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Introduction

• It is important to characterize the
complexity of spatial patterns in
many fields of Science and
Technology

• Ordered and totally disordered
spatial patterns are easier to
characterize, but complex patterns
pose challenges

• Our work: we use recurrence-based
quantities to characterize complex
spatial patterns

• Picture: landscape near Mount
Roraima (northern tip of Brazil)
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Complex spatial patterns and astrophysical plasmas

ultraviolet image (SOHO/ESA/NASA)

• textured appearance = solar
plasma is constantly in
(turbulent) motion

• as the Sun’s magnetic field
lines get tangled, they create
clusters of strong magnetic
activity that push around
the Sun’s surface plasma

• bright spots correspond to
active regions

• solar prominence seen
erupting at upper right
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Complex spatial patterns and fusion plasmas

M. W. Jakubowski et al., J. Nucl. Materials 365, 371 (2007)

• temperature distribution at target
plates (TEXTOR tokamak, Jülich,
Germany)

• measurements give evaluation of
heat flux at tokamak wall

• high temperature regions caused by
plasma particles coming from the
plasma core (large connection
lengths)

• non-uniformity of distribution
suggests fractal structures
(“magnetic footprints”)
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Complex spatial patterns and technological plasmas
S. H. Cho et al., Microelectronic Engn. 77, 116 (2005)

• AFM image of the surface of
polymide (PI) films

• treated by O2 inductively-coupled
plasma

• goal: improvement of the adhesion
strength between Cr layer and the
PI substrate

• bottom power in the ICP system
controls the bombardment energy
of oxygen ions in the plasma

• reactive etching of the PI surface
leads to the increased
morphological surface roughening
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Difficulties in the characterization of complex spatial
patterns

• complex profiles are not
totally smooth or fractal

• they may contain clusters of
spatially ordered
interspersed with disordered
(rough) region

• they defy usual methods of
spatial characterization
(RMS roughness or fractal
analysis)
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One-dimensional spatial patterns

• spatial profile is discretized
with steplength ∆: sites at
xi = i∆

• height at each site
h(i) = h(x = xi)

• spatial recurrence: two
lattice points i and j have
the same value, up to some
precision: |h(i)− h(j)| ≈ ℓ

• spatial recurrence matrix
elements

Rij = Θ(ℓ− |h(i)− h(j)|),
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Spatial recurrence plots
• graphical representation of the spatial recurrence matrix
• thresholded: Rij = 1 (black pixel) or 0 (white pixel)
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Structures in a spatial recurrence plot and quantification

• Horizontal or vertical structures → smooth plateaus or
elevations with small slope

• Diagonal structures → spatially correlated points: sloped
lines, curvy segments

• Principal diagonal line always exists by construction of Rij

• Isolated points → parts of the profile with little or no spatial
correlation with its neighbors

• white bands → existence of “defects” (irregular clusters)

• recurrence rate: probability of finding spatially recurrent point

REC =
1

N2

N
∑

i=1

N
∑

j=1,j 6=i

Rij .

• laminarity: fraction of pixels belonging to horizontal structures
in a spatial recurrence plot
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Non-locally coupled chaotic maps

• non-local coupling: interaction strength decreases with the
lattice distance as a power-law (with exponent α)

• local dynamics: chaotic logistic map f (x) = 4x(1 − x), with
x ∈ [0, 1]

• x
(i)
n : state variable at time n and spatial position
i = 1, 2, . . .N (one-dimensional chain)

• periodic boundary conditions: x
(i)
n = x

(i±N)
n , random initial

conditions x
(i)
0

x
(i)
n+1 = (1− ε)f (x

(i)
n ) +

ε

η(α)

N′

∑

j=1

[f (x
(i+j)
n ) + f (x

(i−j)
n )]

jα

• normalization factor: η(α) = 2
∑N′

j=1 j
−α
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Spatial patterns and spatial recurrence plots
• N = 1001 maps with ε = 1.0 and (a) α = 2.0, (b) 2.8
• Top: spatial pattern at fixed time n = 2001
• Bottom: spatial recurrence plot with cutoff radius ℓ = 0.05

(a) (b)
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Detecting synchronized patterns using spatial recurrences

• synchronized patterns

x
(1)
n = . . . = x

(N)
n

• large laminarity corresponds
to complete synchronization

• transition to
non-synchronized behavior
as α increases (coupling
becomes more local)

• α → ∞: local
(nearest-neighbor) coupling

• α → 0: global (all-to-all)
coupling
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Two-dimensional spatial patterns

• two-dimensional pattern hij
of N sites

• at each site we take a square
block of side N ′ and
compute the recurrence rate
of hij with all the other sites
belonging to this block

• we obtain a recurrence-rate
matrix with elements

RECij =
1

N ′2

i+N′

∑

k=i

i+N′

∑

ℓ=i

Θ(ℓ− |hij − hkℓ|) ,
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Reaction-diffusion equations

• activator-inhibitor system

∂u

∂t
= f (u, v) + Du∇

2u

∂v

∂t
= g(u, v) + Dv∇

2v

• u(r, t): local concentration of an activator species

• v(r, t): idem for an inhibitor species

• f (u, v) and g(u, v): local dynamics of the reaction (rate
equations)

• local coupling with different diffusion coefficients Du and Dv

• basic ingredients: mass conservation and Fick’s law (diffusion
flux proportional to the concentration gradient)
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Reaction-diffusion equations in a square lattice

