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Chimera states, characterised by coexistence of coherence and incoherence in coupled dynamical systems, 
have been found in various physical systems, such as mechanical oscillator networks and Josephson-
junction arrays. We used recurrence plots to provide graphical representations of recurrent patterns and 
identify chimera states. Moreover, we show that recurrence plots can be used as a diagnostic of chimera 
states and also to identify the chimera collapse.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Network dynamical systems have been studied as models of 
spatiotemporal complexity. Among the spatiotemporal features 
recognised in coupled systems we can find chaos synchronisation 
[1], suppression [2,3], pattern formation [4], and multistability [5].

Dynamical systems may be modelled by coupled ordinary dif-
ferential equations (CODE). A network of coupled differential equa-
tions has a continuous state variable and time, while the space is 
discrete. CODE present various applications to spatially extended 
systems in nonlinear dynamical systems [6]. For instance, pro-
duction and transfer of energy and information in conservative 
systems [7], creation of hyperchaotic attractors in a system of 
coupled Chua circuits [8], and phase synchronisation between col-
lective rhythms of coupled oscillator groups [9]. Moreover, bio-
physical complex systems may be modelled by coupled differential 
equations, such as tumour growth [10,11], and synchronisation of 
bursting neurons [12,13].

Here we focus on dynamical features in CODE such as coher-
ence and incoherence states. When these states coexist the phe-
nomenon is called a chimera state [14]. The network contains a 
coherent and phase locked domain, and an incoherent domain. The 
coexistence of coherence and incoherence was first observed by 
Kuramoto and Battogtokh in a non-locally coupled phase oscilla-
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tors [15]. The existence of chimera states has also been verified in 
networks with symmetrically coupled identical oscillators [16].

Recently, it has been shown that chimera states can be seen 
in experimental studies. Hagerstrom and coworkers showed that 
these states can be realised in experiments using a liquid-crystal 
spatial light modulator [17]. Tinsley and coworkers reported exper-
imental studies in which they observed chimera states in coupled 
Belousov–Zhabotinsky oscillators [18]. In addition, an experimental 
work about chimera states can be found in Ref. [19], where it was
shown that chimeras could emerge coupled mechanical oscillators. 
The experimental setup was realised with metronomes coupled by 
means of adjustable springs. Swing and metronome displacements 
were measured by digital tracking of UV fluorescent spots located 
on the pendula and swings. Through simple mechanical oscillators, 
known as Huygen clock, Kapitaniak and collaborators [20] verified 
the existence of imperfect chimera states in pendula coupled on 
the ring by means of springs and dampers.

Our main result is to show that recurrence quantification anal-
ysis can be used as a diagnostic of chimera states. Recurrence 
analysis is a graphical method designed to locate hidden recurring 
patterns, structural and non-stationarity changes [21,22]. Recur-
rence quantification can be applied to scientific data. Marwan and 
collaborators [23] applied recurrence analysis of time series to a 
marine palaeo-climate record. They identified the subtle changes 
to the climate regime. Recurrence quantification was also consid-
ered by Zbilut and collaborators [24] as a tool for nonlinear ex-
ploration of non-stationary cardiac signals. Ding analysed the com-
bination of three recurrence quantification analysis variables [25]. 
Local complex recurrence plot structures were explored and the 
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results demonstrated that the combination improved nonlinear dy-
namic discriminant analysis.

With regard to recurrence quantification, we have calculated 
recurrence rate, determinism, and laminarity when the system ex-
hibits chimera states. In this work, we have verified that the re-
currence quantification is a good diagnostic for the determination 
of chimera states, as well as for identification of the collapse of a 
chimera state.

This paper is organised as follows. Section 2 introduces the 
model equations. In Section 3, the plot of recurrence is proposed 
as a diagnostic for the identification of chimera states. In the last 
section, we draw the conclusions.

2. Chimera states

We consider a spatially extended system formed by coupled or-
dinary differential equations, in which the space is discrete, while 
the state variable and the time are continuous. The network to be 
treated in this work is a set of Kuramoto oscillators that can ex-
hibit coherent and incoherent behaviours, and it is given by

