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Reversed magnetic shear configurations in tokamaks reduce substantially particle diffusivity and
improve plasma confinement due to the formation of a transport barrier, as a result of magnetic field
line reconnection and bifurcation. The latter are caused by the resonant perturbation of an ergodic
limiter on a tokamak with reversed magnetic shear, which creates a region with chaotic field lines
in the vicinity of the dimerized island chains. An analytically derived nontwist map for field lines
is used to describe the formation of a transport barrier, manifested in the decrease of field line
diffusion rate. This barrier appears due to the chaotic field line trapping near the reconnection layer
that survives the bifurcation. ©2004 American Institute of Physics.@DOI: 10.1063/1.1630318#

I. INTRODUCTION

The recently discovered fact that a negative magnetic
shear can enhance substantially plasma confinement in toka-
maks has started an intensive investigation of such
configurations.1–3 A negative magnetic shear for some por-
tion of the plasma column implies a nonmonotonic radial
profile for the safety factor which, on its hand, can be pro-
duced by a nonpeaked plasma current density. Since induc-
tive current drive is most likely to generate peaked current
profiles, nonpeaked ones are possible by noninductive meth-
ods like neutral beam injection. The combination of heating
and current drive by such method has been proved to gener-
ate configurations with enhanced reversed shear~ERS! in the
plasma startup phase, with highly peaked density and pres-
sure profiles.1–3

Among the advantages of producing plasma discharges
with reversed magnetic shear we cite the following ones:~i!
a high fraction of the self-sustained bootstrap current aligned
with an optimized current density profile;~ii ! certain micro-
instabilities responsible for anomalous electron transport can
be stabilized, as well as some magnetohydrodynamical
~MHD! modes~ballooning and resistive tearing!; and ~iii ! it
has been observed in transitions from low (L) to high (H)
mode discharges.4 There has been observed a reduction of
the plasma transport in the central region of the plasma col-
umn, through the formation of a transport barrier, or a region
where both the electron and ion diffusivities are greatly re-
duced around the shearless region.

A theoretical interpretation for the formation of a trans-
port barrier can be built upon a configuration with reversed
magnetic shear perturbed by internal resonant magnetic per-
turbation as well as by external helical windings that have
been used to control plasma oscillations.5 The field line

structure produced by such a configuration is suitably de-
scribed by a nontwist area-preserving map, in which a single
perturbation mode can excite the formation of twin dimer-
ized island chains. Properties of nontwist maps have been
extensively studied, from the mathematical and applied
points of view.6–8 Nontwist maps violate the nondegeneracy
condition for the Kolmogorov–Arnold–Moser~KAM ! theo-
rem to be valid, so that many well-known results of canoni-
cal mappings no longer apply to them.9 For example, it may
happen that two neighbor island chains approach each other
without being destroyed through the breakup of KAM
curves. Detailed studies have been carried out in order to
understand the transition to chaos in nontwist maps, involv-
ing a combination of analytical and numerical methods.6–8

In fact, nontwist maps have been proposed to investigate
the effect of reversed shear in tokamak confinement.10,11The
map we have used in this paper, on the other hand, has pa-
rameters directly related to physical quantities characterizing
tokamak equilibrium and perturbation fields. Hence, our map
may be used in a conceptual project of such an experiment.
Moreover, we can vary the perturbation amplitude in order to
study how it affects plasma equilibria experimentally ob-
served in tokamaks.

The transport barrier of interest to plasma confinement
arises from a combination of typical features of nontwist
maps: reconnection and bifurcation, occurring in the re-
versed shear region. Reconnection in a chaotic region of a
nontwist map has been described by Corso and Rizzato,12

who showed that diffusion increases after a smooth manifold
reconnection in a chaotic regime. This provides the frame-
work to study a transport barrier in reversed shear configu-
rations perturbed by nonintegrable magnetic fields which can
generate field line chaos. Analyses of the formation of a bar-
rier transport in reversed shear configurations usually take
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into account the effect of internal instabilities that ergodize
some portion of the plasma column.13,14 In this paper, how-
ever. We shall intentionally create an outer chaotic layer of
magnetic field lines. We have superimposed to the tokamak
equilibrium field the magnetic field generated by an ergodic
magnetic limiter~EML!, which consists of slices of external
helical conductors with a suitable pitch.15,16 It is generally
thought that this cold boundary layer is able to spread heat
and particle loadings on the tokamak inner wall, so reducing
plasma contamination by impurities released from the vessel
wall by sputtering processes, for example.16,17The properties
of such an external device have been extensively studied
using field line maps since the seminal work of Martin and
Taylor.18 Such ergodic limiters have been used to control
plasma instabilities and improve plasma parameters in some
tokamaks, as in TEXTOR,19 TEXT ~Texas Experimental
Tokamak!,20 TORE-SUPRA,21 and TBR ~Brazilian
Tokamak!.22