• two-dimensional lattice with spacing ∆

• discretized variables k , j = 0, 1, . . . (N − 1)

uk,j(t) = u(x = k∆, y = j∆, t),

vk,j(t) = v(x = k∆, y = j∆, t),

• discretized system of ODE’s

duk,j

dt
= f (uk,j , vk,j )+

Du

4
(uk+1,j + uk−1,j + uk,j+1 + uk,j−1 − 4uk,j )

dvk,j

dt
= g(uk,j , vk,j )+

Dv

4
(vk+1,j + vk−1,j + vi ,k+1 + vi ,k−1 − 4vk,j )
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Reaction-diffusion equations with nonlocal coupling

• diffusion flux does not depend only on the local gradients but
on a wider vicinity of each point

• yields a (non-linear) integro-differential equation

∂u

∂t
= f (u, v) + Du

∫

d2r′σ(r, r′)u(r′, t),

∂v

∂t
= g(u, v) + Dv

∫

d2r′σ(r, r′)v(r′, t)

• σ(r, r′) is a non-local interaction kernel

• if the coupling is mediated by a third (locally) diffusing
substance then σ(r) ∼ K0(r) in the fast relaxation limit
(Kuramoto and Nakao)

• another example is a power-law kernel: σ(r) ∼ r−α
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Reaction-diffusion equations in a square lattice with
powerlaw coupling

duk,j

dt
= f (uk,j , vk,j )− Duuk,j +

Du

κ(α)

N′

∑

r=−N′

⋆
N′

∑

ℓ=−N′

⋆

uk+r ,j+ℓ

(r2 + ℓ2)α/2

dvk,j

dt
= g(uk,j , vk,j )− Dvvk,j +

Dv

κ(α)

N′

∑

r=−N′

⋆
N′

∑

ℓ=−N′

⋆

vk+r ,j+ℓ

(r2 + ℓ2)α/2

• N ′ = (N − 1)/2, with N odd,
• starred sums: we exclude from them the terms with r = ℓ = 0
• normalization factor

κ(α) =
N′

∑

r=−N′

⋆
N′

∑

ℓ=−N′

⋆

1

(r2 + s2)α/2
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Local dynamics of activator-inhibitor system

• Meinhardt and Gierer model [RMP 66, 1481 (1994)]

f (u, v) = 0.01

(

u2

v
− u

)

g(u, v) = 0.02
(

u2 − v
)

• activator undergoes an auto-catalytic reaction with inhibition
and degradation

• inhibitor also increases with activator and suffers degradation

• two equilibria: (0, 0) (unstable) and (1, 1) (asymptotically
stable)

• these are also equilibria for the coupled system

• Turing instability: a formerly stable spatially homogeneous
pattern becomes inhomogeneous as the diffusion coefficients
are changed

• pattern formation occurs after linearly unstable modes suffer
saturation (due to the nonlinearity of the local dynamics)
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Spatial patterns in the locally coupled case (α = 1000)
• 101 × 101 cells, Du = 0.016, Dv = 0.2, activator
concentration in colorscale

• Left: spatial pattern (fixed time): “zebra” patterns (fingering
- lateral inhibition)

• Right: recurrence-rate matrix (blocks of size N ′ = 20):
REC ∼ 0.25 − 0.29, not spatially homogeneous
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Spatial patterns in the locally coupled case (α = 1000)

• 101 × 101 cells, Du = 0.005, Dv = 0.2

• Left: spatial pattern (fixed time): spot “leopard” patterns
(fingering - lateral inhibition)

• Right: recurrence-rate matrix: REC ∼ 0.74 − 0.81, locally
recurrent regions
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Spatial patterns in the intermediate coupled case (α = 1)

• 101 × 101 cells, Du = 0.015, Dv = 0.2

• Left: spatial pattern (fixed time): regular (sinusoidal) pattern

• Right: recurrence-rate matrix: REC ∼ 0.3 − 0.9,
lower-concentration background more recurrent than crests
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Spatial patterns in the intermediate coupled case (α = 1)

• 101 × 101 cells, Du = 0.005, Dv = 0.2

• Left: spatial pattern (fixed time): spots again but with higher
concentration (squeezing effect)

• Right: recurrence-rate matrix: capable to detect very subtle
differences in spatial patterns due to localized structures
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Spatial patterns produced by mammographic images
• scanned mammographic images (LAPIMO, USP, S. Carlos)
• transformed into integer grey-level matrices → lossless image
files with 65, 000 levels

• very sensitive to differences in grey-levels → detection of
structures barely visible to the naked eye (tumours)
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Conclusions

• complex spatial patterns have coexistent ordered and
disordered parts

• we developed recurrence-based numerical diagnostics for
characterization of complexity in spatial patterns (1D and 2D)

• they are good indicators of synchronized states

• spatio-temporal dynamical systems: patterns in
reaction-diffusion equations (activator-inhibitor)

• recurrence-based diagnostics are very sensitive to pattern
changes

• analysis of images: structures in digital mammographic images
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Thank you very much.
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• F. A. S. Silva, R. L. Viana, T. L. Prado, and S. R. Lopes,
Comm. Nonlin. Sci. Numer. Simulat. 19, 1055 (2014)

• T. L. Prado, P. P. Galuzio, S. R. Lopes, and R. L. Viana,
Chaos 24, 013106 (2014)

• F. A. S. Silva, R. L. Viana, and S. R. Lopes, Pattern
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available for download at: http://fisica.ufpr.br/viana
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