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Abstract

We applied a non-integrable drift-kinetic model, valid for large aspect ratio tokamaks, to investigate plasma edge particle
transport driven by drift waves. Particle transport is obtained from the chaotic trajectories obtained by numerically integrating
the canonical equations of motion, for the total flow formed by the equilibrium sheared flow and few dominant resonant drift
waves propagating in the sheared equilibrium magnetic field. Thus, we investigate the transport dependence on the radial
profiles of the electric and magnetic fields and show that radial particle transport at the plasma edge can be reduced by properly
modifying the electric and magnetic shear profiles. For non-monotonic radial electric fields, we also observe non-twist transport
barriers with shearless invariants identified by extremum values of the rotation number profiles of the invariant curves. The
observed non-twist barriers are modified by the magnetic shear and persist for magnetic shear variations expected in present
tokamaks.
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1. Introduction

The plasma confinement in tokamaks is limited by the particle
transport at the plasma edge much higher than the values
predicted by neoclassical transport theory by collisions in
toroidal geometry [1, 2]. In this context, the influence of
the electric and magnetic equilibrium fields on the particle
transport induced by the plasma edge turbulence is nowadays
under investigation in all tokamaks [3, 4]. Thus, it has been
recognized that the interpretation of the observed anomalous
particle transport has to take into account the spatial profiles
and their associated shears of the electric and magnetic fields
at the plasma edge.

At the plasma edge the turbulence-driven particle transport
is mainly caused by the particle E × B drift [5–7] and
the fluctuating electrostatic field is associated with drift
waves, driven by equilibrium radial gradients, propagating
in the poloidal direction. Several experiments show that this
transport can be reduced by properly changing the electric field
radial profile [8, 9]. One experimental procedure to reduce the
transport is to apply an electric field bias modifying the non-
uniform radial electric field and resulting sheared flow [10–12].
Moreover, electrode biasing has been applied to verify the
influence of the electric shear on the plasma transport and the
formation of edge transport barriers [13].

To interpret particle transport at the tokamak plasma edge,
non-integrable drift models with chaotic dynamics have been
proposed for large aspect ratio tokamaks [14–16]. Following
this approach, a model has been proposed to describe the
transport by drift waves propagating in the plasma edge of
tokamaks with equilibrium E × B poloidal flow, for uniform
magnetic fields [16, 17] and magnetic fields with shear [15, 18].
Moreover, symplectic drift wave maps in the vicinity of
given radial position and safety factor have been derived from
these models [15, 18] to numerically investigate the transport
dependence on shear spatial profiles. Thus, for these maps,
the transport reduction, caused by the combined effects of
radial electric field shear and both monotonic and reversed
shear magnetic q profiles, has been investigated [16, 19, 20].
However, applications of the proposed models to investigate
global transport in tokamaks and the escape of particles to the
walls still remain to be explored by numerical integration of the
equations of motion. In this model, drift waves cause chaos and
the impact of chaos on the particle transport can be estimated
by integrating the particle drift trajectories. In this description,
the possibility of controlling the transport by modifying the
shear profile can be evaluated even without considering the
wave response. Moreover, the chaotic transport is caused
by internal dynamic process without any external resonant
magnetic perturbation.
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In this work, we consider the non-integrable drift-
kinetic model introduced in [15] and the canonical equations
that describe the particle transport driven by drift waves.
We performed numerical simulations of particle motion by
integrating the canonical equations, for the total flow formed
by the equilibrium sheared flow and a few dominant resonant
drift waves and the sheared equilibrium magnetic field. The
chaotic particle trajectories give rise to transport. Thus, we
investigate effects from electric and magnetic sheared fields on
plasma particle transport through a combination of numerical
simulation results and concepts from Hamiltonian dynamics
theory. Our analysis is based on numerical procedures used
in chaos theory to investigate and describe chaotic orbits and
the creation and destruction of transport barriers. One of these
procedures consists in obtaining Poincaré maps for particle
drift trajectories. Moreover, the chaotic orbits are integrated
for a very long time in order to obtain the transport described
in the paper. We show that particle transport can be reduced
by modifying the electric and magnetic field profiles and that
transport barrier can be displaced by properly modifying the
magnetic shear at the plasma edge. As expected, the analysed
topologies are typical of two-dimensional quasi-integrable
Hamiltonian systems, for both twist and non-twist maps.
These topologies contain several characteristics important for
the particle transport and plasma confinement.

