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Reversed magnetic shear configurations in tokamaks reduce substantially particle diffusivity and
improve plasma confinement due to the formation of a transport barrier, as a result of magnetic field
line reconnection and bifurcation. The latter are caused by the resonant perturbation of an ergodic
limiter on a tokamak with reversed magnetic shear, which creates a region with chaotic field lines

in the vicinity of the dimerized island chains. An analytically derived nontwist map for field lines

is used to describe the formation of a transport barrier, manifested in the decrease of field line

diffusion rate. This barrier appears due to the chaotic field line trapping near the reconnection layer
that survives the bifurcation. @004 American Institute of Physic§DOI: 10.1063/1.1630318

I. INTRODUCTION structure produced by such a configuration is suitably de-
scribed by a nontwist area-preserving map, in which a single
The recently discovered fact that a negative magnetiperturbation mode can excite the formation of twin dimer-
shear can enhance substantially plasma confinement in tokieed island chains. Properties of nontwist maps have been
maks has started an intensive investigation of suclextensively studied, from the mathematical and applied
configurations: > A negative magnetic shear for some por- points of view?~8 Nontwist maps violate the nondegeneracy
tion of the plasma column implies a nonmonotonic radialcondition for the Kolmogorov—Arnold—MoséKAM ) theo-
profile for the safety factor which, on its hand, can be pro-rem to be valid, so that many well-known results of canoni-
duced by a nonpeaked plasma current density. Since indugal mappings no longer apply to théhror example, it may
tive current drive is most likely to generate peaked currenhappen that two neighbor island chains approach each other
profiles, nonpeaked ones are possible by noninductive metlwithout being destroyed through the breakup of KAM
ods like neutral beam injection. The combination of heatingcurves. Detailed studies have been carried out in order to
and current drive by such method has been proved to genetnderstand the transition to chaos in nontwist maps, involv-
ate configurations with enhanced reversed sfiERS in the  ing a combination of analytical and numerical methbds.
plasma startup phase, with highly peaked density and pres- In fact, nontwist maps have been proposed to investigate
sure profiled.™ the effect of reversed shear in tokamak confinem@&HhtThe
Among the advantages of producing plasma dischargesiap we have used in this paper, on the other hand, has pa-
with reversed magnetic shear we cite the following oriBs: rameters directly related to physical quantities characterizing
a high fraction of the self-sustained bootstrap current alignetbkamak equilibrium and perturbation fields. Hence, our map
with an optimized current density profil€j) certain micro- may be used in a conceptual project of such an experiment.
instabilities responsible for anomalous electron transport caMoreover, we can vary the perturbation amplitude in order to
be stabilized, as well as some magnetohydrodynamicatudy how it affects plasma equilibria experimentally ob-
(MHD) modes(ballooning and resistive teariijgand (iii ) it served in tokamaks.
has been observed in transitions from lol) (to high (H) The transport barrier of interest to plasma confinement
mode dischargesThere has been observed a reduction ofarises from a combination of typical features of nontwist
the plasma transport in the central region of the plasma colmaps: reconnection and bifurcation, occurring in the re-
umn, through the formation of a transport barrier, or a regiorversed shear region. Reconnection in a chaotic region of a
where both the electron and ion diffusivities are greatly re-nontwist map has been described by Corso and RiZZato,
duced around the shearless region. who showed that diffusion increases after a smooth manifold
A theoretical interpretation for the formation of a trans- reconnection in a chaotic regime. This provides the frame-
port barrier can be built upon a configuration with reversedwork to study a transport barrier in reversed shear configu-
magnetic shear perturbed by internal resonant magnetic perations perturbed by nonintegrable magnetic fields which can
turbation as well as by external helical windings that havegenerate field line chaos. Analyses of the formation of a bar-
been used to control plasma oscillationghe field line rier transport in reversed shear configurations usually take
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into account the effect of internal instabilities that ergodizeOne of them is the toroidal coordinat@sw, ), defined in

some portion of the plasma colunih!®In this paper, how- terms of the circular—cylindrical coordinateR,¢,Z) by
ever. We shall intentionally create an outer chaotic layer of
magnetic field lines. We have superimposed to the tokamak — —
equilibrium field the magnetic field generated by an ergodic cosh¢—coso’ coshé—cosw '’

magnetic limiter(EML), which consists of slices of external whereR}, is the major radius of the circular centére., the
. . . . . 0 "
helical conductors with a suitable pit¢hl® It is generally magnetic axis radi)s In this coordinate systemw has the

thought that this cold boundary layer is able to spread he%eaning of a poloidal angle, ands related to the distance
and patrticle loadings on the tokamak inner wall, so reducinqrom the circular center

plasma contamination by impurities released from the vessel Throughout this paper, however, we will work with the

wall by sputtering processes, for exampié’ The properties following non-orthogonal coordinates:r 6,,¢,), given
of such an external device have been extensively studieg 4

using field line maps since the seminal work of Martin and
Taylor!® Such ergodic limiters have been used to control Ry
plasma instabilities and improve plasma parameters in some rt:coshg—COSw’

tokamaks, as in TEXTOR, TEXT (Texas Experimental ] ) )
TokamaR,?° TORE-SUPRA® and TBR (Brazilian which are related to the locébr pseudotoroidalcoordinates
TokamaR.?? (r,6,¢) by the following relations:

