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2.3.3 Poincaré Surface of Section

How can we tell if a system is integrable or not? There is no simple way in
general. For systems with two degrees of freedom, we can check numerically
by constructing a Poincaré surface of section. To see how this works, let us
consider a conservative system (a system with a Hamiltonian independent
of time). For such systems, the energy is conserved. The Hamiltonian is
then an isolating integral of the motion and can be written

H{Flfﬁ:Ql:Qﬂ} == E:n {2332}
where the energy, I, is constant and restricts trajectories to lie on a three-
dimensional surface in the four-dimensional phase space.

;From Eq. (2.3.32) we can write pz = pa(p1, @1, g2, E). If the system has
a second isolating integral,

I2(p1, P2, 1, G2) = O3, (2.3.33)



JFrom Eq. (2.3.32) we can write ps = pa(p1, g1, g2, £). If the system has
a second isolating integral,

I3(p1,p2,q1.G2) = Ca, (2.3.33)

where (Us i3 a constant, then it too defines a three-dimensional surface in
the four-dimensional phase space. Once the initial conditions are given, I
and C'; are fixed and the trajectory is constrained to the intersection of the
surfaces defined by Eqs. (2.3.32) and (2.3.33); that is, to a two-dimensional
surface in the four-dimensional phase space. If we combine Eqgs. (2.3.32)
and (2.3.33), we can write p; = p1(gy1,92. E, Cs). If we now consider the
surface g2 = (), the trajectory lies on a one-dimensional curve.
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Figure 2.3.1. A Poincaré surface of section for a two degree of freedom system
provides a two-dimensional map. (a) A surface of section may be obtained, for
example, by plotting a point each time the trajectory passes through the plane
g1 = 0 with py > 0. (b) If two isolating integrals exist, the trajectory will lie along
one-dimensional curves in the two-dimensional surface. (¢) If only one isolating
integral exists (the energy), the trajectory will spread over a two-dimensional
region whose extent is limited by energy conservation.



2.4.1 Single-Resonance Hamiltonians

In terms of action-angle variables, a general single-resonance Hamiltonian
can be written

H = Hﬂ{.}-].l .}-2} + EFﬂl,ﬂg{Jl.l Jg] EDE{’.I‘MEl - Hggg} = E, EE-ELIJ

where (Jy, Ja, 0, 2} are action-angle variables. This system has a second
isolating integral

I =noJy +111Ja = Ca, (2.4.2)

where 'y is a constant. It is easy to see that Eq. (2.4.2) is an isolating
integral. Write Hamilton's equations of motion for J; and .Js,

d.Jy aH .
E — _Ei_ﬂ']_ = n]fvﬂl,ﬁg E]Il-[:.'rl1_91 — ﬂzgz:l {2‘4‘3")
and
% _ _g_;‘; = 112V, 1y Sin(n161 — noBa). (2.4.4)
Using Eqs. (2.4.3) and (2.4.4), we find that
dl
= ). (2.4.3)

i



(2,2} Resonance

To see more clearly how a resonance works, let us consider the specific case
of a (2,2) resonance. Following Walker and Ford, we write the Hamiltonian
= Hutr}-]! Jz] + ﬂ‘Jl J‘g EﬂEl:EEl - 293} — E, {246}

where

HolJi, )=+ Ja— 2 =35 Ja+ J2. (2.4.7)



It is useful to make a transformation from action-angle wvariables
(J1,J2,01,02) to a new set of variables (7, J2,0,,02) via the canonical
transformation i = 1+ o =1 = %, Jo = Jo, 0, =3, and B2 = 3 —0,.
The Hamiltonian then takes the form

H=T~-TJ =T +37% +ale(Ji — TJo)cos(28,) = E.  (2.4.8)

Since H is independent of B4, in this new coordinate system 77 is constant.
Hamilton's equations in this coordinate system become

d. Ty

== 0, (2.4.9.a)
d6;
E =1-27 — jg + T EEIIE{E'B'E}T [:E‘igh}
and
% = 2075 sin(20,)(I' — Fa), (2.4.10.a)
% = —I' + 672 + acos(26:)(I' — 2.72). (2.4.10.b)

Since 7y is constant, Eqgs. (2.4.10) can be solved first for J3(t) and ©4(t)
and then substituted into Eq. (2.4.9.b) to obtain 8;(t).



Let us now find the fixed points of these equations. The fixed points are
points for which ‘%ﬁ =0 and d?%z = 0. Fixed points occur when ©; = =&
and 2 = J,, where 7, is a solution of the equation

—I'+6J, + acos(nm)(I' —27,) = 0. (2.4.11)

Note that fora <€ 1, J, = %.

