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Abstract

In this work we propose the use of a targeting method applied to chaotic systems in order to reach special trajec-

tories that encode arbitrary sources of messages. One advantage of this procedure is to overcome dynamical constraints

which impose limits in the amount of information that the chaotic trajectories can encode. Another advantage is the

message decoding, practically instantaneous and independent of any special technique or algorithm. Furthermore, with

this procedure, information can be transmitted with no errors due to bounded noise.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Communication means the exchange of information between a transmitter and a receiver. As transmitter and re-

ceiver are physically apart from each other, the exchange of information has to be done through a physical medium. In

order to transmit the information through this medium, one requires the use of some sort of signal that travels through

it and that is able to encode the information. In addition to encoding the information, the signal has to be decoded after

being transmitted through the medium. Thus, the signal should be robust to the noise present in the channel.

Chaotic signals seen to be promising in performing all these tasks required for an efficient communication. So, many

works have proposed the use of chaotic signals to transmit information [1–12]. Particularly, in Ref. [12], it was shown

that if the chaotic system that generate the signal is an optimal encoder its trajectory can efficiently encode the

information.

As defined in [12], a chaotic system is called an optimal encoder when its topological entropy [13] is equal or greater

than the Shannon entropy of the source that produces the message [14]. In the case such condition is not respected, the

use of a chaotic trajectory to encode the source can only be done after a special encoding of the source, which is time

demanding. This problem (I) should be found in chaos-based communication, because, in real communication systems,

the message source can be chosen with any value for the Shannon entropy [15], while dynamical systems have dynamical

constraints that imposes limitation into the upper value of the topological entropy.

It was also shown that the memory contained in the chaotic trajectory can be used to dynamically filter the noise

[10,11], allowing good decoding of the information, after being transmitted through a noisy medium. This process deals

with the dynamically filtering the noise out of a chaotic trajectory that have been transmitted through a channel, as

reported in Refs. [10–12], such that the message can be fully recovered at the receiver. To solve this problem (II),

basically, we have to discover out of a large number of trajectories, which one was really transmitted. This technique
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might consume much time, and the decoding might turns out to be inefficient. In the particular case where the noise can

be considered to be bounded (or Gaussian with very small variance), a strategy was proposed in Ref. [16]. In a short, to

encode the message, it chooses a selected set of trajectories from a dynamical system that are robust to certain bounded

level of noise in the channel. The inconvenience in this strategy is that the topological entropy of the chosen set is

smaller than the one produced by the chaotic system [12,16], what may limit this strategy applicability.

In this paper we want to show a targeting [17] technique that modifies the original chaotic dynamics in order to turn

a chaotic system that is a non-optimal encoder to a system that is an optimal encoder to any type of sources, resolving

problem I. That is done by creating new orbits. All these new orbits are created with the property of being robust to a

bounded noise level present in the physical medium, resolving problem II.

We illustrate our proposed method using the Chua’s circuit [18], a non-linear oscillator that can be thought as a

prototype for any non-linear signal generator that creates the chaotic orbits to encode the information we want to

transmit. Our paper is organized in the following way: In Section 2, we show the main characteristics of the Chua’s

circuit. In Section 3, we show how to encode a message into the trajectories of this circuit, by associating optimally

symbols to the trajectory. In Section 4 we show how the message is extracted from the received signal when d-bounded
noise level is present in the channel. In Section 5, we present our targeting method to produce trajectories that are

robust to noise in the channel, and that have the highest possible topological entropy a set can have, and in Section 6,

we present an implementation of our communication scheme. Finally in Section 7 we present the conclusions.
2. The Chua’s circuit

The Chua’s circuit [18] is an electronic oscillator extensively studied because of the following characteristics: high

complexity, few electronic components, and a rich variety of bifurcations and chaotic behavior. The circuit is composed

by two capacitors, one inductor, one resistor, and a linear piecewise resistor. Fig. 1 is an schematic diagram of this

circuit. The dynamical variables are the voltages VC1 and VC2 across the capacitors C1 and C2, respectively, and the

current iL through the inductor L. The dynamics of this circuit is described by three differential equations,
C1

oVC1
ot

¼ 1

R
ðVC2 � VC1Þ � iNRðVC1Þ

C2

oVC2
ot

¼ 1

R
ðVC1 � VC2Þ þ iL

L
oiL
ot

¼ �VC2

ð1Þ
The non-integrability of the circuit equations comes from a linear piecewise negative resistor whose characteristic curve

is represented by:
iNRðVC1Þ ¼ m0VC1 þ 0:5ðm1 � m0Þ j VC1 þ Bp j þ0:5ðm0 � m1Þ j VC1 � Bp j ð2Þ
In this work we rescale the variables and parameters which becomes dimensionless.