Ry sinhé Ry sinw

()

9t=7T—w, (Pt:q)! (2)

We use an analytical approach to this problem by con- r po\ 2112
sidering a convenient coordinate system in which the Grad— rt=r[1— aCOSﬁH’ R , (©)]
Schliter—Shafranov equation can be solved in an approxi- 0 0
mated way>>*Moreover, a perturbation magnetic field from r Po\2]-1
an ergodic magnetic limiter is chosen in such a way that the sing;=sing| 1— R_6C050+ Z_R(’)> } , (4)

integrability of the field line configuration is broken and La-

grangian chaos is possible. This enables us to analyticallguch that, in the large aspect ratio limit€R}), r, and 6,

derive a Poincarenap?® The area-preserving nature of this becomer and 6, respectively. Note that the origins of these

map comes from neglecting of any dissipative effects in thawo coordinate systems are the magnetic axis. Finally, the

plasma, so that the mentioned field line reconnection is notelation of the magnetic axis radii) with the approximate

due to a resistive layer. This map can be used to numericallydiusR is

evidence the formation of a transport barrier due to a

reconnection—bifurcation mechanism, and its effect on the

plasma transport can be inferred from the study of field line

diffusion by using the obtained map. The transport barrier we I DL . .

obtain is effective for a limited time span, since the chaotic The tokamak_ equilibrium m_agnetlc f'.eBO is obtained

region generated by a limiter reaches the tokamak wall, sucﬁom. an approximated a_nalytlcal solution .Of the Grad-

that field lines are eventually lost due to radial diffusion andSch[uer—Shafranov equation in these coordinafes:

ultimate collision with the wall. However, as a consequence W1y, 0) =W po(ry) + 8V (1, 60,), (6)

of island reconnection and bifurcation, field lines are effec-

tively trapped due to the stickiness effect of the magnetié"’here

islands, provided _the duration of a discharge is less than the dWoo(r)  mol R

average escape time. _ _ _ dr " 2mr
The rest of this paper is organized as follows: in Sec. I t t

we present the model fields for the reversed shear equilibwith a as the plasma radius, determined by a material limiter,

rium and the ergodic limiter perturbation, and an analyticallyg’=g(y+1)/(8+ y+2), whereg and vy are positive pa-

obtained field line mapping. Section Ill analyzes the reconrameters, andioW ,(ry, 6;)|<|W ,o(ry)|.

nection and bifurcation processes involved when the limiter  |n the large aspect ratio limit, and supposing that in low-

current is increased past critical values. Section IV presentsst order the equilibrium flux functio® ,(r,) does not de-

an analytical treatment for the widths of the dimerized islandpend oné,, the Grad—Schler—Shafranov equation reduces

chains, in order to estimate the threshold perturbation foto an equilibrium equation similar to that obtained in a cy-

field line reconnection. The transport barrier, which appeargindrical system, but now in terms af. This has been our

as the result of the reconnection, and the underlying manimain motivation to work with ther(, 6;,¢;) coordinate sys-

fold structure, are treated in Sec. V. Our conclusions are leftem. The intersections of the flux surfaced ,(ry)

to the last section. =constant with a toroidal plane are not concentric circles but

rather present a Shafranov shift toward the exterior equato-

rial region. Hence, actual equilibrium flux surfaces can be

approximated byr,=constant coordinate surfaces. In the

common range of tokamak parameters, as those considered
Many coordinate systems have been used to describe this paper, the aspect ratio is always large enough to en-

magnetic field line geometry in plasma confinement systemsure that the = constant surfaces do not overlap.

2

R?=R}? sir? 6, |. (5)

1-2 % cos— |
—2=7C086,—| =7
R, YRS

1 i
a2

y+1

1- (1)

2
i
a2

II. EQUILIBRIUM AND PERTURBING MAGNETIC
FIELDS
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Moreover, from Eq.(5), there results that, in order to 1.2 ' '
avoid imaginary values of thR coordinate, the inverse local
aspect ratia;/R} should not exceed 1/2. In fact, this condi-
tion is always fulfilled with the parameter values used in this 06 | i
paper, if the inverse aspect ratio at the plasma edge satisfie
a/R(<1/2, as is commonly find in present tokamaks. How-
ever, it must be mentioned that for other magnetic configu-
rations, like compact tori or spheromaks, this condition b o} ]
might not be fulfilled for all points in the plasma and the
=constant surfaces may overlap, spoiling their use as goot
equilibrium flux surfaces. 06 | |
We have used a toroidal current density profile with a
central hole, given
1bRg (7+2)(y+1) e\, ore)” 12 . ' ‘
Ja(ry) = w2l Bt yt2 1+,8az 1 az) , (8 1.2 -0.6 (R_goyb 0.6 1.2
wherel, is the total plasma current. 4.5 . . . . o)
In this MHD equilibrium, the contravariant components
of the equilibrium field are given by 40 r
A 35
Bo= Rore 36, =0. ©
3.0
B?,(rt) = i % q /
Rory dry 25 | // .
7/
— MOIP , rtz)( rtz e 2.0 r /// 1
- 27Trt2 1 1+B a2 1 a2 ’ (10) ///
o 15 | T .
B3(ri,0)=— “?0': tole 1—2icosatl , (1) o , . ,
R 2mRy? Ro %0 0.2 0.4 0.6 08 1.0
r/a
where | .~ —1/27 is the total current in the toroidal field
coils in the large aspect ratio approximation. There result§!G. 1. (8 Flux surfaces for a reversed shear equilibrium with parameters
that the safety factor of the magnetic surfaces, £=3.0 andy=1.0; (b) safety factor profile for equilibria withy=1.0,
=3.0 (solid line), and y=2.0, 8=0.0 (dashed ling The minor radius of
1 om BS(rt , et) tokamak vessel is denoted by
=55 |, ez e 12