The nature of the fixed points can be determined by linearizing the
equations of motion about points (Jo = J,.02 = %E) We let Ja(t) =
Jo + AJ(t) and Oz(t) = &F + AO(t) and linearize in AJ(t) and AB(t).
We find

d (( AJ() \ _ 0 da cos(nm)J,(I' — T,)
dt ( AO(t) ) - ( (6 — 2a cos(n)) 0 )

X ( ﬁgg; ) (2.4.12)

The solution (ig%ig ) to Eq. (2.4.12) determines the manner in which trajec-
tories flow in the neighborhood of the fized points. For a < 1 (and therefore

Jo = L), these equations reduce to

%( o Eg ) 3 ( 0 %EEDS(M} ) ( po- Eg ) I (2.4.13)



Let us assume that Eq. (2.4.13) has a solution of the form

AJ() N _ x( Ag
( A ) =eM( 42 ), (2.4.14)
where A 7 and Ag are independent of time. Then we can solve the resulting
eigenvalue equation

Az \ _ (0 28I cog(nr) Ag
A ( Ae ) B ( 6 0 Ae

for both A and ( ij ) The eigenvalues are given by
e

r2 %
. (20@1’ gos(mr)) ,

and the solution to Eq. (2.4.13) can be written

( ig((g ) = et A+( % ) +e! A—( 1_? ) (2.4.15)

where b = 1*-]%{’_31 and A, and A_ are determined by the initial condi-

tions. For n even, A is real and the solutions contain exponentially growing
and decreasing components, while for n odd, A is pure imaginary and the
solutions are oscillatory. For n even, the fixed points are hyperbolic (tra-
jectories approach or recede from the fixed point exponentially), while for

n odd, the fixed points are elliptic (trajectories oscillate about the fixed
point ).




For very small «, the fixed points occur for Jp = 7, = d.Ild therefore

for J; = g%fj and J, =~ % We can also find the range Df energies for
which these fixed points exist. Plugging J; = 5J; into Eq. (2.4.6), we find
Jp -8 4+ BE =0 or Jy = S(1+(1-15)3) = 5.J5. Thus, the fixed
points ﬂnly exist for £ < f{}I‘ very small a. For F > 1 3, J1 is no longer

real.



A plot of some of the trajectories on the energy surface, F = (.18, for
coupling constant o = 0.1, is given in Fig. 2.4.1. In this plot, we have trans-
formed from polar coordinates (72, ©2) to Cartesian coordinates (p, g) via
the canonical transformation p = —(272)? sin(0,) and ¢ = (27 )7 cos(O).
The elliptic and hyperbolic fixed points and the separatrix associated with
them can be seen clearly. The region inside and in the immediate neighbor-
hood outside the separatrix is called the (2,2) nonlinear resonance zone. We
see that large changes in the action, 7, occur in this region of the phase
space, indicating that a strong exchange of energy is occurring between the
modes of the system.
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Figure 2.4.1. Phase space trajectories for the (2,2) resonance Hamiltonian in

Eq. (2.4.8) (p = —(272)%sin(©2) and ¢ = (272)% cos(©2)). For all curves,
E = 0.18 and &« = 0.1. The curves consist of discrete points because we have
plotted points along the trajectories at discrete times.



Let us now attempt to compute these level curves using perturbation
theory as discussed earlier. We go from action-angle variables (J;, J3, 61, 653)

to new variables (77,2, ¢1, ¢2) via a canonical transformation given by the
generating function

G(I1,Za, 1, 92) = L1601 + 1abs + age 2(Z1,L2) sin(20; — 26,).  (2.4.16)

Following the procedure outlined in Sect. 2.2, we find that g2 2 = Bs —203) f_ng},

where w; = 1 — 27 — 375 and wy = 1 — 37; + 275. The Hamiltonian to
order o is H = H,(1;,1;) + O(a?) and the action variables (neglecting
terms of order o) are

202175 cos(2wq t — 2wot)

Jl (t) - Il B (2LLJ1 — 2[;..’3)

(2.4.17)

and

202175 cos(2wit — 2wst)

Ja(t) =Tz + (2wy — 2ws)

(2.4.18)



In order for these equations to have meaning, the following condition must
hold:

l2u..11 — 2|'.:J21 = lZIl — 10I21 > 2&11.[:'-:2.

However, near a resonance, I; = 5Zs. Therefore this condition breaks down
in the neighborhood of a resonance zone. Actually this is to be expected
since the resonance introduces a topological change in the flow pattern in
the phase space.