For doing numerical simulation of these differential equations we use the parameters:
C1 ¼ 10:0; C2 ¼ 1:0; G ¼ 1=R ¼ 0:5750; L ¼ 6:0 ð3Þ
R

InL

L

Ir

C1
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Fig. 1. Scheme of Chua’s circuit.
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The initial conditions are:
VC1 ¼ �1:50; VC2 ¼ 1:034; iL ¼ 0:845 ð4Þ
For the chosen set of parameters the unperturbed circuit trajectory is a R€ossler-type attractor, which is a chaotic

rotation around an unstable saddle-focus.

In our numerical simulations, we integrate the set of equations (1) using the fourth-order Runge–Kutta algorithm

with integration step of dt ¼ 0:04.
3. Encoding (decoding) the trajectory

Chaotic encoding is the process of representing the message to be sent in terms of a chaotic trajectory. To encode a

chaotic trajectory the first step is to construct a partition in the phase space and associate symbols to the trajectory

whenever it is located in one of the partitions. As the trajectory goes from one to another partition, a symbolic sequence

is generated. The information contained in this symbolic sequence, measured by the Shannon entropy [14], in the case

the partition is generating [19], is maxima, and it represents the maximum amount of information that a chaotic tra-

jectory encodes in the absence of any control in the system. In the case one allows the control of the chaotic dynamics,

the amount of information a chaotic trajectory encodes is given by the topological entropy [12], the information

capacity of the system, that is, the ability a chaotic system has of generating a given amount of symbolic sequences.

So, by controlling the chaotic trajectory, as done in Refs. [1,2], we make the dynamical system to respond with a

trajectory whose symbolic sequence has not only some desired topological entropy but also it is the message to be

transmitted. So, transmitting this trajectory through a channel means transmitting the message.

Due to the fact that the R€ossler-type attractor has a fractal dimension close to 2, a 1-D first return mapping gives a

very good description of its dynamics. So, as done in [1,2], the partition we encode the trajectories can be well defined in

this mapping. This mapping is a 1-D discrete first return mapping, a 1-D projection of the 2-D Poincar�e section [20] of

this flow. The Poincar�e section is positioned at VC2ðtÞ ¼ 0, and whenever the trajectory crosses this plane from a positive

VC2ðtÞ to a negative VC2ðtÞ, we keep the values of VC1ðtÞ as the discrete variable x. As the trajectory crosses this plane, we

construct the first return mapping, Fig. 2, of the variable VC1 on this section
xnþ1 ¼ F ðxnÞ ð5Þ
where n describes the nth crossing of this trajectory in that Poincar�e section that happens for a time t ¼ tn.
−2.0 1.0 0.0
Xn

−2.0

−1.0

0.0

X
n+

1

0       1

Partition line

w=0.976

Fig. 2. First return map for the unperturbed R€ossler-type attractor.
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So, as done in [1,2], the symbolic dynamics of this circuit is obtained by associating symbols with intervals of the

domain of the variable x [21]. As explained in [12], the partition of the domain in x should be done through an opti-

mization of an entropy function, of the symbolic sequence generated by a trajectory passing by that partition. Given a

point xp, we define that a trajectory passing (for VC2 ¼ 0:0) in xn < xp represents a symbol 0, and 1 otherwise. Thus, a

trajectory x ¼ xn; xnþ1; . . ., has the symbolic sequence b ¼ bi; biþ1; . . ., with bi equal to either 0 or 1.

