often used for the same purpose. In fact, small-world and scale-free
networks are robust and the information considering both topolo-
gies can be transferred with efficiency. Heuvel et al. [30] studied
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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small-world and scale-free organization of voxel-based resting-state
functional connectivity in the human brain. They showed a possible
combined small-world and scale-free organization in the network struc-
ture. Still, Eguiluz et al. [31] demonstrated scale-free organization on a
voxel scale during the performance of auditory tasks and also reported
that the probability of finding a link as a function of distance and the
distribution of functional connections, are known to be scale-free.

The scale-free network model often fails due to the fact that it
does not consider the dynamic evolution of the acquisition rate of new
links in the network. In the primary model, proposed by Barabási–
Albert [32], two characteristics are highlighted: growth and prefer-
ential attachments, the latter giving rise to highly connected nodes,
namely hubs. The ‘‘winner-take-all’’ phenomenon, present in scale-free
networks, can be solved by considering a variation of this same model.
The fitness model, also known as the Bianconi–Barabási model [33],
proposes a modification of the rate of acquisition of new links between
pairs of distinct nodes; now each node will be connected according to
a probability that depends on its fitness. This modification makes the
model more plausible, from the point of view that, in real networks,
the connection rate between links is closer to what is proposed in
this model. However, in a recent work it was found that for clus-
tered networks with a scale-free type network connection architecture,
the hub did not exert significant influence on the synchronization or
suppression of the network [26]. In this work, we propose to change
the topology of the network, in which still grows through a scale-free
network model, however the network obeys the procedure of the fitness
model growth. By ensuring that the network has other more connected
nodes, we investigate how this influences the synchronization of the
network and the application of the phase synchronization suppressor
agent.

We study the synchronization phenomena in clustered scale-free
networks, in each of which the nodes are spatially distributed. The
behavior of neuronal firing is simulated through a two-dimensional
map [34] in a burst regime. The constructed network considers the
architecture of internal connection (within the cortical regions) and ex-
ternal (corticocortical connections), the composition of the internal and
external connections configures what we call a clustered network. The
model considers the synaptic signature of neuronal links of an electrical
and chemical nature [27]. Corticocortical connections are performed
by a human connectivity matrix, obtained through experimental data,
which captures the density of neural fibers existing between two dis-
tinct cortical areas [35]. Each cortical area is designed as a scale-free
network, built according to the fitness model, and composed of Rulkov
neurons. The coupling of maps, therefore, is based on a term that
considers excitatory and inhibitory neuronal potentials, synapses (elec-
trical or chemical), and an addressing matrix derived from the human
connectome, being implemented as a neuronal activation function.

Given the association of neuronal activity synchronization with
motor dysfunctions, it is important to carry out a study aimed at
suppressing high synchronization. In this sense, we propose a sup-
pressor method to reduce the synchronization in two ways, where the
suppressor acts: (a) on the network considering its three-dimensional
distribution; (b) only on the neurons with more outgoing connections.
The network phase synchronization is measured by the Kuramoto order
parameter [36], being this an excellent tool to assess synchronization
in neuronal networks [37]. The reduction of the network synchronized
activity is measured by the suppression factor, proposed by Rosenblum
and Pikovsky [38,39], whose evaluation is performed by measuring
the variance of the mean-field of the network. If the network is syn-
chronized in phase, the activity of neuronal firing generates large
amplitude oscillations in the mean-field. Otherwise, if the network is
not synchronized in phase, the mean-field exhibits small amplitude
oscillations.

This paper is divided as follows. In Section 2, we introduce the
ethods used in this work, presenting the procedure for building
2

u

the clustered network together with the implementation of the three-
dimensional model. Still in this section, we present the model used
to simulate the dynamic behavior of the neuron and the coupled
map. The phase synchronization measure and the suppressor agent
is also discussed in this section. In Section 3, we present the results
of neuronal phase synchronization and the assessment of suppression
for the clustered network and for cortical areas. Finally, Section 4 is
devoted to our discussions and conclusions.

2. Mathematical modeling and methods

In this section, we describe the process of building the clustered
network model. Starting with the Bianconi–Barabási model (used for
the construction of subnetworks) until the composition of the clustered
network. After, we describe the Rulkov neuron and the coupled map
system. Also, we present the methods used to evaluate and suppress
the network phase synchronization.

2.1. Network construction

The network model used in this work is a proposal to simulate the
connections between neurons and distinct cortical areas [27]. The con-
struction is made considering connections at two levels: internal and ex-
ternal. Fig. 1 illustrates the structure scheme of the clustered network.
Cortical areas are represented by the cubes inside each hemisphere
of the brain, as shown in Fig. 1(a). Each cortical area (subnetwork)
is independently modeled by a scale-free network, built according to
the fitness model mechanism presented below. The nodes correspond
to neurons, and the edges on the same subnetwork are called internal
connections. Additionally, the model simulates a three-dimensional
distribution of neurons in the cortical areas and simulates two kinds
of synapses (electrical and chemical). The subnetworks are intercon-
nected, as corticocortical connections, forming the clustered network.
The edges between nodes of different subnetworks are called external
connections.