has a nonmonotonic profile, which accounts for describing The design for the ergodic magnetic limiter to be con-
the reversed shear effect. For some values of the safety facteidered in this paper is essentially the same as in Ref. 25, and
there are two magnetic surfaces with different radii withinconsists ofN, current rings of length’” located symmetri-
the plasma column. Such nonmonotonic profiles can triggecally along the toroidal direction of the tokamédkig. 2).
double tearing mode instabilitiéd;and have been observed These current rings may be regarded as slices of a pair of
in initial stages of tokamak dischargEsas well as in tran- external helical windings located gt=b, , conducting a cur-
sitions fromL to H mode discharges. rentl, in opposite senses for adjacent conductors. The role
In the numerical simulations to be described in this pa-of these windings is to induce a resonant perturbation in the
per, we normalize the minor tokamak radibs, and the tokamak, and to achieve this effect we must choose a helical
plasma radius to the majorimagnetic axisradiusR;, such  winding with the same pitch as the field lines in the rational
that a/R;=0.25 andb/R(’)=0.33.25 We also choosay(a) surface we want to perturb. This has been carried out by
=4.04 andq(0)=3.50, corresponding to the safety factors choosing the following winding la®W u,=mgy6,—nye;
at the plasma edge and magnetic axis, respectively, as ob=constant. In this paper we will consider an ergodic limiter
served in typical discharges with negative magnetic sheaconsisting of N,=4 rings with mode numbersniy,ng)
for which =3.0 andy=1.0. Figure 1a) shows some equi- =(3,1) each, carrying a curreh.
librium flux surfaces for this set of parameters, and Fi@) 1 The magnetic field3, produced by the resonant helical
depicts the corresponding radial profile of the safety factowinding, from which we build the EML rings, is obtained by
(12) (solid line). For comparison, a usual monotonic radial neglecting the plasma response and the penetration time
profile for q(0)=1.25 and the same value qfa)=4.04 is  through the tokamak wall. In this cad®, is assumed to be
also shown in Fig. (). a vacuum field, such that it comes from solving Laplace’s
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Ro H(J,9,) =Ho(D+H(T,9,t), (|[Hi/Hol<1) (17)

Ergodic Magnetic 1
Limiter
\\l = (DALY, (18
“BR? po(J) BR)? (70,1, (18)

In order to include the effect of the finite length of each
EML ring, which is typically a small fraction of the total
toroidal circumference 2R, we model its effect as a se-
quence of delta-functions centered at each ring posffion:

+ oo

/ 2w
HUZ 00 =Ho( D+ o Hi( 0.0 3 6(t—kN—),
0 k=—x

r

(19

where theN, rings are symmetrically distributed in the tor-
oidal direction. This assumption is consistent with results
obtained using full numerical codes for generating the field
ﬂ line map by directly computing the magnetic field of a finite-
sized limiter, and which point out that the limiter influence is
FIG. 2. Scheme and exploded view of an ergodic magnetic limiter. actually concentrated in a small regiB’n.
We can derive, due to the impulsive perturbation, a stro-
boscopic map for field line dynamics, by definigg and 9,
equation with proper boundary conditions at the tokamal@S the action and angle variables just afterritekick due to
wall. We were able to obtain an approximated analytical so2 limiter ring at the toroidal positiong, = 2ka/N;, with k
lution, such that, in lowest order, the only nonvanishing com-=0,1,..,N; — 1:%

Conductor

ponent of the corresponding vector potentiaP is Toi1= Tt ef (i1, 0 t), (20)
N )=—“°|“R6 Tt mOcos(m 0,—Nooy) Foiq =0 +2—7T+eg(j 9.t (21)
L3t U, @t = b, oVt = No®y)- n+1 "N Ter) n+1:Unstn)s
(13
thi1=th+ 2 (22)
The model field to be used in this paper will be the superpo-  "** " N, ’
sition of the equilibrium and limiter field8=By+ B, with h
the corresponding magnetic field line equations: where
IH1(T,9,1) IH1(J,9,1)
dr, 1 r 9 f(iﬂ,t):—la—ﬂ, g(iﬁ,t)Zla—j,
d—(pt——ﬁ(l—ZR—écosﬁt &—&ALg(rt,et,(pt), (14) (23)
and the perturbation parameter is
dé, 1 (1 ) re ) .
—=-—|1-2—,cos I
d(P r BT R, t - _ (_h
t Tt 0 e=—2 2Ry T ) (24
J
Xa—rt[‘l’po(HHALs(rtﬁn@t)], (15 which is usually small, since in experiments we have

<2m7R} andl,<I. A more detailed form of the above func-

whereB+ is the toroidal magnetic field at the magnetic axis.tlons can be found in the Appendix.