This symbolic sequence is the signature of the chaotic dynamics if xp is chosen such that the entropy of that sequence

is maxima. So, by the entropy function
Fig. 3

permit
W ðxpÞ ¼ lim
N!1

lnEðNÞ
N

ð6Þ
where EðNÞ is the number of allowed symbol sequences of length N . In practice, for the calculation of W , we consider

N ¼ 10. The generating partition, xp ¼ w, as well as, the topological entropy, HT, is obtained by
HT ¼ sup
w

W ðwÞ ð7Þ
where the supremum of the function W is obtained for xp ¼ w ¼ 0:976, resulting in HT ¼ 0:66. In Fig. 2 we represent by

a dashed line the partition. This entropy is smaller than lnð2Þ ffi 0:693, which is the entropy of a binary symbolic se-

quence that contains all possible sequences of length N ln 2N

N

� �
. Therefore, the considered dynamical system, even with

control of the type proposed in [1,2], can only encode source messages with Shannon entropy lower than 0.693. As a

way to visualize the possible binary symbolic sequences that the Chua’s circuit can encode, we plot the symbol plane.

For that, we group the symbolic sequences in sequences of 10 symbols (length N ¼ 10). Thus, we represent a particular

length-10 symbolic sequence in a decimal number rj given by:
rj ¼
XNðjþ1Þ�1

i¼Nj

bi2ðNðjþ1Þ�i�1Þ ð8Þ
where r1 is the decimal associated with the symbolic sequence composed by the first 10 symbols b1b2 � � � b10, r2 is the

decimal associated with the symbolic sequence b11b12 � � � b20, and so on.

The symbol plane, rj versus rjþ1, can be seen in Fig. 3. The importance of this plane is that the transformation

that places the pair of points rj, rjþ1 to the pair of points rjþ1, rjþ2 is equivalent to the transformation F that places

the point xn into the point xnþ1 [22]. The gaps in the symbol plane represents non-permitted transitions of sym-

bolic sequences. Also, this plane will help us in understanding the action of our proposed targeting in creating new

orbits.
. Symbol plane for the non-perturbed Chua’s circuit considering symbolic sequences of length N ¼ 10. The gaps represent non-

ted transitions of symbolic sequences.
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4. Decoding with d-bounded noise level

The Chua’s circuit has three dynamical variables: VC1ðtÞ, VC2ðtÞ, and iLðtÞ. In order for the receiver to decode the

information using the encoding suggested in the previous section, the transmitter would have to transmit not only the

variable VC1ðtÞ, but also the variable VC2ðtÞ, with which one can construct the return map (xn � xnþ1), where the partition

is defined. For efficient purposes, one does not want to use two signals to transmit a message. So, what one could do, in

practice, is to transmit only one signal, VC1 for example, and the return map where the partition function is calculated

should be a return map of a Poincar�e section of the trajectory embedded in a time-delay coordinate system, done with

the variable VC1ðtÞ.
However, for the sake of simplicity, we assume that what is sent to the receiver are the values xn, and the decoding is

performed just by checking whether xn is smaller or bigger than the partition value w. Due to the presence of bounded

noise level in the channel, what arrives to the receiver it is not xn, but xn � dgn, where g represents a uniform random

variable with a domain in the interval [0,1], and d is the maximum amplitude of the noise present in the channel.

Decoding could be efficiently done just by using a subset x0n that never falls in the interval I ¼ ½w� d;wþ d�. The
reason is that doing this, if x0n encodes a symbol b (0 or 1), x0n � dgn will necessarily be decoded as the symbol b.
However, as demonstrated in [12], the topological entropy of the subset of trajectories x0n is smaller than the entropy of

the set xn. Therefore, the subset x0n will only be able to encode messages whose Shannon entropy is equal to or less than

HTðx0nÞ. Let us assume that the message to be transmitted is modeled by a random binary source, that is, any sequence of

0 and 1 is permitted. In this case, the set x0n would not be able to encode this message. Thus, what we do is to perturb the

dynamical system in order to create an orbit represented by x0n for which none of its elements falls inside the interval

½w� d;wþ d�, having the property that HTðx0nÞ ¼ HSðMÞ, where HSðMÞ represents the Shannon entropy of the source

message.