We use an analytical approach to this problem by con-
sidering a convenient coordinate system in which the Grad–
Schlüter–Shafranov equation can be solved in an approxi-
mated way.23,24Moreover, a perturbation magnetic field from
an ergodic magnetic limiter is chosen in such a way that the
integrability of the field line configuration is broken and La-
grangian chaos is possible. This enables us to analytically
derive a Poincare´ map.25 The area-preserving nature of this
map comes from neglecting of any dissipative effects in the
plasma, so that the mentioned field line reconnection is not
due to a resistive layer. This map can be used to numerically
evidence the formation of a transport barrier due to a
reconnection–bifurcation mechanism, and its effect on the
plasma transport can be inferred from the study of field line
diffusion by using the obtained map. The transport barrier we
obtain is effective for a limited time span, since the chaotic
region generated by a limiter reaches the tokamak wall, such
that field lines are eventually lost due to radial diffusion and
ultimate collision with the wall. However, as a consequence
of island reconnection and bifurcation, field lines are effec-
tively trapped due to the stickiness effect of the magnetic
islands, provided the duration of a discharge is less than the
average escape time.

The rest of this paper is organized as follows: in Sec. II
we present the model fields for the reversed shear equilib-
rium and the ergodic limiter perturbation, and an analytically
obtained field line mapping. Section III analyzes the recon-
nection and bifurcation processes involved when the limiter
current is increased past critical values. Section IV presents
an analytical treatment for the widths of the dimerized island
chains, in order to estimate the threshold perturbation for
field line reconnection. The transport barrier, which appears
as the result of the reconnection, and the underlying mani-
fold structure, are treated in Sec. V. Our conclusions are left
to the last section.

II. EQUILIBRIUM AND PERTURBING MAGNETIC
FIELDS

Many coordinate systems have been used to describe
magnetic field line geometry in plasma confinement systems.

One of them is the toroidal coordinates~j,v,F!,26 defined in
terms of the circular–cylindrical coordinates (R,w,Z) by

R5
R08 sinhj

coshj2cosv
, Z5

R08 sinv

coshj2cosv
, ~1!

whereR08 is the major radius of the circular center~i.e., the
magnetic axis radius!. In this coordinate systemv has the
meaning of a poloidal angle, andj is related to the distance
from the circular center.

Throughout this paper, however, we will work with the
following non-orthogonal coordinates: (r t ,u t ,w t), given
by24

r t5
R08

coshj2cosv
, u t5p2v, w t5F, ~2!

which are related to the local~or pseudotoroidal! coordinates
(r ,u,w) by the following relations:

r t5r F12
r

R08
cosu1S r

2R08
D 2G1/2

, ~3!

sinu t5sinuF12
r

R08
cosu1S r

2R08
D 2G21/2

, ~4!

such that, in the large aspect ratio limit (r t!R08), r t andu t

becomer andu, respectively. Note that the origins of these
two coordinate systems are the magnetic axis. Finally, the
relation of the magnetic axis radiusR08 with the approximate
radiusR̄ is

R̄25R08
2F122

r t

R08
cosu t2S r t

R08
D 2

sin2 u tG . ~5!

The tokamak equilibrium magnetic fieldB0 is obtained
from an approximated analytical solution of the Grad–
Schlüter–Shafranov equation in these coordinates:24

Cp~r t ,u t!5Cp0~r t!1dCp~r t ,u t!, ~6!

where

dCp0~r t!

drt
5

m0I pR08

2pr t
F12S 11b8

r t
2

a2D S 12
r t

2

a2D g11G , ~7!

with a as the plasma radius, determined by a material limiter,
b8[b(g11)/(b1g12), whereb and g are positive pa-
rameters, andudCp(r t ,u t)u!uCp0(r t)u.

In the large aspect ratio limit, and supposing that in low-
est order the equilibrium flux functionCp(r t) does not de-
pend onu t , the Grad–Schlu¨ter–Shafranov equation reduces
to an equilibrium equation similar to that obtained in a cy-
lindrical system, but now in terms ofr t . This has been our
main motivation to work with the (r t ,u t ,w t) coordinate sys-
tem. The intersections of the flux surfacesCp(r t)
5constant with a toroidal plane are not concentric circles but
rather present a Shafranov shift toward the exterior equato-
rial region. Hence, actual equilibrium flux surfaces can be
approximated byr t5constant coordinate surfaces. In the
common range of tokamak parameters, as those considered
in this paper, the aspect ratio is always large enough to en-
sure that ther t5constant surfaces do not overlap.
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Moreover, from Eq.~5!, there results that, in order to
avoid imaginary values of theR̄ coordinate, the inverse local
aspect ratior t /R08 should not exceed 1/2. In fact, this condi-
tion is always fulfilled with the parameter values used in this
paper, if the inverse aspect ratio at the plasma edge satisfies
a/R08,1/2, as is commonly find in present tokamaks. How-
ever, it must be mentioned that for other magnetic configu-
rations, like compact tori or spheromaks, this condition
might not be fulfilled for all points in the plasma and ther t

5constant surfaces may overlap, spoiling their use as good
equilibrium flux surfaces.

We have used a toroidal current density profile with a
central hole, given by27

J3~r t!5
I pR08

pa2

~g12!~g11!

b1g12 S 11b
r t

2

a2D S 12
r t

2

a2D g

, ~8!

whereI p is the total plasma current.
In this MHD equilibrium, the contravariant components

of the equilibrium field are given by

B0
152

1

R08r t

]Cp

]u t
50, ~9!