Since the equilibrium field is axisymmetric, we may set
the azimuthal anglep;=t, as a time-like variable, and put
field line Egs.(14) and(15) in a Hamiltonian form, Ill. RECONNECTION AND BIFURCATION

The phase portraits generated by the ergodic limiter map
= , (16)  correspond, in the action-angle variablg5d), to a Poincare
dt 99’ dt 4T surface of section at fixet= ¢=0, where we plot a large
number of points corresponding to different initial conditions
where(7,9) are the action-angle variables of a Hamiltonianspread over the radial extension of the toroidal chamber. In
H, which can be found in the Appendi¥gs.(Al)—(A11)]. Figs. 3a) to 3(c) we show phase portraits, for different val-
The addition of the magnetic field produced by a reso-ues of the limiter current, representatives of the situations to
nant helical winding characterized by E@.3) may be re- be discussed in this section. Since we have chosen a limiter
garded as a Hamiltonian perturbation with my=3 pairs of current wires, its perturbing field

dJ oH dd oH
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FIG. 3. Poincaranaps for the ergodic limiter mapping, an equilibrium with
B=3.0 andy=1.0, and normalized limiter currentg/I ,=(a) 0.86%,(b)
1.15%, andc) 1.39%, respectively before, during, and after reconnection.
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FIG. 4. Poincarenaps for the ergodic limiter mapping, an equilibrium with
B=3.0 andy=1.0, and normalized limiter currentg/l,=(a) 5.56% and
(b) 5.81%, respectively, before and at the bifurcation.

As we approach the point at whiaf{(r) is a minimum,
these island chains approach each other and eventually coa-
lesce into a single chain in a smooth fashion. This is possible
provided the two chains are arranged such that the order of
the fixed points is alternate for the chains—an elliptic point
of one has the same angular position of a hyperbolic point of
the other and vice verdéig. 3@)]. Increasing the perturba-
tion current, field line reconnection occurs at a critical value
Ih/1,=1.15%[see Fig. 8)]. We will refer as the upper and
lower chains, those islands with higher and lower values of
the action at their centers, respectively. The topology of the
field lines is changed after reconnection: there appear new
open curves, or meanders, which are able to explore both
chaing[Fig. 3(c)]. These curves are not preexistent in the set
of safety factor before the perturbation, and are born through
a mechanism described in detéibr general nontwist maps

resonates with the equilibrium tokamak field and generatem Ref. 11.

chains of three magnetic islands. Since the safety factor ra-
dial profile is non-monotonic, fog=3.0 there are two dis-
tinct radial locations at which there are such chdisse

Fig. 1b)].

As we increase the perturbation strengtk |, the is-
lands become widefFig. 4(a)]. However, since the island
chains are no longer pendular in a reversed shear configura-

tion, for the ergodic limiter map is non-twist, the island
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FIG. 5. Schematic figure showing dimerized island structure and fixec
points(a) before,(b) during, and(c) after reconnection, ang) after bifur- 1.8 ‘ ' ' 7 ‘ ‘ (b)
cation. ////
16 T Te=—__ ) .
width does not necessarily grow with the perturbation \\\\
strength in a square-root way as it does in twist ntadere- \\\
over, since we are dealing with a non-integrable system, w _ 14 - N 1
also have a chaotic layer surrounding the island separatricel,
and whose width also increases withThis effect is more %
pronounced for the upper chaifig. 4(a)]. 121 3 1
We stress here that the reconnection process here d
scribed is not due to small dissipative effects caused by 10 |
resistive layer, but instead is a rigorously flux-preserving " | TTT=~—__ 4
process in which the number and the index of the fixee ~— r  TTTT=——l
points of a field line map remain the same, but with a new 08 ‘ . , , ‘ T
arrangement for the map trajectories. When the perturbatio 0 0.01 002 003 004 005 008 007
strength is further increased, the elliptic point first ap- LA,