Our results can be applied to any tokamak, described in
a large aspect ratio approximation, for which electric bias
has been applied to control plasma transport. Even so, to
show how the topology, described by shear profiles, modifies
the particle transport, numerical simulations are presented for
parameters taken from the Brazilian tokamak TCABR [17, 21].
However, the paper presents a conceptual investigation rather
than detailed comparisons with experiments performed in any
tokamak. Accordingly, the shear profiles and the drift wave
spectrum are chosen to allow assessing if the induced drift wave
transport is affected by changes in the electric and magnetic
shear profiles.

In section 2, we introduce the drift-kinetic model used
to describe particle transport driven by drift waves. In
section 3, we integrate the particle trajectories and investigate
the transport considering different radial electric field profiles.
In section 4, for a reversed shear electric field profile, we
show that transport barriers can be modified by the magnetic
shear. The combined effects of magnetic and electric shears
are summarized and concluded in section 5.

2. Drift–kinetic model

The model introduces the basic equations of motion to describe
particle trajectories following the magnetic field lines and
the electric drift. We consider an equilibrium electrostatic
potential in the radial direction and electrostatic drift waves
propagating in the poloidal and toroidal directions [15]. These
drift waves originate from plasma edge non-uniformities in
a layer of toroidal magnetic confinement. The fluctuating
electrostatic potential has been assumed as a function of the
amplitude, spatial and time modes.

Here, the particle trajectories are described by the guiding-
centre motion,

dx

dt
= v‖

B

B
+

E × B

B2
, (1)

and the components of this equation can be written as
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where x = (r, θ, ϕ) in local polar coordinates. The considered
plasma configuration corresponds to a layer of large aspect
ratio tokamak. The electric field is given by equilibrium radial
field Er plus a fluctuating component Ẽ = −∇φ̃. We assume
B ≃ Bϕ ≫ Bθ and the magnetic shear in this model is
introduced by the safety factor profile. Moreover, the chaotic
transport is caused by internal dynamic process without any
external resonant magnetic perturbation.

For the fluctuating potential we use the finite mode drift
wave spectrum,

φ̃(x, t) =
∑

m,l,n

φmln cos(mθ − lϕ − nω0t − ψ0), (3)

where φmln is the mode amplitude, ω0 is the lowest angular
frequency with substantial amplitude in the drift wave
spectrum and ψ0 is a chosen initial phase. Thus, we assume
either one drift wave or a set of waves that are described by the
fluctuating electrostatic potential.

As it is known that the relative fluctuation levels of
plasma potential are substantial in the edge [6, 22, 23], we
consider a maximum electrostatic fluctuation φMLn in this
region. Complementarily, the drift wave spectrum is mainly
chosen to allow assessing if the induced drift wave transport is
affected by changes in the electric and magnetic shear profiles.
Thus, in the numerical simulations we consider drift wave
spectra characterized by a single spatial M/L mode and one
or three harmonics n in time. The self-dynamic drift wave
response is not considered in our model, i.e. the spectrum is
the same for different shear profiles. Even so, this model
allows investigating the simultaneous influence of magnetic
and electric shears on the plasma edge chaotic transport.

For convenience, we consider action and angle variables,
such as I = (r/a)2 and ψ = Mθ−Lϕ, respectively [15]. Note
here that ψ plays the role of a helical angle defined by dominant
modes (coherent oscillations). Taking these assumptions into
equations (2a)–(2c), we obtain

dI

dt
=

2M

Ba2

N∑

M,L,n

φMLn sin(ψ − nω0t − ψ0), (4a)

dψ

dt
=

v‖

Rq(I)
[M − q(I )L] −

MEr

Ba
√

I
, (4b)

where a is the minor plasma radius, R is the major plasma
radius and q(I ) is the safety factor profile as a function of
action variable. In the next sections, particle trajectories are
integrated by a fourth Runge–Kutta numerical scheme and their
intersections in Poincaré sections are shown in (I, ψ) planes.
The amplitude modes are chosen as φMLn=2 = 4.90 eV,
φMLn=3 = 0.85 eV and φMLn=4 = 0.10 eV (see figure 1).