2.1.1. Implementation of fitness model
The fitness model [33] (also known as Bianconi–Barabási model)

derives from a well-established model known as scale-free networks
proposed by Barabási–Albert [32]. To incorporate the role of fitness, we
assume that preferential attachment is driven by the product of a node’s
fitness, 𝜂 in a given distribution 𝛯(𝜂), and its degree 𝑘. Briefly, the
mplementation of the Bianconi–Barabasi model consists of two stages:

1. Growth: at each time step, a new node 𝑢 with 𝑚 connections and
fitness 𝜂𝑢 is added to the network;

2. Preferential attachment: the probability 𝛱𝑢 of a new node con-
necting to node 𝑢 is proportional to the product of the degree’s
node 𝑘𝑢 and its fitness 𝜂𝑢, being

𝛱𝑢 =
𝜂𝑢𝑘𝑢

∑

𝑣 𝜂𝑣𝑘𝑣
. (1)

s in the Barabási–Albert model, the dependence of 𝛱𝑢 on 𝑘𝑢 captures
he fact that nodes with higher degree have greater visibility. However,
he dependence of 𝛱𝑢 on 𝜂𝑢 implies that between two nodes with the
ame degree, the one with the highest fitness is chosen with greater
robability. In this way, Eq. (1) increase a chance of even relatively
ounger nodes can acquire links faster if they have a higher fitness than
ther nodes.

In the implementation performed in this study, each subnetwork is
ade up of 𝑉 = 200 nodes. We adopted 𝑚 = 4 and, for each new vertex

the same as node), the fitness parameter is drawn according to the
niform random distribution on the open unitary interval, i.e. 𝜂 ∈ (0, 1).
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Fig. 1. (a) Representative scheme of clustered network structure. Cortical areas are simulated in cubic regions and interconnected by bundles of corticocortical links. (b) Weighted
human connectivity matrix. The colors correspond to the assigned weights: 0 (black), 1 (blue), 2 (yellow) and 3 (red). (c) Cortical areas (subnetworks) are created according to
the fitness model with the neurons spatially distributed (top) and, (dawn) projection of the network in 2D for better visualization. The nodes are represented by circles, with the
radius being proportional to the degree and the colors representing the fitness 𝜂 of each one. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
2.1.2. Subnetwork spatial distribution and edges orientation
Neurons present within cortical areas are spatially distributed, as

shown in the top of Fig. 1(c). The position of vertices is randomly
selected in a three-dimensional cubic region with side 2𝐿, and their
location is given in Cartesian coordinates. The random positioning is
equiprobable in the three axes, which results in a homogeneous spatial
distribution of the vertices. At the bottom of Fig. 1(c), we show a two-
dimensional projection of an example subnetwork that gives us an idea
of the graph generated through the fitness model. In this illustration,
the vertices are represented by circles, whose radius is proportional to
their degree, and the fitness is in colors, where 𝜂 ≤ 0.5 is from green to
white and 𝜂 ≥ 0.5 is from white to magenta.

To simulate the two kinds of synapses, chemical (unidirectional
edge) and electrical (bidirectional edge), we consider the Euclidean
distance between pairs of connected vertices, reserving the shortest
internal connections as electrical. This is an objective criterion that
allows us to select the proportion of 10% of electrical connections. It is
worth mentioning that, in this model, the type of connection (electrical
or chemical) is not randomly selected, but decided as a function of the
edge’s length. Given a pair of vertices connected by a unidirectional
edge in the same subnetwork, it is permanently established which
one is the sender (presynaptic neuron) and which one is the receiver
(postsynaptic neuron), with a chance of 50% for each direction. Also,
since the subnetwork has a directional character, we guarantee that all
vertices have at least one input (postsynaptic stance) and one output
(presynaptic stance). The bidirectional connection is understood as
input and output simultaneously.

For the 𝑢-th neuron, from the 𝑝-th cortical area, the amount of
internal connections in which it is postsynaptic is given by 𝐾 (𝑝,𝑢)

E/C ,
where E/C identifies the type of link as electrical/chemical. Completely,
𝐾 (𝑝,𝑢)

E/C is the amount of internal connections in which the neuron is
presynaptic. By construction, every neuron must have at least one input
and one output internal connection, so ∀ (𝑝, 𝑢) is worth

𝐾 (𝑝,𝑢) = 𝐾 (𝑝,𝑢)
E +𝐾 (𝑝,𝑢)

C > 0, (2)

𝐾 (𝑝,𝑢) = 𝐾 (𝑝,𝑢) +𝐾 (𝑝,𝑢) > 0. (3)
3

E C
Since electrical synapses are bidirectional, is verified 𝐾 (𝑝,𝑢)
E = 𝐾 (𝑝,𝑢)

E .
Note that the degree of each node in the scale-free network is

𝑘(𝑝,𝑢) = 𝐾 (𝑝,𝑢)
E +𝐾 (𝑝,𝑢)

C +𝐾 (𝑝,𝑢)
C . (4)

2.1.3. Clustered network model
The external connections are exclusively unidirectional (chemical)

and, in the process of building the network, established after the
duly created subnetworks. Those links are distributed according to a
weighted connectivity matrix M, obtained experimentally from a hu-
man connectome data [35] and shown in Fig. 1(b), in which the human
cortex is divided into 𝑁 = 78 areas. The weights were established
according to the density of neuronal fibers. We define four levels of
connectivity, according to weights 0, 1, 2 and 3, as follows (in order):
no connection, sparse, moderate and dense connections. Given a pair
(𝑝, 𝑞) of subnetworks, this is connected by 𝛿𝑀 (𝑝,𝑞) links, where the
multiplier 𝛿 = 18 and 𝑀 (𝑝,𝑞) is an element of the matrix M. This
means that, in cases where weight 1 is assigned, 18 connections between
different cortical areas are established, consequently, for weights 2
and 3; 36 and 54 corticocortical connections are added, respectively.
It is important to note that if the assigned weight is 0, no connections
are added. The blue, yellow and red lines in Fig. 1(a) represent the
amount of connections assigned between two distinct cortical areas,
whose weight is according to the color scheme shown in Fig. 1(b).

