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Abstract. Particle transport driven by electrostatic waves at the plasma edge is numerically 

investigated, for large aspect ratio tokamaks, by considering a kinetic model derived from 

guiding-center equations of motion. Initially, the transport is estimated for trajectories obtained 

from differential equations for a wave spectrum generated by a dominant spatial mode and 

three time modes. Then, in case of infinite time modes, the differential equations of motion are 

used to introduce a symplectic map that allows to analyze the particle transport. The particle 

transport barriers are observed for spatial localized dominant perturbation and infinite modes. 

In presence of infinite spatial modes, periodic islands arise in between chaotic trajectories at 

the plasma edge. 

1. Introduction 

Several experiments in tokamaks indicate a broad frequency spectrum of plasma drift waves for each 

wave number [1-3] and the drift waves show substantial amplitudes that imply chaotic particle 

trajectories [4-8]. Thus, the drift waves are essential features to properly describe the observed driven 

turbulent transport. Accordingly, this transport is mainly caused by the particle     drift due to the 

equilibrium and the perturbing electric fields [9,10] and such transport is much affected by the 

equilibrium field radial profiles [11-13]. 

In this work, we integrated numerically particle trajectories to investigate the relation between 

transport and electrostatic wave fluctuations at the plasma edge for large aspect ratio tokamaks. 

Initially, we assume different amplitude levels in the wave spectra for three specific time modes. The 

particle trajectories are obtained by integrating differential equations. Complementary, to investigate 

infinite mode perturbations, these equations of motion are rewritten as a symplectic map in which all 

modes have the same amplitude. 

Early works on electrostatic wave fluctuations derive a drift wave maps around the radial position 

associated to the minimum of safety factor profiles [4-6]. However, the confined particles can leave 

the neighborhoods of this minimum point for long time integration. Avoiding this radial limitation, we 

show how the transport is affected by changing the shear of the radial electric and poloidal magnetic 

fields [14]. To describe drift waves in tokamak plasmas, the electrostatic spatial modes have to be 

defined by a dominant perturbations or treat as a generalized modes. Besides, we also study how the 

particle orbits are modified when the local perturbations are replaced by infinite spatial modes. 

In section 2, we introduced the drift-kinetic model that leads to the differential equations for the 

particle trajectories in the vicinity of a given magnetic and electric field profiles. In section 3, we 
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compared the Poincaré maps obtained by integrating the drift-kinetic model for specific resonances 

with the symplectic map for infinite spatial modes. The observed particle transport is summarized and 

concluded in section 4. 

2. Drift-kinetic model 
This section provides the model for which the particle trajectories can be calculated in presence of 

fluctuating electrostatic potential, describing drift waves propagating in the poloidal and toroidal 

directions according to the spatial modes. For that, we consider the particle trajectories along the 

magnetic field lines and the displacement due to the drift velocity in the guiding-center equation of 

motion, 

 
  

  
   

 

 
 

   

   , (1)  

where the components of           are defined as the local polar coordinates. Thus, the plasma 

configuration corresponds to a layer of large aspect ratio tokamak.  

The electric field is composed by a fluctuating component         plus an equilibrium radial 

profile   , and the magnetic curvature is introduced by the safety factor profile for        . In 

order to consider a fluctuating potential in this model we use the wave spectrum, 

                                     , (2)  

where        is the mode amplitude,    the lowest angular frequency with substantial amplitude in the 

drift wave spectrum, m and l define the spatial modes and n the time mode in this coordinate system. 

In the numerical simulations, we assume a dominant M/L spatial mode and three harmonics n time 

modes. 

We introduce action and angle variables as          and        , respectively [5]. 

Taking these assumptions we obtain the differential equations for the particle trajectories, 
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To solve this system, the equilibrium fields and the parallel velocity along the magnetic field lines 

have to be defined for a set tokamak parameters.  

3. Transport barrier and diffusion 
We investigate numerically the particle transport properties by integrating the equations of motion. 