B0
2~r t!5

1

R08r t

]Cp

]r t

5
m0I p

2pr t
2 F12S 11b8

r t
2

a2D S 12
r t

2

a2D g11G , ~10!

B0
3~r t ,u t!52

m0I

R̄2
5

m0I e

2pR08
2 F122

r t

R08
cosu tG21

, ~11!

where I e'2I /2p is the total current in the toroidal field
coils in the large aspect ratio approximation. There results
that the safety factor of the magnetic surfaces,

q~r t!5
1

2p E
0

2p B0
3~r t ,u t!

B0
2~r t!

du t , ~12!

has a nonmonotonic profile, which accounts for describing
the reversed shear effect. For some values of the safety factor
there are two magnetic surfaces with different radii within
the plasma column. Such nonmonotonic profiles can trigger
double tearing mode instabilities;14 and have been observed
in initial stages of tokamak discharges,13 as well as in tran-
sitions fromL to H mode discharges.3

In the numerical simulations to be described in this pa-
per, we normalize the minor tokamak radiusbt , and the
plasma radiusa to the major~magnetic axis! radiusR08 , such
that a/R0850.25 andb/R0850.33.25 We also chooseq(a)
54.04 andq(0)53.50, corresponding to the safety factors
at the plasma edge and magnetic axis, respectively, as ob-
served in typical discharges with negative magnetic shear,
for which b53.0 andg51.0. Figure 1~a! shows some equi-
librium flux surfaces for this set of parameters, and Fig. 1~b!
depicts the corresponding radial profile of the safety factor
~12! ~solid line!. For comparison, a usual monotonic radial
profile for q(0)51.25 and the same value ofq(a)54.04 is
also shown in Fig. 1~b!.

The design for the ergodic magnetic limiter to be con-
sidered in this paper is essentially the same as in Ref. 25, and
consists ofNr current rings of lengthl located symmetri-
cally along the toroidal direction of the tokamak~Fig. 2!.
These current rings may be regarded as slices of a pair of
external helical windings located atr t5bt , conducting a cur-
rent I h in opposite senses for adjacent conductors. The role
of these windings is to induce a resonant perturbation in the
tokamak, and to achieve this effect we must choose a helical
winding with the same pitch as the field lines in the rational
surface we want to perturb. This has been carried out by
choosing the following winding law25 ut5m0u t2n0w t

5constant. In this paper we will consider an ergodic limiter
consisting of Nr54 rings with mode numbers (m0 ,n0)
5(3,1) each, carrying a currentI h .

The magnetic fieldBL produced by the resonant helical
winding, from which we build the EML rings, is obtained by
neglecting the plasma response and the penetration time
through the tokamak wall. In this case,BL is assumed to be
a vacuum field, such that it comes from solving Laplace’s

FIG. 1. ~a! Flux surfaces for a reversed shear equilibrium with parameters
b53.0 andg51.0; ~b! safety factor profile for equilibria withg51.0, b
53.0 ~solid line!, and g52.0, b50.0 ~dashed line!. The minor radius of
tokamak vessel is denoted byb.
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equation with proper boundary conditions at the tokamak
wall. We were able to obtain an approximated analytical so-
lution, such that, in lowest order, the only nonvanishing com-
ponent of the corresponding vector potential is25

AL3~r t ,u t ,w t!52
m0I hR08

p S r t

bt
D m0

cos~m0u t2n0w t!.

~13!

The model field to be used in this paper will be the superpo-
sition of the equilibrium and limiter fields:B5B01BL , with
the corresponding magnetic field line equations:

drt

dw t
52

1

r tBT
S 122

r t

R08
cosu tD ]

]u t
AL3~r t ,u t ,w t!, ~14!

du t

dw t
5

1

r tBT
S 122

r t

R08
cosu tD

3
]

]r t
@Cp0~r t!1AL3~r t ,u t ,w t!#, ~15!

whereBT is the toroidal magnetic field at the magnetic axis.
Since the equilibrium field is axisymmetric, we may set

the azimuthal angle,w t5t, as a time-like variable, and put
field line Eqs.~14! and ~15! in a Hamiltonian form,

dJ
dt

52
]H

]q
,

dq

dt
5

]H

]J , ~16!

where~J,q! are the action-angle variables of a Hamiltonian
H, which can be found in the Appendix@Eqs.~A1!–~A11!#.

The addition of the magnetic field produced by a reso-
nant helical winding characterized by Eq.~13! may be re-
garded as a Hamiltonian perturbation

H~J,q,t !5H0~J!1H1~J,q,t !, ~ uH1 /H0u!1! ~17!

5
1

BTR08
2 Cp0~J!1

1

BTR08
2 AL3~J,q,t !. ~18!