To generate the external connections, we only consider the elements
in the upper triangle of M. One vertex from the subnetwork 𝑝 and
another from the subnetwork 𝑞 is drawn, in an equiprobable way,
without any prior connection between them. The partial adjacency
matrices A(𝑝)

E and A(𝑝,𝑞)
C , respectively for electrical and chemical con-

nections, give us a fully description of the clustered network. Since,
in this model, bidirectional edges occur only in internal connections,
there is a symmetric matrix A(𝑝)

E for each subnetwork. The element
𝐴(𝑝)(𝑢,𝑣)

E = 1 represents an edge connecting the 𝑢th and 𝑣th vertices of the
cortical area 𝑝, still 𝐴(𝑝)(𝑢,𝑣)

E = 0 when there is no link between them.
The A(𝑝,𝑞)

C matrix is non-symmetric and carries information about the
directed edges from the subnetworks 𝑝 to the 𝑞 ones. In the case of
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its element 𝐴(𝑝,𝑞)(𝑢,𝑣)
C = 1, there is a chemical connection in which the

euron 𝑢, in the cortical area 𝑝, is presynaptic, while the neuron 𝑣, in
he cortical area 𝑞, is postsynaptic. Completely, 𝐴(𝑝,𝑞)(𝑢,𝑣)

C = 0 when have
o chemical link in the described direction.

The number of links in each vertex is given by

(𝑝,𝑢)
E =

𝑉
∑

𝑣=1
𝐴(𝑝)(𝑣,𝑢)

E , (5)

(𝑝,𝑢)
C =

𝑉
∑

𝑣=1
𝐴(𝑝,𝑝)(𝑣,𝑢)

C , (6)

̃(𝑝,𝑢)
C =

𝑉
∑

𝑣=1
𝐴(𝑝,𝑝)(𝑢,𝑣)

C , (7)

𝐺(𝑝,𝑢)
C =

𝑁
∑

𝑞=1

𝑉
∑

𝑣=1
𝐴(𝑞,𝑝)(𝑣,𝑢)

C , (8)

here 𝐺(𝑝,𝑢)
C is the total number of chemical connections in that neuron,

eing the sum of internal and external connections.

.2. Neuron mathematical model

.2.1. Discrete time neuronal model
The dynamic behavior of the neuron is mathematically simulated

y a two-dimensional map. The phenomenological model proposed by
ulkov [34] mimics the patterns of neuronal firing, being represented
s follows:

𝑛+1 = 𝑓 (𝛼, 𝑥𝑛, 𝑦𝑛), (9)

𝑦𝑛+1 = 𝑦𝑛 − 𝜎(𝑥𝑛 − 𝜌), (10)

here 𝑓 (𝛼, 𝑥𝑛, 𝑦𝑛) = 𝛼∕(1 + 𝑥2𝑛) + 𝑦𝑛. The fast variable of the map (𝑥𝑛)
imulates the neuronal membrane potential, while the slow variable
𝑦𝑛) has no biological meaning assigned. For this work we use the
ypical values that characterize bursts regime: 𝛼 ∈ [4.1, 4.2), 𝜎 = 10−3

nd 𝜌 = −1.0.

.2.2. Coupled map
The neuronal network model is established by including coupling

erms in the Eq. (9) of the Rulkov map. The different types of connec-
ions between neurons, electrical and chemical links, are modeled by
dditive terms and described separately. Since the network is structured
s a cluster of subnetworks, the maps (neurons) are identified by a
uperscript pair of indexes (𝑝, 𝑢), which 𝑝 (from portion) indicates the
ortical area and 𝑢 (from unit) corresponds to a neuron within it. So,
he coupled map is described as
(𝑝,𝑢)
𝑛+1 = 𝑓

(

𝛼(𝑝,𝑢), 𝑥(𝑝,𝑢)𝑛 , 𝑦(𝑝,𝑢)𝑛
)

+ 𝜀E𝒞
(𝑝,𝑢)
E + 𝜀C𝒞

(𝑝,𝑢)
C , (11)

here 𝜀E/C is the electrical/chemical coupling strength and 𝒞 (𝑝,𝑢)
E/C is

he electrical/chemical coupling factor dependent on the connections
o which the neuron is postsynaptic. Neuronal diversity is simulated by
eans of the random assignment of 𝛼(𝑝,𝑢) ∈ [4.1, 4.2), being drawn a

alue of this parameter, in an equiprobable distribution, for each map
𝑝, 𝑢).

The implemented electrical coupling factor is given by

(𝑝,𝑢)
E =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝐾 (𝑝,𝑢)
E = 0;

∑𝑉
𝑣=1 𝐴

(𝑝)(𝑣,𝑢)
E

(

𝑥(𝑝,𝑣)𝑛 − 𝑥(𝑝,𝑢)𝑛

)

𝐾 (𝑝,𝑢)
E

, otherwise.
(12)

Similarly, the chemical coupling factor is

𝒞 (𝑝,𝑢)
C = =

⎧

⎪

⎪

⎨

⎪

⎪

0, if 𝐺(𝑝,𝑢)
C = 0;

∑𝑁
𝑞=1

∑𝑉
𝑣=1 𝐴

(𝑞,𝑝)(𝑣,𝑢)
C 𝑊 (𝑞,𝑝)(𝑣,𝑢)

𝑛

𝐺(𝑝,𝑢)
, otherwise.