prpaCheS a hyperbolic point in the I,Ower dimerized ChfamFIG. 6. (@) Reconnection diagram showing the evolution of the fixed point
[Fig. 4@]. At 1,/1,=5.81% these points coalesce and dis-|ocations(in action spacewith respect to the normalized limiter curreti)
appear through a saddle-center bifurcafibig. 4(b)], leav-  bifurcation diagram for the fixed point locations. In both diagrams, full and
ing only open trajectories for the upper chain. dashed lines indicate stable and unstable fixed points, respectively.
Figure 5 represents schematically the sequence of
events, as the perturbation strength is increased, from top to
bottom. Before the reconnectidifrig. 5a)] there are two (I,)g, due to a saddle-center bifurcatipiig. 5(d)]. Mean-
distinct island chains, from which we cdlland?2, the elliptic ~ while, the other paif1-4) survives the bifurcation, at least
and hyperbolic points of the upper chai®;and 4 are the for this perturbation strength.
elliptic and hyperbolic points of the lower chain, respec- In order to determine the critical perturbation amplitude
tively. We denote a§ and6 the lowest and highest pointim  for reconnection and bifurcation, we have plotted in Fig) 6
terms of the action variablef the upper and lower islands, the values of the action corresponding to the points nained
respectively. Exactly at the reconnection point, for which the4, and5 in Fig. 5 versus the normalized perturbation current.
control parametell;, reaches a critical valuel()g, both  The solid and dashed lines were obtained from E86)—
chains are glued ufFig. 5(b)], so that the hyperbolic points (22), whereas the dotted line was obtained by using an ap-
of the neighbor chain& and4) are joined by smooth lines. proximated local Hamiltonian, to be presented in the next
As a consequence, the points belonging to the pairs markeskection, while the squares correspond to values obtained
2-6 and 4-5 join together. After the reconnection occurs, from Eqgs.(20)—(22). The occurrence of reconnection means
some of the closed curves surrounding the elliptic points that the curves corresponding to the poihend5 cross each
and 3 remain so, and open curves, or meanders, are creatadher, which happens forl)g/l,=1.15%. Figure @)
[Fig. 5(c)].3! The remaining closed curves are now boundedshows similar results for point$, 2, 3, and 4, where the
by separatrices which self-intercept at the former pokts action values were obtained from E¢80)—(22). In this Fig.
(for the upper chaip and 4 (for the lower chain As the  6(b), the bifurcation occurs when the curves corresponding
control parameter continues to increase, the pdr3 ap-  to the points2 and 3 intercept each other, atl{)g/l,
proach each other and coalesce at a second critical value5.81%. These critical values are expected to modify as the
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equilibrium parameters are likewise changed. We have veri-

fied that the ratio I(,)g/I,, increases by a factor lying be- ST, 9=
tween 10% and 60%, when the safety factor at plasma edge

q(a) builds up from values around 4.0. In other words, itleading to the autonomous Hamiltonian
becomes much more difficult to obtain reconnection, for

Ng )
- m—ot J, (27

higherqg(a), due to increasing separations of the dimerized H'(J,9')= %\7’2— \%VJ3+K cogmyd’), (29
islands.
in which we have introduced the following abbreviations:
d(l)o 1 d2w0
IV. LOCAL HAMILTONIAN DESCRIPTION M(JT*)= d_j ., W(T)= 5 d_jz ,
FOR DIMERIZED ISLANDS J=J* J=T*

. (29
The fact that the magnetic shear presents a reversal of K(JT*)=e

sign inside the plasma makes the field line map derived at the
end of the previous section a non-twist one. This means that
KAM theory does not apply, and some results concernin%|
fqrmatlon and behavior of perlodl_c |sl_ands cannot be USeq, secylar perturbation theory to describe the phase-space
directly. One of the noteworthy points is that the islands are,

no lonaer of a pendular shane. like in the monotonic shea ucture near a given resonaricBue to the nonpendular
g pendular snape, fike | oton Eharacter of the dimerized islands, however, we have to in-
case. Moreover, the Chirikov scenario for explaining chao

. . o Tlude a cubic term in the Taylor expansion, which turns to be
as the overlapping of resonances is no longer valid, since thg better approximation. The Hamilton equations correspond-

|eer:nd chains reconnect rather than merge their chaotic Ia}fhg to the quasipendular Hamiltoni4B8) are written as

However, as long as we limit ourselves to a small per- dJ

ry\mo

b_t .
Notice that, ifW=0, the Hamiltonian reduces to that of

nonlinear pendulum, which is the standard procedure used

turbation amplitudes, we can analyze how islands’ widths H:mOK sin(myd’), (30
increase with the limiter current. This can be done by ex-

panding the field line Hamiltonian in the vicinity of the reso- d_ﬂ’ — T (M—WJ) (31)
nant surfaces beyond the linear approximation, i.e., by taking ~ dt '

into account higher order terms due to the non-pendular na- The eauilibrium points of the above two-dimensional
ture of the periodic islands. The result can be used to esti- stem que uationspare7(*=0{}’=/”7-r/m ) and (7'*
mate the critical perturbation amplitude necessary for fieldS y q . . 0

. : . A =M/W, ¥ =/mImy), with /=0,1,2,.... For7*=0
line reconnection and, consequently, island dimerization. and/ even(odd integers, these fixed points are hyperbolic
We begin from the HamiltoniafiL9), and use the Fourier 3 gers, b yp

expansion of the periodic delta function to rewrite it in the (el!|pt|c),' or I;n_early unstable(.r?eutrally ;tabl): Eor 'the

following form:25 points with 7’ = M/W thg §tabll!ty prqpertles are Jqst inter-
changed. Unlike the original field line Hamiltoniafi9),

H(J7,9,t) which includes all the infinite modes generated by the per-
turbation and thus is nonintegrable, the reduced Hamiltonian