Optimal decoding means that given a binary messageM represented by m1;m2;m3; . . . ;ml, where mi can be either 0 or

1, the transmitted trajectory x0n ¼ x01; x
0
2; x

0
3; . . . ; x

0
l has to be such that x01 þ dg1; x

0
2 þ dg02; x3 þ dg03; . . . ; x

0
l þ dgl decodes the

symbolic sequence B ¼ b1; b2; b3; . . . ; bl, such that M ¼ B, that is, m1 ¼ b1, m2 ¼ b2, and so on.
5. Targeting method

Given a point x0n that does not belong to the interval I ðx0n \ I ¼ ;Þ and its next iteration x0nþ1, the targeting method is

applied if one of the following conditions are verified:

• (I) x0nþ1 \ I 6¼ ;.
• (II) x0nþ1 encodes 1 (or 0) while the element of the message bnþ1 is equal to 0 (or 1).

In the case one of these two conditions are verified, we perturb iLðt ¼ tnÞ, replacing iL to iL þ DP at the time t ¼ tn,
such that not only x0nþ1 \ I ¼ ;, but also that x0nþ1 is decoded to the element of the message bnþ1. We choose to perturb iL,
instead other variable, because the iL coordinate is oriented along the most contracting direction of the vector field (2).

That means that an initial condition perturbed in the iL coordinate, when iterated by the non-perturbed dynamics goes

very fast to the invariant dynamics, the non-perturbed attractor.

In practice, the perturbation is calculated in order to have the orbit targeted from the point with coordinates x0n to a

point with coordinates x0nþ1 in the � vicinity of either one of the two points located in the non-perturbed attractor: the

point T0 with coordinate VC1 ¼ �1:6 (and VC2 ¼ 0), and the point T1 with coordinate VC1 ¼ �0:1 (and VC2 ¼ 0), where

� ¼ 0:005. If a 0 is the desired symbol to be transmitted, the chaotic orbit is targeted to the vicinity of T0, otherwise, if
the desired symbol is 1, the orbit is target toward T1. These two target points T0 and T1 can assume arbitrarily values on

the non-perturbed set xn, such that Ti \ I ¼ ;.
Given a particular x0n value, two values of perturbations can be applied. The perturbation DP0, to drive the orbit to a

point x0nþ1, within the vicinity of the target point T0, and the perturbation DP1, to drive the orbit to a point x0nþ1, within

the vicinity of the target point T1. The perturbation DP0 is applied if the symbol 0 is to be transmitted, and the per-

turbation DP1 is applied if the symbol 1 is to be transmitted.

The amplitudes DPb, with b representing either 0 or 1, are calculated through a learning process (off-line). For each

initial condition x0n, we calculate the two sets of control amplitudes, DP0 and DP1 applied into iL, in order to drive the

point x0nþ1 to the vicinity of either T0, or T1. The calculated values of perturbations are shown in Fig. 4.

Note that the values for which DPb ¼ 0 in these two strips in Fig. 4 represent values of x0n close to the stable

manifolds of the targets T0 (top strip) and T1 (down strip). Note that since the perturbation DPb can be arbitrary, it can

have a component out of the chaotic attractor. Therefore, after the perturbation is applied, the orbit is placed in an
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Fig. 4. The control DPb applied into iL to direct the initial conditions xn to the vicinity of T0 (DP0) or to the vicinity of T1 (DP1).
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initial condition on the basin of attraction of the chaotic attractor, however, away from it. Even though the pertur-

bation is not very small, the iteration of this out-of-the-attractor initial condition, until it reaches the section on VC2 ¼ 0,

is sufficient to place the orbit close to the original non-perturbed attractor.
6. Communicating

We first demonstrate the communication method to transmit a random generated sequence of zeros and ones. We

show in Fig. 5a the temporal evolution of the variable xn for the R€ossler-type attractor of Eqs. (1) and (2). When the

targeting method is used to generate the controlled orbit x0n, such that it encodes the desired message, all the points x0n
Fig. 5. (a) Evolution of the non-perturbed trajectory xn. (b) Evolution of the targeted variable x0n.