(13)
4

⎩

C

Where

𝑊 (𝑞,𝑝)(𝑣,𝑢)
𝑛 =

(

𝑀 (𝑞,𝑝) + 𝛿𝑞𝑝
)

ℋ
(

𝑥(𝑞,𝑣)𝑛 − 𝜃
) (

𝑃 (𝑞,𝑣) − 𝑥(𝑝,𝑢)𝑛
)

. (14)

Note that 𝑁 is the amount of cortical areas presented in the human
connectome, and 𝑉 is the number of vertices in each subnetwork.
Here, ℋ is the Heaviside function, which is the neuronal activation
function in this model. The neuronal potential 𝑃 (𝑝,𝑢) can be inhibitory
(𝑃 (𝑝,𝑢) = −0.5) or excitatory (𝑃 (𝑝,𝑢) = 1.0). We configure the subnetwork
o that neurons are 20% inhibitory and 80% excitatory [40]. Still in
q. (14), the threshold potential 𝜃 = −1.0 and the term 𝛿𝑞𝑝 is the delta of

Kronecker used to assign weight 1 to internal connections in the subnet-
work. So, internal connections in each subnetwork have unitary weight,
while links between different subnetworks have weights according to
the matrix M.

2.3. Neuronal phase synchronization

2.3.1. Kuramoto order parameter
The network synchronization is evaluated through the Kuramoto

order parameter [36]. Originally proposed by Winfree [41], and later
adapted by Kuramoto, this model was developed to study the phase
synchronization of a set of coupled oscillators. The system phase syn-
chronization level is measured by a order parameter which is between
1 (fully synchronized) and 0 (fully desynchronized). Similarly, we can
use the same principle to assess the synchronization of burst neurons.
After coupling the network (acc. Section 2.2.2), and the due adjustment
of the synaptic intensity parameters is made, the neurons begin to fire
at the same time, causing their phases to be synchronized.

The phase of neurons is given by the relation of the fast and slow
variables of the Rulkov map. In this model, each start (end) of a burst
in the fast variable corresponds to a maximum (minimum) in the time
series of the slow variable. Through this association, we can define a
geometric phase in the interval of [0,2𝜋) as

𝜑(𝑝,𝑢)
𝑛 ∶= 2𝜋

𝑛 − 𝑡(𝑝,𝑢)𝑘

𝑡(𝑝,𝑢)𝑘+1 − 𝑡(𝑝,𝑢)𝑘

, (15)

where 𝑡𝑘 is the instant at which the 𝑘th burst starts. Defined in this
way, the phase 𝜑(𝑝,𝑢)

𝑛 , associated with neuron 𝑢 in the cortical area 𝑝,
increases monotonically between the discrete time instants 𝑡𝑘 and 𝑡𝑘+1,
with 𝑡𝑘 ≤ 𝑛 < 𝑡𝑘+1. The average time of phase synchronization for the
lustered network is given by

= 1
(𝛥 + 1)

𝑛𝑎+𝛥
∑

𝑛=𝑛𝑎

1
𝑁𝑉

|

|

|

|

|

|

𝑁
∑

𝑝=1

𝑉
∑

𝑢=1
𝑒𝑖𝜑

(𝑝,𝑢)
𝑛

|

|

|

|

|

|

, (16)

here 𝛥+1 = 5×103 is the number of iterations taken into account for
he average and 𝑛𝑎 is the start time sample after the transient. In the
ame way, the phase synchronization of neuronal bursts in each cortical
rea is calculated by the equation

(𝑝) = 1
(𝛥 + 1)

𝑛𝑎+𝛥
∑

𝑛=𝑛𝑎

1
𝑉

|

|

|

|

|

|

𝑉
∑

𝑢=1
𝑒𝑖𝜑

(𝑝,𝑢)
𝑛

|

|

|

|

|

|

. (17)

Note that, in general, 𝑅 ≠ 𝑁−1 ∑𝑁
𝑝=1 𝑅

(𝑝).

2.4. Time-delayed feedback

Originally, the method proposed by Pyragas [42], to suppress the
synchronization, uses a control obtained from the difference between
the current state of the system and one delayed by a periodic un-
stable orbit. Here, we propose as a synchronization suppressor agent
a perturbation 𝑔 as a function of the delayed mean-field 𝑋(𝑝)

𝑛−𝜏 of
each subnetwork. The mean-field 𝑋(𝑝)

𝑛 of the cortical area 𝑝 in the 𝑛
interaction is

𝑋(𝑝)
𝑛 ∶= 1

𝑉
∑

𝑥(𝑝,𝑢)𝑛 . (18)

𝑉 𝑢=1
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In the numerical application, a delay 𝜏 is considered between the
computation of the mean-field and the disturbance as a function of it.
Additionally, it is plausible to consider a perturbation weighting ac-
cording to the two main characteristics of the subnetworks that model
the cortical areas in this study: (a) Vertices are spatially homogeneously
distributed in a finite region and (b) are connected forming a scale-free
network. Thus, we employ a local weighter 𝛽(𝑝,𝑢) consisting of a weight
dependent on the position of neurons in each cortical area or their
connectivity. The Eq. (11), which simulates the neuronal membrane
potential in coupled form, is modified by addition of a feedback term,
and becomes

𝑥(𝑝,𝑢)𝑛+1 = 𝑓
(

𝛼(𝑝,𝑢), 𝑥(𝑝,𝑢)𝑛 , 𝑦(𝑝,𝑢)𝑛
)

+ 𝜀E𝒞
(𝑝,𝑢)
E + 𝜀C𝒞

(𝑝,𝑢)
C +

+ 𝜀F𝛽
(𝑝,𝑢)𝑔

(

𝑋(𝑝)
𝑛−𝜏

)

, (19)

where 𝜀F is the feedback strength and we defined the suppressor agent
𝑔 as a three-stage switching controller.