+ o0 m,
Me) ™ (28) is explicitly integrable. A phase portrait obtained from
=H + — 9—(ng+sN,)t]. (25 : S : .
o) +e 2 (bt) cog Mod = (N SNt (25) (28) would reveal, as expected, two dimerized island chains,

S=—x
We pick up from the expression above only the resonant terrrque to the exchange of stability occurring for different values

: L of the actionJ*. Expanding in the neighborhood of the
with frequencywo(J1) = wo(J>) =ng/mg, for it is respon- L ) . ) .
sible for the formation of the island chains to be analyzed.IOWer chain, i.e., taking7* =73, the island width agrees

Expanding the result in a Taylor series around either one o\f\”th the numerical resulis, whereas the other twin island

. P . would have widths considerably less than those numerically
the points7* =7, 1=1, 2, and dropping the constant terms, observed. If we expand instead aroufid® =7, , the agree-

we obtain . )
ment now is for the upper chain.
1 dwg ) Besides predicting the widths of each dimerized island,
H=wo(T)AT+ 2d7 (A7) we can use the reduced Hamiltoni&@8) to make an estima-
J=T tion of the critical value of the limiter current necessary to
d?wq 3 re\mo reconnection. Remember, from Fig. 5, that the critical cur-
642 (AJ)°+e b, cogmyd—not), rent (1) is such that the width of one of the islands is equal
= to the distance between the elliptic point of this island and
where the corresponding hyperbolic point of the other dimerized
AJ=T— T*. (26) island. On applying the invariar{28), it turns out that the

) ] S ) width of an islandx=(AJ ) max, 1S @ real and positive root
This expression can be further simplified by making ags the equation

canonical transformation to new action-angle variables
(J,9') which eliminates the explicit time dependence, ; 3M M

——_x2 — =
which can be done through the generating function 2 WX +6 W 0. (32)
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Let us assume that such a parameter exists. Rewriting the 3.0 s
perturbation amplitude as= (K., where 06<{<1 is a tun-
able parameter, anid.=M?3/(12W?), there results
M b+
W’Z C‘”( 3
in which ¢=cos }(1—27).
Equatingx to the distancéJ; — J5| between the elliptic
and hyperbolic points of different chains we obtain a tran-
scendental equation, the numerical solution of which gives e -0
threshold for{ and, from(29), critical current for reconnec-
tion. In particular, for the same parameters used to plot the o5 & .
numerical Poincarenaps of the previous section, the critical
I'y/1, for reconnection is estimated to lie between 1.07% and ‘ ‘ .
1.14%, which compares well to the numerical one, namely, g 1a7 &4 471 G:8
1.15%[see Fig. 8)].

1, (33

1
=3

J(10%)

3.00
V. TRANSPORT BARRIER

The formation of dimerized island chains when a reso-
nant external perturbation acts on a tokamak equilibrium
with reversed shear has a profound effect on the transpor
properties of chaotic field lines. In order to generate the lat-—
ter, the field line system has to be nonintegrable, which is§
provided by the explicity dependence of the limiter field.

For limiter perturbations acting on an equilibrium with a 1.00
monotonic safety factor, the properties of the related chaotic
region have been studiéd®> KAM theory and global sto- 0.50
chasticity criteria allow us to determine the onset of large-
scale chaotic behavior, as well as the size of the chaotic | . : ‘ :
region, also permitting us to investigate field line diffusion. 0 ¢ 157 3.14 4.7 6.28

In the case of a reversed shear equilibrium, we also ex-
pect the formation of a peripheric chaotic region, but islandriG. 7. Poincarenaps for the ergodic limiter mapping, for a limiter current
reconnection influences field line diffusivity, as illustrated by !n/1,=5.58% and equilibria witt{a) =0 (monotonic profilg and (b) 8
Figs. 7a) and 7b), showing phase portraits of situations #0 (nonmonotonic profile, with reversed shedn both cases we choose

. . . . q(a)=4.0.
without and with reversed shear, respectively, and a high
limiter current. The differences in the observed concentration
of orbit points in the chaotic regions suggest that there hagnharacterized by Gaussian transport, for whick 1, such
been formed a transport barrier which creates an obstacle tat a diffusion coefficient can be defined B¢
field line diffusion in the chaotic region, since chaotic field =lim,_..(1/2n)¢2.°
lines near islands’ separatrices are trapped for a finite time-  Figure 8a) shows the time evolution of the average
span in this barrier before escaping. square deviation of chaotic field lines with a high limiter

Inorder to verify numerically this observation, we have cyrrent (,/1,=5,56%), long after the reconnection occurs.
analyzed field line diffusivity by taking a large numbdep of  Two sets of initial conditions were taken in two different
initial conditions uniformly spread along the chaotic region,regions:j0i=0.013, andJp =0.025 for 0<®;<2m. One

for a constant7 and a large number of poloidal anglég, region is in the area occupied by the small dimerized islands