Fig. 6. Symbol plane for the controlled Chua’s circuit, considering symbolic sequences of length N ¼ 10, calculated using the driven

trajectory x0n. The gaps represent non-permitted transitions of symbolic sequences.
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falls outside the interval I as can be seen in Fig. 5b. In addition, the probability distribution of x0n is more concentrated

in the vicinity of the target points T0 ¼ �1:6 and T1 ¼ �0:1. To show that the driven trajectory x0n can encode any

sequence of zeros and ones, we make the symbol plane of it, as shown in Fig. 6. In this figure, if the message had an

infinity length, and the considered symbolic sequences were very long in length, no gaps would be seen, meaning that all

the plane space would be filled out. As a consequence, the topological entropy of the targeted trajectory is

HTðx0nÞ ¼ lnð2Þ [also calculated by Eq. (6)].

When a perturbation does not need to be applied, i.e., neither condition (I) nor condition (II) is fulfilled, the targeted

trajectory x0n gets very close to the non-perturbed trajectory xn. In fact, in the case the message is a random binary

source, the average number of cases for which control pulses are not applied tends to values close to 50%. This means

that the non-perturbed set xn and the targeted set x0n have many neighbor points, as can be seen in the return map x0n
versus x0nþ1 of Fig. 7, which can be compared to the return map of Fig. 2.

Therefore, when perturbation is applied, transient dynamics is used. On the other hand, when no perturbation is

applied, the original dynamics on the attractor of the circuit is used. However, as the perturbation is being applied to
–2 –1 0

Xn
,

–2

1

0

X
n+

1

Fig. 7. Return map of the driven trajectory x0n versus x0nþ1.



Fig. 8. (a) Projection of the non-perturbed trajectory of Eqs. (1) on the VC1 � VC2 plane. (b) Projection of the driven trajectory on the

same plane.
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the variable iL, evolution of these perturbed initial condition goes very fast to the invariant dynamics, and therefore, the

driven trajectory is similar to the non-perturbed trajectory as shown in the attractor projections of Fig. 8, where we

show.

To better understand the consequences of the targeting method, we calculate the power spectra of the evolution of

VC1, from which we obtained xn and x0n, shown in Fig. 5a and b, respectively. These spectra are shown respectively in Fig.

9a and b, and they are very similar indicating that the targeted trajectory is similar to the non-perturbed trajectory.

Note, however, that there are new peaks in the targeted trajectory. This is a consequence of the new trajectories, created

by the targeting method, consequence of a transient dynamics.

Next, we apply our proposed method to transmit the name of the famous soccer player Pel�e coded in a binary-

ASCII format. Thus, we transmit the following binary sequence: ‘‘01010000 01100101 01101100 11101001’’.

In Fig. 10(a) in squares we show the pulse perturbations DP0 and in circles DP1. The targeted trajectory that encodes

the name Pel�e is shown in Fig. 10b.
7. Conclusions

We propose a targeting method applied to chaotic systems to create an optimal dynamical system to communicate,

that is, a dynamical system that generates trajectories that can not only encode arbitrary source messages, but can also

be transmitted through a noisy channel. This proposed targeting preserves part of the original dynamics and creates a

new, transient dynamics. The use of a set of transient orbits to communicate, overcomes the inability of a dynamical

system to generate arbitrary demanded symbolic sequences. In the case the noise is bounded and has an amplitude

smaller than d, instantaneous decoding is done, without the need of any chaotic filtering method. Experimentally, such

decoding could be simply done using a comparator.

In the case there is Gaussian noise in the channel, or a non-bounded noise level whose amplitude is bigger than the

gap d, successful decoding, i.e., recovering of the message can still be performed if the received point x0n þ dgn has x0n
close to some point of the non-perturbed set xn. Also, in the case a dropout occur, i.e., there is the interruption of the

transmission, and part of the trajectory is not sent, this lost information can still be recovered, by the methods presented

in Refs. [11,12], if the dropout occurred while the dynamical system is not being targeted.
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We have not been concerned with the security of the transmission in this work. However, if security is needed, one

could send to the receiver the series of perturbations DPb. Being the initial condition a secret information, only who

knows it (the receiver) can recover the message, applying the received perturbations to its initial condition. In that

case, the dynamical system [the Chua’s circuit, Eq. (2)] should be considered a public information. The use of the
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perturbation would at least fill up one requirement of security. It is a non-inversible function with respect to x0n, as one
can see in Fig. 4. So, if an eavesdroper has only the knowledge of DPb, there are at least two values of x0n, and without

complete knowledge of x0n there would be no ways to find out about x0n.
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