2.4.1. Three-stage switching control
The perturbation added in the Eq. (19), to suppress the phase

synchronization of the network, consists of applying a signal that
responds in three different ranges of the delayed mean-field values of
each subnetwork. This method of switched control allows the existence
of a non-active range, where 𝑔 = 0, as well as two others intervals with
different responses. The piecewise function that describes the behavior
of the suppressor agent is

𝑔
(

𝑋(𝑝)
𝑛−𝜏

)

=

⎧

⎪

⎨

⎪

⎩

1, if 𝑋(𝑝)
𝑛−𝜏 < 𝛾1;

0, if 𝛾1 ≤ 𝑋(𝑝)
𝑛−𝜏 < 𝛾2;

−1, if 𝛾2 ≤ 𝑋(𝑝)
𝑛−𝜏 ;

(20)

This function presents an undisturbed interval 𝛾1 ≤ 𝑋(𝑝)
𝑛−𝜏 < 𝛾2, whose

choice of boundary values 𝛾1 = −1.25 and 𝛾2 = 𝜃 entails not disturbing
he cortical area 𝑝 if it is desynchronized. In the case where the firing
ursts of the neurons of the subnetwork are phase synchronized, the
ean-field presents oscillations below and above the values adopted

or 𝛾1 and 𝛾2, respectively. Thus, the proposed perturbation acts by
timulating firings when the mean-field corresponds to most neurons
n the quiescent stage, as well as inhibiting firings when most of them
re in an active burst.

.4.2. Local weighter
We include the weight 𝛽(𝑝,𝑢) in the feedback term in order to

take into account specificities present in the subnetworks, such as the
spatial distribution of neurons (exploring the characteristic a) or their
connectivity (related to the characteristic b).

In the spatial approach, we employ a local weighter as a function of
the Euclidean distance 𝑑(𝑝,𝑢) from each vertex to the geometric center
𝒪 (𝑝) of the cubic region in which 𝑝 subnetwork is distributed, where
this cubic region has side 2𝐿 and 0 ≤ 𝑑(𝑝,𝑢) ≤

√

3𝐿. We propose the
application of the suppressor agent in 𝑄 concentric spherical shells
centered on 𝒪 (𝑝), whose radii are

𝑟(𝑞)in =
(𝑞 − 1)𝐿

𝑄
(inner radius), (21)

𝑟(𝑞)out =
𝑞𝐿
𝑄

(outer radius), (22)

with 𝑄 ≥ 𝑞 ∈ Z+. The local weighter is constant within each shell and
falls linearly with increasing 𝑞, being zero outside the last spherical
egion. We define

(𝑝,𝑢) = 𝛽(𝑝,𝑢)a ∶=

⎧

⎪

⎨

⎪

⎩

1 −
𝑞 − 1
𝑄

, for 𝑟(𝑞)in ≤ 𝑑(𝑝,𝑢) < 𝑟(𝑞)out,

0, if 𝑟(𝑄)
out ≤ 𝑑(𝑝,𝑢).

(23)

In the subnetwork topology approach (considering the characteristic
b), we applied the suppressor agent only to neurons with more presy-
naptic connections in each cortical area, called emission hubs (EHs).
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Unlike what happens with a primary scale-free model (Barabási–Albert
conceptualization), the subnetwork does not have only one hub. In
fact, the premise of the fitness model, applied here, is that, during
network growth, new nodes in the network also influence connectivity.
So, for every 𝑝 subnetwork, we get a ℒ (𝑝)

𝑄 list of 𝑄 EHs, which can be
obtained by a recursive process of vertex selection. Let 𝒰 (𝑝) be the set
f vertices (𝑝, 𝑢) components of the subnetwork 𝑝, we can identify (𝑝, 𝑢𝑗 )
he vertex whose index 𝑢𝑗 is the smallest 𝑢 that maximizes 𝐾 (𝑝,𝑢), with
𝑝, 𝑢) ∈ 𝒰 (𝑝) ⧵ℒ (𝑝)

𝑗−1. In this way, we define

(𝑝)
0 ∶= ∅, ℒ (𝑝)

𝑗 ∶=
{

(𝑝, 𝑢𝑗 )
}

∪ℒ (𝑝)
𝑗−1, (24)

here 𝑄 ≥ 𝑗 ∈ Z+. So, the local weighter is given by the follow
efinition

(𝑝,𝑢) = 𝛽(𝑝,𝑢)b ∶=

⎧

⎪

⎨

⎪

⎩

1, if (𝑝, 𝑢) ∈ ℒ (𝑝)
𝑄 ,

0, else.
(25)

.4.3. Suppression measure
In addition to the analysis of the order parameter, given by Eq. (16),

e calculate the suppression measure 𝑆, defined by [38]

∶=

√

√

√

√

√

Var
(

𝑋𝑛
)

𝜀F=0

Var
(

𝑋𝑛
)

𝜀F

, (26)

here 𝑋𝑛 is the clustered network mean-field in the iteration 𝑛, given
y

𝑛 ∶=
1
𝑁

𝑁
∑

𝑝=1
𝑋(𝑝)

𝑛 . (27)

The variance Var
(

𝑋𝑛
)

𝜀F
is calculated over the mean-field samples

set
{

𝑋𝑛 ∶ 𝑛𝑎 ≤ 𝑛 ≤ 𝑛𝑎 + 𝛥
}

and the subindex 𝜀F indicates the feedback
strength adopted in Eq. (19).

The amplitude variation of the mean-field oscillations makes it
possible to assess whether, or not, the network is synchronized. What
is desired is that the variance of the network disturbed by the feedback
term is as small as possible. In fact, the condition that evaluates the
success of the employed strategy is satisfied when 𝑆 ≫ 1 [39].

3. Results and discussion

All results presented in this paper are obtained under an average
of 20 randomly assigned initial conditions. At each initialization, new
values of 𝛼(𝑝,𝑢) were drawn. The parameter axis are discretized into 21
equidistant values. When not mentioned, we adopt 𝜀E = 𝜀C = 0.1.