The self-dynamic drift wave response is not considered in
our model; it means that drift wave spectrum is kept fixed.
However, this model allows investigating the simultaneous
influence of magnetic and electric shears at the plasma edge.
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Figure 1. Drift wave spectrum for a dominant M/L mode and
amplitudes φMLn=2 = 4.90 eV, φMLn=3 = 0.85 eV and
φMLn=4 = 0.10 eV.

3. Electric shear effects

We assume a spatial dominant mode M/L = 4/16 and
investigate the influence of Er profiles by comparing different
Poincaré maps and resonance conditions. The considered
radial electric fields are uniform, monotonic and non-
monotonic profiles, as seen in figure 2(a). The monotonic
profiles are given by the expression Er = 2αr +β, and the non-
monotonic one by Er = 3αr2 +2βr +γ , where the coefficients
α, β and γ have to be defined in each case. The coefficients
are set for monotonic Er profile with positive shear as α =
−1.30 × 103 and β = −1.60 × 103; for monotonic Er profile
with negative shear as α = 1.30 × 103 and β = −2.40 × 103;
for non-monotonic Er profile as α = −80.00 × 103, β =
31.95×103 and γ = −6.00×103. To these profiles correspond
the electric shear profiles shown in figure 2(b), calculated
using the equation SEr

= (r/Er)(dEr/dr). Thus, we assume
either one drift wave or a set of waves that are described by
the fluctuating electrostatic potential without considering any
plasma wave response.

The simulations are performed using this set of
equilibrium radial electric fields and a monotonic safety
factor profile q(r) = 1.99 + 3.99(r/a)2 for r � a, and
q(r) = q(a)(r/a)2 for r > a, with q(a) = 5.98 at
the plasma edge. These profiles are chosen to show the
influence of the magnetic shear on the drift-wave-induced
transport and generate distinguishable islands to facilitate
the proposed barrier and islands reconnection analyses. We
consider the particle parallel velocity v‖ constant along the
particle trajectories, v‖ = 2.5 km s−1 [24]. The lowest angular
frequency ω0 = 6 × 104 rad s−1 has been chosen in the power
spectrum obtained by floating potential measurements [21]
in the TCABR tokamak. For this tokamak configuration we
use R = 61 cm, a = 18 cm and toroidal magnetic field
B = 1.1 T. Although we use TCABR parameters to show
numerical examples of the transport dependence on the electric
and magnetic shears, the verified dependence should be valid
for any large aspect ratio tokamak for which electric bias has
been applied to modify the equilibrium electric field.

In figure 3 we present the Poincaré maps by integrating
equations (4a) and (4b) for various initial conditions. The
solutions of this integration are selected at the toroidal section
ϕ = 2π/ω0 rad. In these Poincaré maps, the minor plasma

radius lies at I = 1.0, but we show I up to 1.2 in order to
identify the particle transport to the chamber wall. For the
uniform Er profile, see figure 3(a), chaotic particle trajectories
occur for I � 0.6. When changing the previous Er profile
to the monotonic one with negative shear, we observe islands
almost destroyed and embedded in a chaotic sea, as can be seen
in figure 3(b). However, periodic structures arise in I � 0.9
for the monotonic Er profile with positive shear, as seen in
figure 3(c). Note that, the monotonic Er shears have the same
modulus but lead to distinct transport values at the plasma
edge, reduced for the positive electric shear. For the non-
monotonic case in figure 3(d), the phase space structure is
deeply modified and a shearless invariant curve (depicted in
blue) appears at the plasma edge. This curve is seen as a particle
transport barrier that allows trapping chaotic trajectories inside
the plasma. Moreover, all Poincaré maps have been obtained
for the same drift wave spectrum, hence transport reduction is
observed without a necessary change in the fluctuation levels
of plasma potential.

Since the chaotic regions are quite similar for uniform
electric field profile (figure 3(a)) and monotonic one with
negative shear (figure 3(b)), we calculated the time dependence
of the standard deviation for particle radial position,

σ 2(t) =
1

N

N∑

ν=1

(ri(t) − ri(0))2, (5)

for an ensemble of N = 1000 particles initially located
from I = 0.9 to 1.0. In figure 4, the standard deviation
for the monotonic Er profile with negative shear indicates
a smaller radial particle transport than in the uniform Er

case. Thus, introducing electric shear reduces the transport
at the plasma edge. Note that assuming the same set of
initial conditions and time integration, more intersections are
observed in the chaotic region of the monotonic Er field
with negative shear (figure 3(b)). This occurs due to the
confinement improving along the toroidal direction, such
that more trajectory intersections are selected at the Poincaré
section. Hence, the considered monotonic Er profile generates
a large enough shear in the E×B poloidal zonal flow to reduce
the transport driven by drift waves, as first proposed by Biglari
et al [25].