In order to include the effect of the finite lengthl of each
EML ring, which is typically a small fraction of the total
toroidal circumference 2pR08 , we model its effect as a se-
quence of delta-functions centered at each ring position:28

HL~J,q,t !5H0~J!1
l

R08
H1~J,q,t ! (

k52`

1`

dS t2k
2p

Nr
D ,

~19!

where theNr rings are symmetrically distributed in the tor-
oidal direction. This assumption is consistent with results
obtained using full numerical codes for generating the field
line map by directly computing the magnetic field of a finite-
sized limiter, and which point out that the limiter influence is
actually concentrated in a small region.19

We can derive, due to the impulsive perturbation, a stro-
boscopic map for field line dynamics, by definingJn andqn

as the action and angle variables just after thenth kick due to
a limiter ring at the toroidal positionswk52kp/Nr , with k
50,1,...,Nr21:29

Jn115Jn1e f ~Jn11 ,qn ,tn!, ~20!

qn115qn1
2p

Nrq~Jn11!
1eg~Jn11 ,qn ,tn!, ~21!

tn115tn1
2p

Nr
, ~22!

where

f ~J,q,t !52
]H1~J,q,t !

]q
, g~J,q,t !5

]H1~J,q,t !

]J ,

~23!

and the perturbation parameter is

e522S l

2pR08
D S I h

I D , ~24!

which is usually small, since in experiments we havel

!2pR08 andI h!I . A more detailed form of the above func-
tions can be found in the Appendix.

III. RECONNECTION AND BIFURCATION

The phase portraits generated by the ergodic limiter map
correspond, in the action-angle variables~J,q!, to a Poincare´
surface of section at fixedt5w50, where we plot a large
number of points corresponding to different initial conditions
spread over the radial extension of the toroidal chamber. In
Figs. 3~a! to 3~c! we show phase portraits, for different val-
ues of the limiter current, representatives of the situations to
be discussed in this section. Since we have chosen a limiter
with m053 pairs of current wires, its perturbing field

FIG. 2. Scheme and exploded view of an ergodic magnetic limiter.
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resonates with the equilibrium tokamak field and generates
chains of three magnetic islands. Since the safety factor ra-
dial profile is non-monotonic, forq53.0 there are two dis-
tinct radial locations at which there are such chains@see
Fig. 1~b!#.

As we approach the point at whichq(r ) is a minimum,
these island chains approach each other and eventually coa-
lesce into a single chain in a smooth fashion. This is possible
provided the two chains are arranged such that the order of
the fixed points is alternate for the chains—an elliptic point
of one has the same angular position of a hyperbolic point of
the other and vice versa@Fig. 3~a!#. Increasing the perturba-
tion current, field line reconnection occurs at a critical value
I h /I p51.15% @see Fig. 3~b!#. We will refer as the upper and
lower chains, those islands with higher and lower values of
the action at their centers, respectively. The topology of the
field lines is changed after reconnection: there appear new
open curves, or meanders, which are able to explore both
chains@Fig. 3~c!#. These curves are not preexistent in the set
of safety factor before the perturbation, and are born through
a mechanism described in detail~for general nontwist maps!
in Ref. 11.

As we increase the perturbation strengthe;I h the is-
lands become wider@Fig. 4~a!#. However, since the island
chains are no longer pendular in a reversed shear configura-
tion, for the ergodic limiter map is non-twist, the island

FIG. 3. Poincare´ maps for the ergodic limiter mapping, an equilibrium with
b53.0 andg51.0, and normalized limiter currentsI h /I p5(a) 0.86%,~b!
1.15%, and~c! 1.39%, respectively before, during, and after reconnection.

FIG. 4. Poincare´ maps for the ergodic limiter mapping, an equilibrium with
b53.0 andg51.0, and normalized limiter currentsI h /I p5(a) 5.56% and
~b! 5.81%, respectively, before and at the bifurcation.
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width does not necessarily grow with the perturbation
strength in a square-root way as it does in twist maps.9 More-
over, since we are dealing with a non-integrable system, we
also have a chaotic layer surrounding the island separatrices,
and whose width also increases withe. This effect is more
pronounced for the upper chain@Fig. 4~a!#.

We stress here that the reconnection process here de-
scribed is not due to small dissipative effects caused by a
resistive layer, but instead is a rigorously flux-preserving
process in which the number and the index of the fixed
points of a field line map remain the same, but with a new
arrangement for the map trajectories. When the perturbation
strength is further increased, the elliptic point first ap-
proaches a hyperbolic point in the lower dimerized chain
@Fig. 4~a!#. At I h /I p55.81% these points coalesce and dis-
appear through a saddle-center bifurcation@Fig. 4~b!#, leav-
ing only open trajectories for the upper chain.30

Figure 5 represents schematically the sequence of
events, as the perturbation strength is increased, from top to
bottom. Before the reconnection@Fig. 5~a!# there are two
distinct island chains, from which we call1 and2, the elliptic
and hyperbolic points of the upper chain;3 and 4 are the
elliptic and hyperbolic points of the lower chain, respec-
tively. We denote as5 and6 the lowest and highest points~in
terms of the action variable! of the upper and lower islands,
respectively. Exactly at the reconnection point, for which the
control parameterI h reaches a critical value (I h)R , both
chains are glued up@Fig. 5~b!#, so that the hyperbolic points
of the neighbor chains~2 and4! are joined by smooth lines.
As a consequence, the points belonging to the pairs marked
2–6 and 4–5 join together. After the reconnection occurs,
some of the closed curves surrounding the elliptic points1
and3 remain so, and open curves, or meanders, are created
@Fig. 5~c!#.31 The remaining closed curves are now bounded
by separatrices which self-intercept at the former points2
~for the upper chain!, and 4 ~for the lower chain!. As the
control parameter continues to increase, the points2–3 ap-
proach each other and coalesce at a second critical value

(I h)B , due to a saddle-center bifurcation@Fig. 5~d!#. Mean-
while, the other pair~1–4! survives the bifurcation, at least
for this perturbation strength.