3.1. Phase synchronization

The Kuramoto order parameter is calculated for the clustered net-
work and for the cortical areas, shown in Fig. 2. Here, the neuronal
network is described according to Eq. (11), i.e. without the feedback
disturbance. Combinations in the 𝜀E × 𝜀C parameter plane presents
low synchronization for 𝜀C ≤ 0.2. As the chemical coupling strengths
increase, the time average of Kuramoto order parameter grows fast,
keeping the clustered network phase synchronization about 𝑅 ≈ 0.8,
as can be seen in color code in Fig. 2(a). Note that for 𝜀C ≈ 0.04 and
greater, 𝑅 increases slightly with 𝜀E, getting at 𝑅 ≈ 0.85. When investi-
gating the phase synchronization on the cortical areas, as illustrated in
panel (b), we initially notice a modest increase in the measure of the
local synchronization. However, by increasing the strength of chemical
synapse, 𝜀C, a transition to the synchronized state is observed. In this
case, although the transition is smoother, compared to what occurs in
the case of the clustered network, the abrupt growth of the Kuramoto
order parameter is still evident. It is noteworthy that for the adopted
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Fig. 2. Time average of Kuramoto order parameter for the neuronal network without
feedback disturbance. Synchronization level according to color code. (a) 𝑅 in the
plane 𝜀E × 𝜀C for clustered network. Synchronization emerges (𝑅 > 0.5) for 𝜀C ≈ 0.02,
where 𝑅 ≈ 0.85 for 𝜀E = 𝜀C = 0.1. (b) 𝑅(𝑝) detailed for cortical areas, with 𝜀E = 0.1
and varying 𝜀C. In general, subnetworks have higher synchronization levels than the
clustered network. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

coupling strength, the neurons preserve the burst behavior both for the
network in synchronized and unsynchronized states.

As we see, the synchronization in the cortical areas is greater
than for the clustered network. This feature has already been shown
in previous works, and is independent of the graph model adopted
to build the subnetworks [26,27]. In fact, this abrupt growth is an
expected behavior since synchronization is a phenomenon that appears
suddenly in dynamical systems, revealing a first-order phase transition
characteristic [43].

3.2. Suppressing neuronal phase synchronization

One of the main desires when studying phase synchronization in
neuronal networks is to find an efficient method that can be used to
suppress high synchronization levels. The synchronization of neuronal
firings may be associated with motor dysfunctions. In the following
subsections we present some cases in which we use the time-delayed
feedback technique combined with the application of a three-stage
control in order to suppress synchronization.

3.2.1. Application of the spatial model synchronization suppressor
Given the three-dimensional distribution of the vertices in the sim-

ulated cortical areas, we evaluate the performance of the suppressor
agent both, in the clustered network and in the subnetworks, according
to approach (a) described in the Section 2.4.2. Thus, in this topic we
show the results for 𝛽(𝑝,𝑢) = 𝛽(𝑝,𝑢)a , defined in Eq. (23), with 𝑄 = 4
concentric spherical regions of action of the suppressor agent.
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Fig. 3. Neuronal phase synchronization under application of suppressor agent acc.
spatial approach. (a) Clustered network synchronization in the 𝜀F × 𝜏 plane. 𝑅 reaches
lower values as 𝜀F approaches 0.1. (b) Subnetworks synchronization values with
𝜀F = 0.1. 𝑅(𝑝) decreases across all subnetworks to 𝜏 ≈ 14.. For 𝜏 > 14, there are moderate
and high synchronized regions. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Although we have not, at this point, evaluated the efficiency of the
suppression method by measuring the mean-field variance, with and
without feedback control, we can infer whether the suppressor agent
used is well employed to suppress network synchronization, by the time
average Kuramoto order parameter. The closer the value of 𝑅 is to
0, the lower the network phase synchronization, that is, the method
is employed successfully to suppress the synchronization. In Fig. 3,
we present the performance of the suppressor agent in the clustered
network, and in the cortical areas, for combinations of 𝜀F and 𝜏 values
in Eq. (19). The time average of Kuramoto order parameter reveals high
synchronization over a wide region of the plane 𝜀F × 𝜏 (from red to
yellow), as shown in panel (a). By varying the value of 𝜀F from 0 to
≈ 0.08 the network remains strongly synchronized. When 𝜀F > 0.09,
a small region of low synchronization (from gray to cyan) appears,
becoming more pronounced when 𝜀F = 0.1, where the synchronization
reaches its lowest value. In panel (b), we set 𝜀F = 0.1 and analyze
the phase synchronization 𝑅(𝑝) on the subnetworks. The lowest level
of synchronization is achieved for a wide range 0 ≤ 𝜏 < 14. However,
there are certain values 𝜏 in this interval, for which some subnetworks
reaches synchronization has a moderate value 𝑅 ≈ 0.5 (black strips),
which invade regions of low synchronization (cyan). For some regions,
from 𝜏 = 14 the phase synchronization increases to 𝑅(𝑝) ≈ 0.75. It
is worth highlighting that there are still well-synchronized regions,
for 14 < 𝜏 ≤ 20, in cortical areas from 1 to 40, approximately
(yellow). Within some of these ranges, the synchronization is even
higher, reaching 𝑅(𝑝) ≈ 0.8 (orange).