The periodic islands in the Poincaré maps can be explained
by taking the resonance conditions. For this, we assume the
time invariance of the action variable in equation (4a) that
implies d/dt (ψ − nω0t) ∼= 0. Then, the resonance condition
is obtained when (dψ/dt)/ω0 assumes values of the time mode
n for a determined action I in equation (4b).

For the set of radial electric field profiles we calculated
the resonance conditions, as shown in figure 5. This shows
that the resonance n = 4 is related to the lowest non-zero
electrostatic amplitude in the drift wave spectrum (see figure 1)
and occurs at I ∼= 0.4 for all Er profiles. For uniform and both
monotonic Er profiles, the resonance n = 3 is observed as a
single perturbation at I ∼= 0.8. However, the non-monotonic
case reveals the resonance n = 3 with double location at
I ∼= 0.6 and I ∼= 1.0, which corresponds to the twin islands
separated by invariant surfaces in figure 3(d). In addition to
that, the resonance n = 2 is related to the highest electrostatic
amplitude in the drift wave spectrum and provides secondary
islands at the plasma edge.
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Figure 2. (a) Radial electric field and (b) electric field shear profiles for (solid black line) uniform, (dashed green/red line) monotonic with
positive/negative shear and (dashed–dotted blue line) non-monotonic cases.

Figure 3. Poincaré maps for uniform (a), monotonic with negative shear (b), monotonic with positive shear (c) and non-monotonic (d)
electric field profiles. The shearless curve is depicted in blue for the non-monotonic case.

To determine the radial position at the shearless invariant
curve in figure 3(d), we calculate the rotation number that is
defined as  = limi→∞ �ψi/i. For this, each action variable
I gives an initial condition to  and d/dI ∼= 0 leads to the
shearless point shown in figure 6.

It is known that electric reversed shear may result in
conditions to generate particle transport barriers located at the
shearless radial position [15, 17]. In the map of figure 3(d)
we identify such a distinctive invariant curve, in fact, a
peculiar transport barrier caused by the electric reversed shear
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Figure 4. Standard deviation for (black line) uniform Er profile and
(dashed red line) monotonic Er profile with negative shear.

Figure 5. Resonance conditions for (solid black line) uniform,
(dashed green/red line) monotonic with positive/negative shear and
(dashed dotted blue line) non-monotonic Er profiles.

configuration of figure 2, located at the shearless radial position
where d/dI ∼= 0 (see this radial position in figure 6). The
indicated shearless barrier separates the particle orbits in the
phase space and reduces the particle transport [26, 27]. Thus,
this shearless curve acts as an internal transport barrier. Even
if this barrier is broken by other waves, we expect, from
other map analysis [28], that the chaotic orbits may present a
large stickiness around the remaining islands, that reduces the
transport. Moreover, we also observe that the magnetic shear
causes a radial displacement of that barrier. Namely, note in
figure 2(b) that the shearless position for non-monotonic Er

profile is found at r/a ∼= 0.7, which corresponds to I ∼= 0.5.
However, the Poincaré map (figure 3(d)) shows the invariant
curve at I ∼= 0.8. This displacement occurs due to the magnetic
shear, as can be inferred from the presence of the safety factor
profile in equation (4b) used to calculate the phase evolution.
Other magnetic shear effects on transport barriers are further
analysed in more detail in the next section.