In order to determine the critical perturbation amplitude
for reconnection and bifurcation, we have plotted in Fig. 6~a!
the values of the action corresponding to the points named1,
4, and5 in Fig. 5 versus the normalized perturbation current.
The solid and dashed lines were obtained from Eqs.~20!–
~22!, whereas the dotted line was obtained by using an ap-
proximated local Hamiltonian, to be presented in the next
section, while the squares correspond to values obtained
from Eqs.~20!–~22!. The occurrence of reconnection means
that the curves corresponding to the points4 and5 cross each
other, which happens for (I h)R /I p51.15%. Figure 6~b!
shows similar results for points1, 2, 3, and 4, where the
action values were obtained from Eqs.~20!–~22!. In this Fig.
6~b!, the bifurcation occurs when the curves corresponding
to the points 2 and 3 intercept each other, at (I h)B /I p

55.81%. These critical values are expected to modify as the

FIG. 5. Schematic figure showing dimerized island structure and fixed
points~a! before,~b! during, and~c! after reconnection, and~d! after bifur-
cation.

FIG. 6. ~a! Reconnection diagram showing the evolution of the fixed point
locations~in action space! with respect to the normalized limiter current;~b!
bifurcation diagram for the fixed point locations. In both diagrams, full and
dashed lines indicate stable and unstable fixed points, respectively.
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equilibrium parameters are likewise changed. We have veri-
fied that the ratio (I h)B /I p increases by a factor lying be-
tween 10% and 60%, when the safety factor at plasma edge
q(a) builds up from values around 4.0. In other words, it
becomes much more difficult to obtain reconnection, for
higherq(a), due to increasing separations of the dimerized
islands.

IV. LOCAL HAMILTONIAN DESCRIPTION
FOR DIMERIZED ISLANDS

The fact that the magnetic shear presents a reversal of
sign inside the plasma makes the field line map derived at the
end of the previous section a non-twist one. This means that
KAM theory does not apply, and some results concerning
formation and behavior of periodic islands cannot be used
directly. One of the noteworthy points is that the islands are
no longer of a pendular shape, like in the monotonic shear
case. Moreover, the Chirikov scenario for explaining chaos
as the overlapping of resonances is no longer valid, since the
island chains reconnect rather than merge their chaotic lay-
ers.

However, as long as we limit ourselves to a small per-
turbation amplitudes, we can analyze how islands’ widths
increase with the limiter current. This can be done by ex-
panding the field line Hamiltonian in the vicinity of the reso-
nant surfaces beyond the linear approximation, i.e., by taking
into account higher order terms due to the non-pendular na-
ture of the periodic islands. The result can be used to esti-
mate the critical perturbation amplitude necessary for field
line reconnection and, consequently, island dimerization.

We begin from the Hamiltonian~19!, and use the Fourier
expansion of the periodic delta function to rewrite it in the
following form:25

H~J,q,t !

5H0~J!1e (
s52`

1` S r t

bt
D m0

cos@m0q2~n01sNr !t#. ~25!

We pick up from the expression above only the resonant term
with frequencyv0(J1)5v0(J2)5n0 /m0 , for it is respon-
sible for the formation of the island chains to be analyzed.
Expanding the result in a Taylor series around either one of
the pointsJ* 5Ji , i 51, 2, and dropping the constant terms,
we obtain

H'v0~J* !DJ1
1

2

dv0

dJ U
J5J*

~DJ!2

1
1

6

d2v0

dJ 2 U
J5J*

~DJ!31eS r t

bt
D m0

cos~m0q2n0t !,

where

DJ5J2J* . ~26!

This expression can be further simplified by making a
canonical transformation to new action-angle variables
(J8,q8) which eliminates the explicit time dependence,
which can be done through the generating function

S~J8,q,t !5S q2
n0

m0
t DJ8, ~27!

leading to the autonomous Hamiltonian

H8~J8,q8!5
M

2
J822

W

3
J831K cos~m0q8!, ~28!

in which we have introduced the following abbreviations:

M ~J* ![
dv0

dJ U
J5J*

, W~J* ![
1

2

d2v0

dJ 2 U
J5J*

,

~29!

K~J* ![eS r t

bt
D m0

.