Since the adopted parameters of coupling strength (𝜀E = 𝜀C = 0.1)
lead to high phase synchronization levels, as seen in Section 3.1, where
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Fig. 4. Phase synchronization values with 𝑄 = 10 disturbed EHs. (a) 𝑅 in the plane
𝜀F × 𝜏. the lowest synchronization are achieved when 0.07 ≤ 𝜀F ≤ 0.1. For 𝜀F < 0.07, the
clustered network is tightly synchronized. (b) 𝑅(𝑝) for cortical areas with 𝜀F = 0.1. Low
synchronization seen in cyan. As the value of 𝜏 increases, some cortical areas remain
moderate synchronization (yellow to orange). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

is observed for the clustered network 𝑅 ≈ 0.8 and, for the subnetworks,
the majority values 𝑅(𝑝) > 0.95. The application of suppressor agent
give us a significant reduction in synchronization levels, with 𝜀F = 0.1
and 𝜏 < 14 both in the evaluation for the clustered network and for the
individual subnetworks. Also satisfactory low values of 𝑅 are achieved
with 𝜀F = 0.09 and 4 ≤ 𝜏 ≤ 12.

3.2.2. Synchronization suppressor applied only in EHs
In this topic we evaluate the synchronization of the network under

the action of the suppressor agent according to approach (b), where
𝛽(𝑝,𝑢) = 𝛽(𝑝,𝑢)b defined in Eq. (25). We do this in two ways: first, we
define 𝑄 = 10 EHs and calculate network phase synchronization for
combinations of 𝜀F and 𝜏; in the second way, we set 𝜀F = 0.1 and obtain
the synchronization values varying 𝑄 EHs and 𝜏.

In the first case (Fig. 4), we applied the three-stage switching
control, acc. Section 2.4.1 Eq. (20), in the 10 EHs of each subnetwork.
In panel (a), we present 𝑅 values in the plane 𝜀F×𝜏, which reveals high
synchronization (from yellow to red) for all values considered from 𝜏
and 0 ≤ 𝜀F ≤ 0.07. The phase synchronization reaches low values for
𝜀F ≥ 0.08 until 𝜀F = 0.1 (maximum adopted value). When 𝜀F reaches
its maximum value, the measure of clustered network synchronization
presents values of 𝑅 ≈ 0.25 or less, evidencing the vanishment of the
high synchronization. When evaluating the subnetworks individually,
the order parameter for 𝜀F = 0.1, shown in panel (b), reveals low local
phase synchronization until 𝜏 = 12. As the 𝜏 value increases, the plane
𝑝×𝜏 presents regions with moderate synchronization values, being more
synchronized for basically the same cortical areas shown in Fig. 3(b).

In the second case (Fig. 5), we investigate the role of the number
of EHs considered for the application of three-stage switching control.
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Fig. 5. Investigation of the number of 𝑄 disturbed EHs in the phase synchronization
decrease. (a) Low synchronization is achieved with 𝑄 > 5 (gray to cyan) for distinct 𝜏
values. (b) For cortical areas, the synchronization remains low for almost all values
considered for 𝜏. Only when 𝜏 > 17 some subnetworks remains with moderate
synchronization (yellow bands). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

What we want to know at this point is how the number of EHs influ-
ences the phase synchronization of the system. Is applying control to
just 10 EHs enough to suppress synchronization? Are there a minimum
number of EHs where, when applying the control, the suppression
effects are satisfactory?

Fig. 5(a) shows the synchronization of clustered network for various
combinations of the amount 𝑄 of EHs and time delay values. The syn-
chronization evaluation reveals a wide region of low synchronization,
with 𝑅 < 0.5, when 𝑄 > 5 EHs (from gray to cyan) with 0 ≤ 𝜏 ≤ 20. As
the number of disturbed EHs decreases, the clustered network synchro-
nization increases (from yellow to orange) regardless of the value set
for 𝜏. Also in panel (a), we have the presence of an intermediate region
starting from 𝜏 = 7, in which the synchronization presents intermediate
values with 𝑅 ≈ 0.5, indicating that the network is partially synchro-
nized (black region). The best combination is given considering more
than 6 EHs with 0 ≤ 𝜏 ≤ 9 (predominantly gray region) for which 𝑅 ≈ 0,
which indicates that the synchronized activities were suppressed. At
the cortical areas, panel (b), the phase synchronization remains low for
almost every 𝑝×𝜏 plane. However, when 𝜏 > 17 there are some cortical
areas that present high synchronization (yellow region), although less
accentuated than observed in Fig. 4(b). These results may suggest that
the graph construction architecture for cortical areas has a relevant
impact on the suppression of synchronized neuron activities.

3.3. Evaluation by the suppression measure

Although the measurement of Kuramoto order parameter gives us
a general idea of what is happening in the system, it is necessary
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Fig. 6. Suppression measure calculate for the clustered network. Results obtained with
𝜀F = 0.1. Suppression does not have relevant values when considering 5 EHs (black),
20 LOVs and 20 non-EHs. For disturbed EHs equals to 10 (orange), 15 (red) and 20
(magenta), small values of 𝜏 result in a suppression measure 𝑆 ≈ 60, which indicates
that neuronal activity are no phase synchronized. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

to quantify the network synchronization drop values in order to cor-
roborate the results presented so far. In this way, we directly assess
the suppression of network synchronization when under the effect
of feedback perturbation. The suppression of synchronization in the
network will be best evaluated accordingly to the suppression measure.