=2mi/Ny, withi=1,2,..,N,y. The mean size of the radial ;s pefore the bifurcation of their fixed pointewer curve
excursions a field line undergo in the chaotic region can b Fig. 8. The other region is outside the surviving dimer-

quantified by the average quadratic deviation of the actiorilzed islandgupper curve in Fig. B In both cases, the overall

variable behavior is similar for the first ten map iterations? in-
1 No creases in a superdiffusive wawith u between 1.6 and
a2=((8T))i =N—ﬂ21 (Tni— Toi)?, (34  1.8). After that, for the next 100 iterations, the outside region

shows an almost diffusive expansiop<0.9), while the
which, under fairly general assumptions, goes asymptoticallynternal region is still superdiffusive~2.2). The quadratic
with the discrete time as a power-lan*.>* Anomalous deviation tends to stabilize, yet with some rippling, for the
transport is characterized by#1, which we call sub- subsequent map iterations.
(supen diffusive if w<(>)1. A uniformly chaotic region is The non-Gaussian nature of the transport regimes shown
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3.0 T

107°

107°

J(10%)

1 10 100 1000 10000

(b) 1

J(10%)

N | ' 1 ' | ' | '
-0 200 400 n 600 800 1000

FIG. 8. (a) Average quadratic deviation wit=3.0, y=1.0, limiter cur-
rentsl,/1,=5.56%, and initial conditions centered gh=0.013 (lower
curve and 0.025upper curve (b) Fraction of lost field lines for the same
parameters anbly=10 000. The initial conditions were picked up from the
boxes namea, b, andc of Fig. 7(b).

0.0 1 Il Il
0 1.57 3.14 4.71 6.28

o
in Fig. 8@ can be understood by two basic reasons. First,

the superdiffusive explosion for small times is explained byF!G: 9- Image of a line of TVinitial conditions after() 300 and(b) 1000
the existence, within the chaotic region, of “escape Chan_lteratlons of the ergodic limiter map, willh=5.58% of the plasma current.
nels,” through which field lines run away very fast and even-
tually collide with the tokamak wall. These channels result
from the homoclinic tangle of invariant manifolds stemming region between the islands. In the cas@0ive have verified
from hyperbolic fixed points embedded in the chaotican exponential dependence for the number of remaining field
region®® Second, the apparent saturationaﬁ‘ is due to a lines, but without noticeable decay for the caseand c,
trapping effect on the field lines caused by the existence oforresponding to initial conditions placed in the two boxes
undestructed periodic islands embedded in the chaotic rewithin the transport barrier. We have considered a large num-
gion. A chaotic field line that approaches the remnant of arber of toroidal turns, but we plot in Fig.(l® only a small
island would stay around it for a given time before enteringnumber of them, compatible with the typical duration of a
in the neighborhood of another island, and so (tsticki- tokamak discharge.
ness” of trajectories=® Field line diffusion in the peripheric chaotic region
Since the chaotic region produced by an ergodic limitefformed by a limiter is not uniform, and it strongly influenced
is supposed to reach the tokamak wall, virtually all chaoticby the invariant manifolds belonging to the unstable fixed
field lines eventually hit the wall. In this case we stop thepoints embedded in the chaotic region. Invariant manifolds
map iterations and consider the field line as being 8t.  are sets of points whose forward and/or backward iterations
The slower the field line decay is, the most effective turns tdbelong to the same set. For stalilmstablé manifolds, for-
be the diffusion barrier created in the region immediatelyward (backward iterates converge, asgoes to infinity, to a
above the dimerized island. In Fig(t8 we plot the number hyperbolic fixed poinf® The chaotic region itself results
of the remaining field lines aftem map iterations, for three from an infinite number of intersections between manifolds
sets of initial conditions picked up from the boxes drawn inbelonging to different unstable fixed poiritsloreover, em-
Fig. 7(b). Box a was chosen from a region outside the trans-bedded in these chaotic layers, we found many small higher-
port barrier, while box» was within the transport barrier, as order islands, and field lines stick temporarily to the region
well as the third boxc), which was chosen inside the chaotic around them. Figure 9 illustrates this fact, depicting the for-
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FIG. 10. (@) Unstable manifolds of the hyperbolic point, as shown by the

Poincaremap withl, /1 p="5.58%.(b) and(c) are magnifications of selected
portions of the figure.
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2.20

1.20

2.83

FIG. 11. (8 Magnification of a trapping region in the Poincarep with
Ih/1,=4.75% around a hyperbolic point of the lower chdin); zoom of the
rectangle shown ifa) depicting successive iteratiofissing circles, squares,
and trianglesof one trapped orbit before it escapes. Both figures exhibit the
crossings between stable and unstable manifolds.

ded in the chaotic layer near the shearless region.

Figure 9 reveals two trapping regions structured around
hyperbolic fixed points with unequal widths. The most pro-
nounced trapping region is related to the hyperbolic points of
the lower dimerized chain. This can be understood in terms
of the crossings of the invariant manifolds, as can be ob-
served in Fig. 1(). The crossings related to the lower chain
[Fig. 10b)] fill up a larger area, compared with the crossings
area for the upper chaifFig. 10c)]. This trapping effect
persists even after the bifurcation, as one can see by compar-
ing Figs. 4a) and 4b), hence, this effect is quite robust for
increasing perturbing resonance amplitude, in agreement
with the experimental resulfs?