Notice that, ifW50, the Hamiltonian reduces to that of
a nonlinear pendulum, which is the standard procedure used
in secular perturbation theory to describe the phase-space
structure near a given resonance.9 Due to the nonpendular
character of the dimerized islands, however, we have to in-
clude a cubic term in the Taylor expansion, which turns to be
a better approximation. The Hamilton equations correspond-
ing to the quasipendular Hamiltonian~28! are written as

dJ
dt

5m0K sin~m0q8!, ~30!

dq8

dt
5J8~M2WJ8!. ~31!

The equilibrium points of the above two-dimensional
system of equations are (J8* 50,q85l p/m0) and (J8*
5M /W,q85l p/m0), with l 50, 1, 2, . . . . ForJ8* 50
and l even~odd! integers, these fixed points are hyperbolic
~elliptic!, or linearly unstable~neutrally stable!. For the
points withJ8* 5M /W the stability properties are just inter-
changed. Unlike the original field line Hamiltonian~19!,
which includes all the infinite modes generated by the per-
turbation and thus is nonintegrable, the reduced Hamiltonian
~28! is explicitly integrable. A phase portrait obtained from
~28! would reveal, as expected, two dimerized island chains,
due to the exchange of stability occurring for different values
of the actionJ8* . Expanding in the neighborhood of the
lower chain, i.e., takingJ8* 5J18 , the island width agrees
with the numerical results, whereas the other twin island
would have widths considerably less than those numerically
observed. If we expand instead aroundJ8* 5J28 , the agree-
ment now is for the upper chain.

Besides predicting the widths of each dimerized island,
we can use the reduced Hamiltonian~28! to make an estima-
tion of the critical value of the limiter current necessary to
reconnection. Remember, from Fig. 5, that the critical cur-
rent (I h)R is such that the width of one of the islands is equal
to the distance between the elliptic point of this island and
the corresponding hyperbolic point of the other dimerized
island. On applying the invariant~28!, it turns out that the
width of an island,x5(DJ8)max, is a real and positive root
of the equation

x32
3

2

M

W
x216

M

W
50. ~32!
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Let us assume that such a parameter exists. Rewriting the
perturbation amplitude asK5zKc , where 0,z,1 is a tun-
able parameter, andKc[M3/(12W2), there results

x5
1

2 UMWUU2 cosS f1p

3 D21U, ~33!

in which f5cos21(122z).
Equatingx to the distanceuJ182J28u between the elliptic

and hyperbolic points of different chains we obtain a tran-
scendental equation, the numerical solution of which gives a
threshold forz and, from~29!, critical current for reconnec-
tion. In particular, for the same parameters used to plot the
numerical Poincare´ maps of the previous section, the critical
I h /I p for reconnection is estimated to lie between 1.07% and
1.14%, which compares well to the numerical one, namely,
1.15%@see Fig. 3~b!#.

V. TRANSPORT BARRIER

The formation of dimerized island chains when a reso-
nant external perturbation acts on a tokamak equilibrium
with reversed shear has a profound effect on the transport
properties of chaotic field lines. In order to generate the lat-
ter, the field line system has to be nonintegrable, which is
provided by the explicitw dependence of the limiter field.
For limiter perturbations acting on an equilibrium with a
monotonic safety factor, the properties of the related chaotic
region have been studied.25,32 KAM theory and global sto-
chasticity criteria allow us to determine the onset of large-
scale chaotic behavior, as well as the size of the chaotic
region, also permitting us to investigate field line diffusion.33

In the case of a reversed shear equilibrium, we also ex-
pect the formation of a peripheric chaotic region, but island
reconnection influences field line diffusivity, as illustrated by
Figs. 7~a! and 7~b!, showing phase portraits of situations
without and with reversed shear, respectively, and a high
limiter current. The differences in the observed concentration
of orbit points in the chaotic regions suggest that there has
been formed a transport barrier which creates an obstacle to
field line diffusion in the chaotic region, since chaotic field
lines near islands’ separatrices are trapped for a finite time-
span in this barrier before escaping.

In order to verify numerically this observation, we have
analyzed field line diffusivity by taking a large numberNq of
initial conditions uniformly spread along the chaotic region,
for a constantJ and a large number of poloidal anglesq0i

52p i /Nq , with i 51,2,...,Nq . The mean size of the radial
excursions a field line undergo in the chaotic region can be
quantified by the average quadratic deviation of the action
variable

sn
2[^~dJn!2& i5

1

Nq
(
i 51

Nq

~Jni2J0i !
2, ~34!

which, under fairly general assumptions, goes asymptotically
with the discrete time as a power-lawnm.34 Anomalous
transport is characterized bymÞ1, which we call sub-
~super-! diffusive if m,(.)1. A uniformly chaotic region is

characterized by Gaussian transport, for whichm51, such
that a diffusion coefficient can be defined asDLF

5 limn→`(1/2n)sn
2.9

Figure 8~a! shows the time evolution of the average
square deviation of chaotic field lines with a high limiter
current (I h /I p55,56%), long after the reconnection occurs.
Two sets of initial conditions were taken in two different
regions:J0i

50.013, andJ0i
50.025 for 0<q i<2p. One

region is in the area occupied by the small dimerized islands
just before the bifurcation of their fixed points~lower curve
in Fig. 8!. The other region is outside the surviving dimer-
ized islands~upper curve in Fig. 8!. In both cases, the overall
behavior is similar for the first ten map iterations:sn

2 in-
creases in a superdiffusive way~with m between 1.6 and
1.8!. After that, for the next 100 iterations, the outside region
shows an almost diffusive expansion (m'0.9), while the
internal region is still superdiffusive (m'2.2). The quadratic
deviation tends to stabilize, yet with some rippling, for the
subsequent map iterations.