4. Magnetic shear effects

In addition to the previous section, next we further show that the
magnetic shear can modify the particle orbits predicted by the

Figure 6. Rotation number profile for non-monotonic electric field
case. The dot corresponds to the position of the shearless curve
depicted in figure 3(d).

electric drift as the safety factor changes at the plasma edge.
To make this effect evident we consider the non-monotonic
electric shear profile of section 4 (represented by the non-
monotonic dashed line of figure 2) and two different magnetic
configurations, namely, two shear profiles with different q(a)

values. Comparing the particle orbits, represented in the
Poincaré maps, we show that the alteration of the plasma
edge safety factor significantly modifies the shearless transport
barrier created by the considered non-monotonic electric shear
profile. The described modification occurs because the less
sheared magnetic configuration approaches the twin islands
around the shearless transport barrier. The two safety factor
profiles are chosen mainly to evidence the orbit alterations with
the magnetic shear variation. These chosen profiles satisfy the
resonant condition required for the existence of the shearless
barrier. For example, the investigated shearless barrier does
not exist for a profile varying from q(0) = 1 to q(a) = 3;
although in this case the shear values are similar to those of the
profile with q(0) = 2 and q(a) = 4, the necessary resonant
condition is not satisfied. Yet, the attendance of the mentioned
resonant condition is further evidence of the influence of the
magnetic shear on the onset of transport barriers.

The magnetic shear is obtained by Sq = (r/q)(dq/dr),
with q(r) = 1.99 + 1.99(r/a)2 for r � a, and q(r) =
q(a)(r/a)2 for r > a, with q(a) = 3.98 at the plasma edge.
All the other parameters are the same as those used in the
previous section.

The two safety factor and magnetic shear profiles
considered in this section can be seen in figure 7. The
new magnetic configuration introduced in this section, with
q(a) = 4, has a lower magnetic shear compared with the one
used in section 3 with q(a) = 6.

Figure 8 shows dimerized islands after a reconnection
process of island separatrices [29]. This reconnection occurred
due to the smaller separation between the hyperbolic point
in the upper (lower) chain and the elliptic point in the lower
(upper) chain caused by the magnetic shear decrease. This
approach between the twin island chains can be understood
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Figure 7. (a) Safety factor and (b) magnetic shear profiles for (dashed dotted blue line) q(a) = 6 and (solid grey line) q(a) = 4 cases.

Figure 8. Poincaré maps for safety factor profile q(a) = 4 at the
plasma edge. The shearless curve is depicted in blue.

by verifying, in figure 9, the lower separation of the two
resonance localizations (where the island chains appear) for
the lower shear case. In figure 9, the resonance localization
is indicated by the condition (dψ/dt)/ω0 = n = 3. The
topological difference between the twin islands around the
shearless invariant curve, observed in the maps of figures 3(d)
and 8, is associated with orbit reconnection. This difference
is a kind of reconnection typical of non-monotonic systems
that present non-twist maps with shearless curves. In addition
to the island reconnection, the reduction in magnetic shear
also induces the onset of meanders, robust invariant curves
on both sides of the shearless curve. The reconnection and
the meanders are common to the non-twist maps as described
in [26, 27].

5. Conclusions

We investigated the influence of electric and magnetic
equilibrium profiles on the plasma edge particle transport in

Figure 9. Resonance conditions around n = 3 for (dashed–dotted
blue line) q(a) = 6 and (solid grey line) q(a) = 4 cases.

tokamaks. To do so, we applied a non-integrable drift-kinetic
model to describe particle transport driven by drift waves in
large aspect ratio tokamaks. In this model the particle transport
is due to the Lagrangian chaotic trajectories of the test particles.
We performed numerical simulations of particle motion by
integrating the canonical equations, for the total flow formed by
the equilibrium sheared flow and a few dominant resonant drift
waves and the sheared equilibrium magnetic field. Thus, we
considered different radial electric field profiles and our results
concerning the particle transport contained the combined
effects of magnetic and electric shears. Consequently, we
studied the transport dependence on the radial profiles of the
electric and magnetic fields. In our numerical simulations
we considered electric shear profiles representative of those
observed in tokamaks with an electric bias. Rather than
comparing our results with particular experiments, we looked
for conceptual transport alterations expected from the profile
modifications created by the biasing.

In our analysis we obtained Poincaré mappings from
numerically integrated particle trajectories and compared the
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extension of chaotic regions for uniform and monotonic
electric and magnetic field profiles with different shears.
Moreover, we also calculated the radial transport for these
different profiles. Thus, we showed that particle transport at
the plasma edge can be reduced by properly modifying the
electric and magnetic shear profiles.

For non-monotonic radial electric field profile, we also
observed non-twist transport barriers displaced from the
shearless point due to the presence of the magnetic shear.
The shearless curve in the Poincaré maps were identified
by the extreme values of the rotation number profiles of the
invariant curves. These barriers are robust and persist for
magnetic shear variations expected in present tokamaks.
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