Simulations are carried out using the TCABR tokamak parameters, assuming a dominant spatial mode 

          , particle parallel velocity constant               along the trajectories [15] and 

lowest angular frequency                  [3]. For this tokamak configuration we use   
     ,         and        . We choose the non-monotonic electric field and monotonic 

magnetic field profiles discussed in [14]. 

In order to analyze changes in the radial transport due to the amplitude modes     , we compare 

the wave spectra for the cases (a) and (b) in figure 1. These perturbing spectra are composed by three 

time modes n at the plasma edge, whose resonance radial positions can be determined by taking the 

condition               . In figure 2 we observe the resonance conditions around     with 

double location for the radial positions.  
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Figure 1. Eletrostatic wave spectra (a) and 

(b) for a dominant            spatial 

mode. 

 Figure 2. Resonance conditions around     

and assuming the lowest angular frequency as 

                 for the cases (a) and (b) 

in figure 1. 

 

In figure 3(a) we present the Poincaré map obtained by integrating equations (3) and (4) for various 

initial conditions and assuming the wave spectrum (a) shown in figure 1. The resonance     

corresponds to the twin islands separated by the shearless curve depicted in red, which is located by 

the extremum value of the rotational number profile [14]. In figure 3(b) we assumed the wave 

spectrum (b) of figure 1, and all the other parameters are the same as those used in the previous map. 

The onset of meanders [16,17] are induced around of the shearless curve by increasing the wave mode 

amplitudes. Furthermore, this mode increasing also gives rise to noticeable chaotic trajectories around 

the inner radial perturbation created by    , as seen in figure 3(b). The invariant shearless barrier 

persists for the modified spectrum. 

 

(a) (b) 

Figure 3. Poincaré maps for the wave spectra (a) and (b) in figure 1. The potential mode 

amplitudes in case of (a) are              ,              , and              , for 

(b) are              ,              , and              . The shearless curves can be 

identified by the invariant in red. Initial conditions for running diffusion coefficients are shown 

in the blue grids. 

 

Figure 4 shows the time dependence of the running diffusion coefficient [4] calculated for the 

particle radial positions for cases (a) and (b) of wave spectra in figure 1. For these calculations, we 

considered the blue grid in the Poincaré maps of figure 3. One observes the increase of particle 

transport as increasing the amplitude modes by modifying the wave spectrum. 
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Figure 4. Running diffusion coefficients for the blue grids depicted in figure 3. 

 

Despite this model relates a specific electrostatic amplitude for each time mode, it is limited by the 

wave spectrum characterized by finite n modes. To simulate how a continuum wave spectrum affects 

the particle transport, a symplectic map is derived for infinite time modes. In this case, one can 

approach the oscillations sum by considering the delta function and impulsive iterations at time 

        . Thus, one can rewrite the equations (3) and (4) as a map given by 

         
   

     
          , (5)  

                           , (6) 

       
  

       
          , (7) 

        
      

      
 , (8)  

where the angle variable is defined as       . 

 

 

Figure 5. Symplectic map (b) for potential mode amplitude            and (b) the same map 

amplified at the plasma edge. 

 

In figure 5 we present the symplectic map by using the equations (5) and (6) for various initial 

conditions and considering the same dominant spatial mode as in figure 3. The symplectic map shows 

the same structures for particle transport predictions, as seen in figure 5(a). Since the map has infinity 

time modes at the plasma edge, we expect to identify many islands immersed in a chaotic sea, as it is 

clearly shown by the amplification in figure 5(b). 
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4. Conclusions 
We have investigated how the particle transport increases with the mode amplitude of the fluctuating 

electric potential and how this transport changes with the radial field profiles. To analyze this 

dependence, the running coefficient has been computed and compared for modifications in the drift 

wave spectrum. We observed in the Poincaré maps robust barriers provided by the electric and 

magnetic configurations that persist for these spectra. Through the resonance condition, we identified 

these barriers in between the twin islands region. From the equations of motion we introduced a 

symplectic map to consider infinite time modes of perturbations. For this map method, we observed 

many islands where the particles could be trapped along of their trajectories at the plasma edge. 
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