The non-Gaussian nature of the transport regimes shown

FIG. 7. Poincare´ maps for the ergodic limiter mapping, for a limiter current
I h /I p55.58% and equilibria with~a! b50 ~monotonic profile! and ~b! b
Þ0 ~nonmonotonic profile, with reversed shear!. In both cases we choose
q(a)'4.0.
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in Fig. 8~a! can be understood by two basic reasons. First,
the superdiffusive explosion for small times is explained by
the existence, within the chaotic region, of ‘‘escape chan-
nels,’’ through which field lines run away very fast and even-
tually collide with the tokamak wall. These channels result
from the homoclinic tangle of invariant manifolds stemming
from hyperbolic fixed points embedded in the chaotic
region.35 Second, the apparent saturation ofsn

2 is due to a
trapping effect on the field lines caused by the existence of
undestructed periodic islands embedded in the chaotic re-
gion. A chaotic field line that approaches the remnant of an
island would stay around it for a given time before entering
in the neighborhood of another island, and so on~‘‘sticki-
ness’’ of trajectories!.36

Since the chaotic region produced by an ergodic limiter
is supposed to reach the tokamak wall, virtually all chaotic
field lines eventually hit the wall. In this case we stop the
map iterations and consider the field line as being lost.33,37

The slower the field line decay is, the most effective turns to
be the diffusion barrier created in the region immediately
above the dimerized island. In Fig. 8~b! we plot the number
of the remaining field lines aftern map iterations, for three
sets of initial conditions picked up from the boxes drawn in
Fig. 7~b!. Box a was chosen from a region outside the trans-
port barrier, while boxb was within the transport barrier, as
well as the third box~c!, which was chosen inside the chaotic

region between the islands. In the case ofa, we have verified
an exponential dependence for the number of remaining field
lines, but without noticeable decay for the casesb and c,
corresponding to initial conditions placed in the two boxes
within the transport barrier. We have considered a large num-
ber of toroidal turns, but we plot in Fig. 8~b! only a small
number of them, compatible with the typical duration of a
tokamak discharge.

Field line diffusion in the peripheric chaotic region
formed by a limiter is not uniform, and it strongly influenced
by the invariant manifolds belonging to the unstable fixed
points embedded in the chaotic region. Invariant manifolds
are sets of points whose forward and/or backward iterations
belong to the same set. For stable~unstable! manifolds, for-
ward ~backward! iterates converge, asn goes to infinity, to a
hyperbolic fixed point.38 The chaotic region itself results
from an infinite number of intersections between manifolds
belonging to different unstable fixed points.9 Moreover, em-
bedded in these chaotic layers, we found many small higher-
order islands, and field lines stick temporarily to the region
around them. Figure 9 illustrates this fact, depicting the for-

FIG. 8. ~a! Average quadratic deviation withb53.0, g51.0, limiter cur-
rents I h /I p55.56%, and initial conditions centered atJ050.013 ~lower
curve! and 0.025~upper curve!. ~b! Fraction of lost field lines for the same
parameters andN0510 000. The initial conditions were picked up from the
boxes nameda, b, andc of Fig. 7~b!.

FIG. 9. Image of a line of 104 initial conditions after~a! 300 and~b! 1000
iterations of the ergodic limiter map, withI h55.58% of the plasma current.
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ward images, under the ergodic limiter map, of a line of
initial conditions after 300 and 1000 iterations, respectively.
Most of the orbit points follows approximately the invariant
manifolds stemming from the unstable fixed points embed-

ded in the chaotic layer near the shearless region.
Figure 9 reveals two trapping regions structured around

hyperbolic fixed points with unequal widths. The most pro-
nounced trapping region is related to the hyperbolic points of
the lower dimerized chain. This can be understood in terms
of the crossings of the invariant manifolds, as can be ob-
served in Fig. 10~a!. The crossings related to the lower chain
@Fig. 10~b!# fill up a larger area, compared with the crossings
area for the upper chain@Fig. 10~c!#. This trapping effect
persists even after the bifurcation, as one can see by compar-
ing Figs. 4~a! and 4~b!, hence, this effect is quite robust for
increasing perturbing resonance amplitude, in agreement
with the experimental results.1–4

The trapping effect is more effective in the chaotic re-
gion of the Poincare´ map around the hyperbolic point. In
order to show that, we present in Fig. 11~a! a magnification
of this region forI h /I p54.75%, together with the manifold
crossings. In Fig. 11~b! we show an iteration sequence of a
temporarily trapped orbit before it leaves the mentioned cha-
otic region. Points marked as circles in Fig. 11~b! appear in
first place, and then squares, followed by triangles. Hence,
this orbit follows successive layers while drifting slowly
from one layer to another. The slow motion is mainly deter-
mined by the manifold crossings. Thus, after staying for a

FIG. 10. ~a! Unstable manifolds of the hyperbolic point, as shown by the
Poincare´ map withI h /I p55.58%.~b! and~c! are magnifications of selected
portions of the figure.