The trapping effect is more effective in the chaotic re-
gion of the Poincaranap around the hyperbolic point. In
order to show that, we present in Fig.(&la magnification
of this region forl,/1,,=4.75%, together with the manifold
crossings. In Fig. 1b) we show an iteration sequence of a
temporarily trapped orbit before it leaves the mentioned cha-
otic region. Points marked as circles in Fig(d)lappear in

ward images, under the ergodic limiter map, of a line offirst place, and then squares, followed by triangles. Hence,
initial conditions after 300 and 1000 iterations, respectivelythis orbit follows successive layers while drifting slowly

Most of the orbit points follows approximately the invariant from one layer to another. The slow motion is mainly deter-
manifolds stemming from the unstable fixed points embedmined by the manifold crossings. Thus, after staying for a
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large number of iterations in the region bounded by the can- 1 o,
tori around the hyperbolic point, the trapped orbit finally I(re,0)= (r )f

goes outwards leaving the low-shear barrier. This process has atre) Jo
been analyzed also for other conservative niaps:° r\21Y2 o de
Hence, our transport barrier is only partially effective to 2[1—4<R—6) } f

Ba(re.6,)
Bé(rtaet)

r
hampers field line diffusion, since it exists due to the sticki- ° 1—2—t,cose
ness effect of the magnetic island boundaries on chaotic field Ro
lines and not due to a limited chaotic region bounded by an 1 siné,
undestructed magnetic surface. This field line stickiness is =2arctan~—|——— (A2)
: : . Q(ry) |\ 1+ cosé,
effective, however, for a timescale much larger than the typi-
cal tokamak discharge duration. wheredes=Rjr drd6@® and
ro\ 12 ro\ 12
VI. CONCLUSIONS Q(rt):(l_z_t,) 1+2_t,) . A3)
RO RO

In this paper we have used an analytically obtained field
line map to investigate the effects of an ergodic magneti .
limiter orr)1 the magngtic field line structure whigh results%rom?Ne fem?’k that7(r,)=0 fo_r anyr=0. q(r,) IS the _safety
using a reversed magnetic shear. The main result is the Crée__lctor, given by(12), and with a nonmc_motqmc profile, pro-
ation of an outer chaotic layer which traps the field Iines.v'ded we choose plasma curr_ent profllgs e .

This layer works like an effective transport barrier, with re- . Wwith help of these canc_>mca||y coruuga_te variables, we
spect to the typical plasma duration. The trapping is moré"’rlte the perturbation term in the Hamiltonigh9) as

effective around the shearless plasma. It should be stressed 2m

that the barrier could only be observed due to the non- _ i’ 0,(7.9) = not

monotonic character of the safety factor, when combined H(J.9.1)= 2,0 Ha [ri()Je!m 427000, (A4)
with the effect of an ergodic magnetic limiter. This barrier is

created from a small chaotic region, due to the localizedvhere the coefficients are
action of the ergodic limiter, and results basically from the

properties of field line trajectories in the vicinity of separa- FAm
trices of islands bordering the chaotic region. Hence, it turns  H . (r,) = —Jm,_mo(mo)\)(b—t) . (A5)
out that this transport barrier is somewhat different from that t
considered in Ref. 12, where the barrier arises from a large
chaotic region. Finally, previous works on the formation of
transport barriers from reversed shear profiles have focusd
on internal modes as the sources of nonintegrability leading
to field line chaos. Here, on the other hand, the chaotic re-
gion results from an external devi¢the ergodic limitey in
such a way we could reproduce and perhaps control condi-
tions leading to plasma instability in tokamak dischargesyyith Fourier coefficients given by
which would lead to a better understanding of the conditions

’

The Fourier expansion of the perturbation Hamiltonian
4 the angle variables furnishes

2my

le,a,t):ngo HE (7)€ (M=o, (AB)

under which tokamak confinement can be substantially im- 2mg

proved. H: ()= >, Ho [re( D 1Smm (D), (A7)
m'=0
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APPENDIX: EXPLICIT FORM OF THE FIELD LINE n=0 C2(J)
MAPPING FOR AN ERGODIC LIMITER
with
Under the restrictiom,/Ry<<1/2, as discussed in Sec. I,
we introduce action-angle variables, which are related to the (D=1 1 (A9)
spatial coordinates b ! Q[r(N]’
. 1 fB g 1{1 (1 4rt2)1/2} .
)= p52n_ o-dos=|l-| 17407 '
27R'§B 4 R c =14+ —, Al10
0T 0 (Al) 2(\7) Q[I’t(j)] ( )
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1 if m=0 and n=0,
m’ if m=1 and n=0 or n=1,
ap(mm’)= m+m’—n—1)! All
nl ) ( . ) m>1 and nsm’, (AL
(m=n)!(m’"—n)!n!
0 if m>1 and n>m'.

The functionsf(7,9,t) and g(7,9,t), appearing in the map Eq&20)—(22), are obtained by differentiation ¢fA6) with

respect tod and 7, respectively.
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