Once it was verified that the most significant reduction in the phase
synchronization levels was obtained with the suppressor agent being
applied according to the approach (b), where 𝑄 EHs are disturbed by
the three-stage switching control, we calculated the synchronization
suppression measure for different amounts of disturbed EHs, with 𝜀F =
0.1 and varying the time delay 𝜏. We also performed comparisons with
two other applications, where the suppressor agent was considered not
in the EHs, but in neurons that are not. The suppression measure 𝑆
is calculated according to definition given in Eq. (26) and the results
are shown in Fig. 6. When 𝑄 = 5 disturbed EHs we verify 𝑆 < 10
(black line) for 0 ≤ 𝜏 ≤ 100. Since we want to satisfy the condition
𝑆 ≫ 1, for this case, the suppression is still considered small, indicating
that neuronal activities are well synchronized. Corroborating the results
presented in Fig. 5 discussed in Section 3.2.2. As we increase the
number of disturbed EHs, for 𝜏 ≤ 10 the suppression also grows,
getting around 𝑆 ≈ 36 (orange line), 𝑆 ≈ 50 (red line) and 𝑆 ≈ 60
(magenta line) which correspond, respectively at 10,15 and 20 EHs. For
𝜏 > 10 the suppression starts to drop quickly, taking the system from the
desynchronized to the synchronized state, and this behavior is observed
for all the number of evaluated disturbed EHs. In these cases, the best
range of values for 𝑆 is comprised in 0 ≤ 𝜏 ≤ 12.

In order to verify the relevance of the EHs to the action of the
suppressor agent, we compared it with two other similar forms of
application of the three-stage switching control. In the first one, we
define a list of the 20 Less Output Vertices (LOVs), which are defined
similarly to the EHs, however, instead of maximizing 𝐾 (𝑝,𝑢), for the
LOVs it is minimized the number of outgoing connections. In the
second variation, we apply the suppressor agent on 20 randomly chosen
vertices in each subnetwork, which are absent from the list ℒ (𝑝)

20 , that
is, none of these is one of the 20 EHs and we call these non-EHs.
In Fig. 6, the blue line represents 𝑆 obtained with 20 LOVs and the
green line identifies the result obtained for 20 non-EHs. In both cases,
suppression is observed to be very low, being 𝑆 ≈ 1, even for small
values of 𝜏. The results of this investigation lead us to state that for
the type of model used in the construction of the subnetworks, the
EHs play a fundamental role in breaking the neuronal activity phase
synchronization.
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4. Conclusion

The Barabási–Albert model is designed to capture the mechanisms
responsible for the emergence of the scale-free property. Consequently,
it has several well-known limitations that have inspired several re-
searches, clarifying the role of the numerous elementary processes that
influence the network topology. In this work we explore the phase
synchronization in neuronal clustered network, in which the cortical
areas are constructed according to the Bianconi–Barabási model and
the connections between them are performed by a human connectivity
map. The proposed model considers chemical and electrical synaptic
connections, with the latter being implemented according to the spatial
position of neurons in the simulated cortical areas. The phase syn-
chronization is calculated by the Kuramoto order parameter for the
clustered network and for the cortical areas.

Through the calculation of the Kuramoto order parameter, the
collective behavior of the system is observed, showing high global and
local synchronization, with the latter being slightly higher than the for-
mer. This behavior is expected, as the same result was observed other
times in neuronal clustered networks. The increase in electrical and
chemical synaptic coupling strength contribute to the phase synchro-
nization in our model. Since the model simulates a three-dimensional
distribution of the vertices in the subnetworks, we proposed a spatially
dependent suppressor agent. In this way, we obtained a reduction in the
synchronization of neuronal activity, this suppression method is effec-
tive with the feedback strength equal to the coupling strength adopted
in the simulations. However, such application leads to a considerable
portion of the network under the direct action of the suppressor agent.
So, we proposed a second approach based on the existence of hubs in
the scale-free network. Specifically, the application of the suppressor
agent exclusively to EHs proved to be sufficient to guarantee low phase
synchronization of neuronal activity.

It is noteworthy that the three-stage switching control has two ac-
tive bands, stimulating neuronal firings in cortical regions with average
activity below a threshold and inhibiting them in those with activity
above the firing threshold. The two stages are observed in subnetworks
with phase synchronized activity. The non-active step occurs when the
neurons of a cortical area are not synchronized. This characteristic
of the proposed suppressor agent, when associated with small delays
in the mean-field feedback, leads the Kuramoto order parameter to
assume values close to zero, both for the clustered network and for each
subnetwork.

We observe that disturbance of less than 5 EHs on each subnet-
work is not enough to achieve low synchronization. The measure of
suppression by the mean-field, with and with the control, is evaluated
in order to corroborate the previous results. The suppression measure
is calculated for the control applied to 5, 10, 15 and 20 EHs. In these
cases, the best results occur for more than 10 disturbed EHs, In answer
to the questions: What happens if (a) we apply control to vertices
with less output connections?; (b) the control is applied to 20 neurons
chosen at random, which are not EHs? The answer to both questions
highlights the importance of considering a model with aptitude for
the proposed model. Considering the fitness model, applying control to
specific targets in the network significantly reduces the synchronization
of neuronal firings. However, in this work, we do not investigate
whether there is a limit on the number of hubs in which applying time-
delayed feedback would affect the synchronization reduction. Another
important aspect that we do not address here is the question of per-
manence, that is, for how long can we maintain low synchronization.
Studying these aspects in the future opens the way for a better use and
robustness of the proposed model.

The results obtained so far may suggest that the graph construction
architecture for cortical areas has a relevant impact on the suppres-
sion of synchronized neuron activities. Although there is topological
influence of the network, synchronization suppression may also have
occurred due to the type of control applied to the network. In summary,
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our results showed that the graph topology used for the simulation
of cortical areas plays a very important role in suppressing network
synchronization. Contrary to what was expected, by the results of
previous works with a primary scale-free model [27], when using the
fitness model, applying the suppressor agent in the hubs causes the
synchronization inside the cortical areas to assume low values. This
result is interesting due to the fact it allows us to apply suppression
control only on strategic targets within each cortical area. This is very
relevant given that the area affected by an external electrical stimulus
is expected to be as small as possible. In this way, finding neurons
with more connections becomes an essential task for the success of this
model.
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