FIG. 11. ~a! Magnification of a trapping region in the Poincare´ map with
I h /I p54.75% around a hyperbolic point of the lower chain;~b! zoom of the
rectangle shown in~a! depicting successive iterations~using circles, squares,
and triangles! of one trapped orbit before it escapes. Both figures exhibit the
crossings between stable and unstable manifolds.
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large number of iterations in the region bounded by the can-
tori around the hyperbolic point, the trapped orbit finally
goes outwards leaving the low-shear barrier. This process has
been analyzed also for other conservative maps.36,39,40

Hence, our transport barrier is only partially effective to
hampers field line diffusion, since it exists due to the sticki-
ness effect of the magnetic island boundaries on chaotic field
lines and not due to a limited chaotic region bounded by an
undestructed magnetic surface. This field line stickiness is
effective, however, for a timescale much larger than the typi-
cal tokamak discharge duration.

VI. CONCLUSIONS

In this paper we have used an analytically obtained field
line map to investigate the effects of an ergodic magnetic
limiter on the magnetic field line structure which results from
using a reversed magnetic shear. The main result is the cre-
ation of an outer chaotic layer which traps the field lines.
This layer works like an effective transport barrier, with re-
spect to the typical plasma duration. The trapping is more
effective around the shearless plasma. It should be stressed
that the barrier could only be observed due to the non-
monotonic character of the safety factor, when combined
with the effect of an ergodic magnetic limiter. This barrier is
created from a small chaotic region, due to the localized
action of the ergodic limiter, and results basically from the
properties of field line trajectories in the vicinity of separa-
trices of islands bordering the chaotic region. Hence, it turns
out that this transport barrier is somewhat different from that
considered in Ref. 12, where the barrier arises from a large
chaotic region. Finally, previous works on the formation of
transport barriers from reversed shear profiles have focused
on internal modes as the sources of nonintegrability leading
to field line chaos. Here, on the other hand, the chaotic re-
gion results from an external device~the ergodic limiter! in
such a way we could reproduce and perhaps control condi-
tions leading to plasma instability in tokamak discharges,
which would lead to a better understanding of the conditions
under which tokamak confinement can be substantially im-
proved.
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APPENDIX: EXPLICIT FORM OF THE FIELD LINE
MAPPING FOR AN ERGODIC LIMITER

Under the restrictionr t /R08,1/2, as discussed in Sec. II,
we introduce action-angle variables, which are related to the
spatial coordinates by:25

J~r t!5
1

2pR80
2BT

E B0•ds35
1

4 F12S 124
r t

2

R08
2D 1/2G ,

~A1!

q~r t ,u t!5
1

q~r t!
E

0

u t B0
3~r t ,u t!

B0
2~r t ,u t!

du

5F124S r t

R08
D 2G1/2E

0

u t du

122
r t

R08
cosu

52 arctanF 1

V~r t!
S sinu t

11cosu t
D G ~A2!

whereds35R08r tdrtdu tê
3 and

V~r t!5S 122
r t

R08
D 1/2S 112

r t

R08
D 21/2

. ~A3!

We remark thatJ(r t)>0 for any r t>0. q(r t) is the safety
factor, given by~12!, and with a nonmonotonic profile, pro-
vided we choose plasma current profiles like~8!.

With help of these canonically conjugate variables, we
write the perturbation term in the Hamiltonian~19! as

H1~J,q,t !5 (
m850

2m0

Hm8@r t~J!#ei [m8u t(J,q)2n0t] , ~A4!

where the coefficients are

Hm8~r t!52Jm82m0
~m0l!S r t

bt
D m8

. ~A5!

The Fourier expansion of the perturbation Hamiltonian
in the angle variables furnishes

H1~J,q,t !5 (
n50

2m0

Hn* ~J!ei (nq2n0t), ~A6!

with Fourier coefficients given by

Hm* ~J!5 (
m850

2m0

Hm8@r t~J!#Sm,m8~J!, ~A7!

and the following quantities have been defined:

Sm,m8~J!5~21!mS c1~J!

c2~J! D
m1m8

3 (
n50

m

~21!nan~m,m8!S c1~J!

c2~J! D
22n

, ~A8!

with

c1~J!512
1

V@r t~J!#
, ~A9!

c2~J!511
1

V@r t~J!#
, ~A10!
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an~m,m8!55
1 if m50 and n50,

m8 if m51 and n50 or n51,

m8
~m1m82n21!!

~m2n!! ~m82n!!n!
if m.1 and n<m8,

0 if m.1 and n.m8.

~A11!

The functionsf (J,q,t) and g(J,q,t), appearing in the map Eqs.~20!–~22!, are obtained by differentiation of~A6! with
respect toq andJ, respectively.
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