(2,3) Resonance

Walker and Ford also studied a (2,3) resonance with Hamiltonian

3
H = H,(J1,J2) + BJ1JZ cos(261 — 302) = E. (2.4.19)

This again is integrable and has two isolating integrals of the motion, the
Hamiltonian, H, and

I=3J;4+2J; =Cs. (2.4.20)

We can again make a canonical transformation, J; = Jh — —~.jr’g,.}g =
Ja, 0 = ©1,0; = O3 + —‘81 (note that I = 3.7;). The Hamiltonian then
takes the form

H=Gi~ 4228 B

i
3

237, — 2%5) cos(363) =
(2.4.21)

and the coordinate [/; is a constant of the motion since H is independent
of ©;. The equations of motion for 7 and ©5 are



of ©;. The equations of motion for 7 and ©, are

d 3
% = 7 (380 ~ 275) sin(36,) (2.4.22)

and

d®, 1 57, 467

3 5
N I —55@) c0s(30;).  (2.4.23)

It is easy to see that the fixed points occur for ©; = 5F and Jp = J,
where 7, satisfies the equation

1_of + 467 + ﬁjﬂ% (ir - g‘j’rﬂ) cos(nm) = 0. (2.4.24)

3 9 9 2 3



If we again linearize the equations of motion about these fixed points
and determine the form of the flow in their neighborhood as we did below
Eq. (2.4.11), we find that for even n (n = 0,2,4) the fixed points are
hyperbolic while for odd n (n = 1,3,5) the fixed points are elliptic. These
fixed points are clearly seen in the plot of the phase space trajectories for
the (2,3) resonance system given in Fig. 2.4.2. In Fig. 2.4.2 all curves have
energy ' = 0.18 and coupling constant # = 0.1. The separatrix of the (2,3)
resonance zone 1s clearly seen, as are the three hyperbolic and elliptic fixed
points.
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Figure 2.4.2, A plot of some phase space trajectories obtained for the (2,3) reso-
nance Hamiltonian in Eq. (2.4.19). All curves have energy E = (.18 and coupling
constant 3 = 0.1 but have different values of the constant of motion, I. The three
hyperbolic and three elliptic fixed points as well as the separatrix of the (2,3)
resonance are clearly seen. The curves consist of discrete points because we plot

points along the trajectories at discrete times. We have set p = —{EJE]% sin(©2)
and g = (272) % cos(©2).



2.4.2 Two-Resonance Hamiltonian

H = Hy(J, Ja) + aJy Ja cos(20; — 205)
+ BJyJ2 cos(260; — 36;) = E. (2.4.25)



Hamilton’s equations for the two-resonance system can be written

dh O0H :
P 20001 Jp sin(26, — 265)
+ 283.J; JE% sin(26; — 362),
dJs OH :
B —2aJ; Jo sin(26; — 265)
—38J; Jf sin(260, — 362),
df oOH
Ji ,SJE% cos(26; — 362),
df OH
d: e 1 —3Jy + 2J2 + aJy cos(26, — 205)

+ %;’m J2 cos(20, — 305).

(2.4.26)

(2.4.27)

(2.4.28)

(2.4.29)
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Figure 2.4.3. Poincaré surfaces of section for the double-resonance Hamiltonian
in Eq. (2.4.25) with p, = —(ZJQJ% sin(fs2) and g2 = E:ZJg:l% cos(fz) and coupling
constants a = 3 = (.02. (a) At energy F = 0.056, only the (2,2) resonance exists.
(b) At energy E = 0.180, the (2,3) resonance has emerged from the origin but
is well-separated from the (2,2) resonance. (¢) At energy F = 0.2000, the two
primary resonances have grown in size but remain separated. The chain of five
islands is a higher-order resonance. (d) At energy E = 0.2095, resonance overlap
has occurred and chaos can be seen in the overlap region. [Walker and Ford 1969)



Walker and Ford construct a Poincaré surface of section by solving the
equations of motion (2.4.26)—(2.4.29) numerically and plotting (J3,6s)
each time 6; = 2%, (If p; = —(2J;)% sin(6;) and ¢; = (2J;)% cos(6;), the
surface of section is similar to that of Henon and Heiles, who plot a point
(p2,q2) each time g1 = 0 and p; > 0.) A sketch of the Poincaré surface
of section for several energies is shown in Fig. 2.4.3. In all cases shown in
this figure, the coupling constants are o = 3 = 0.02, a value much smaller
than those used in Figs. 2.4.1 and 2.4.2. The (2,2) resonance is present for
all energies £ < % However, the (2,3) resonance first emerges from the
origin for energy E = 0.16. For energies E = 0.056 (Fig. 2.4.3.a), only the
(2,2) resonance exists. For £ = 0.180 (Fig. 2.4.3.b), both resonances are
present but well-separated in the phase space. As the energy is raised, the
resonances occupy larger regions of the phase space. Finally, for E = 0.2095
(Fig. 2.4.3.d), the resonances have overlapped and a chaotic trajectory is
found.

