�̇k(t) = ωk − 1

2R

k+R∑

j=k−R

sin[�k(t) − � j(t) + α], (1)

where the system is composed of N oscillators, each oscillator k
(1 ≤ k ≤ N) with phase �k has an intrinsic natural frequency ωk , 
R is the coupling range, and α is Sakaguchi’s phase lag parameter 
[26]. Several nontrivial synchronisations can be observed for cer-
tain phase lags, such as decreasing synchronisation with increasing 
coupling strength, coexistence of stable incoherence with a par-
tially synchronised state, and coexistence of two stable partially 
synchronised state [27]. In our simulations we consider r = R/N , 
ωk = 0, and the initial conditions are distributed in the interval 
[−π, π ] aiming to obtain chimera states. For ωk = ω, Abrams and 
Strogatz [28] had obtained chimera states for nonlocal coupled 
oscillators. Rosin and collaborators [29] studied a nonlocally net-
work of coupled electronic oscillators that approximately follows a 
Kuramoto-like model. They assumed identical oscillators to observe 
chimera states, namely the same intrinsic natural frequency for all 
oscillators. Laing and collaborators showed that similar patterns 
occur with nearly identical oscillators [30]. In this article, we con-
sidered a finite range coupling (1) that can exhibit chimera states. 
Moreover, this coupling presents a local (next-neighbour) coupling 
when R = 1, and a global (all-to-all) coupling when R = (N/2) − 1
[31].

Fig. 1 displays the scenario of coherence and incoherence states. 
Space–time plots are showed in the left column, and snapshots 
in the right column for phase lag parameter equal to 1.57, 1.47, 
and 1.37. The dynamics is spatially incoherent in Fig. 1a and 1b
for α = 1.57. Decreasing the value of α for 1.47 we can observe 
chimera state (Fig. 1c), where the oscillators with indices from 5
to 30 are in an incoherent state, while the remaining oscillators 
are in a spatially coherent state (Fig. 1d). In Fig. 1e and 1f, for 
α = 1.37, the dynamics is spatially coherent.

3. Recurrence quantification analysis

We have studied the recurrence plots as a diagnostic of chimera 
states. Recurrence plots was introduced by Eckmann and collabo-
rators [32], and it is based on the visualisation of a square matrix. 
The matrix elements correspond to times at which a state recurs. 
In the case of time series, the recurrence plot shows when the 
time series visits the same region of the phase space. In our case, 
instead of time series we use the recurrence plot in spatial series, 
that is given by

RPi, j = �(ε − ‖�i − � j‖), (2)
Fig. 1. (Colour online.) Space–time plots (left) and snapshots of the phases �i (right) 
for r = 0.35, N = 40, phase lag parameter equal to 1.57, 1.47, and 1.37. The chimera 
state in (c) and (d) results from a carefully chosen initial condition. The colour bar 
represents the values of �i .

where �i ∈ �m (i, j = 1, . . . , N), N is the number of states �i , i
and j in a m-dimensional space, ε is a threshold distance, ||.||
stands for the Euclidean norm, and �(.) is the Heaviside function.

Fig. 2 shows recurrence plots for different values of the of 
the phase lag parameter and three different values of recurrence 
thresholds. In Figs. 2a, b, and c, we consider α equal to 1.57 for 
ε = 0.01, 0.1, and 0.3, respectively, the recurrence plot for the three 
cases shows one diagonal without large structures. When α is 
equal to 1.47 for a small ε value (Fig. 2d) there are few structures, 
and only some few sparse points. For an intermediate ε value the 
plot exhibits not only one diagonal line, but also large structures, 
as a result of coherent regions of a chimera state (Fig. 2e). The 
third case of α = 1.47 (Fig. 2f) is for the biggest ε value. We ob-
serve a huge number of structures due the fact that an incoherent 
region is not anymore distinguished from coherent regions if we 
use an overestimated value of recurrence threshold. For α equal to 
1.37 we can only see one grey region, that is independent of the 
ε value used (Figs. 2g, h, and i). The recurrence plot is completely 
grey due to regular spatial behaviour of the coupled oscillators. 
If we are interested in the quantification of the coherent regions 
observed in a chimera state, our results (Fig. 2) show that the in-
termediate value ε = 0.1 is optimal.

The recurrence quantification analysis can provide information 
about the system through the measures of complexity. A recur-
rence occurs whenever two states �i and � j visits roughly the 
same region in a m-dimensional space. For this reason, we have 
studied the chimera states that could be identified by means of the 
measures: recurrence rate (RR), determinism (DET), and laminarity 
(LAM) [33]. The recurrence rate (RR) is the density of recurrence 
point, given by

RR (ε) = 1

N2

N∑
RPi, j (ε) , (3)
i, j=1
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Fig. 2. Recurrence plots for r = 0.35, N = 40, α = 1.57, and ε equal to (a) 0.01, 
(b) 0.1, and (c) 0.3, α = 1.47, and ε equal to (d) 0.01, (e) 0.1, and (f) 0.3, α = 1.37, 
and ε equal to (g) 0.01, (h) 0.1, and (i) 0.3.

which corresponds the rate between the grey recurrence points 
(RPi, j = 1) and the total number of pixels (grey and white) in a 
recurrence plot. The second measure is given by the number of 
diagonal lines in recurrence plot, which are structures parallels to 
the line of identity (RPi,i = 1, i = 1, 2, . . . , N), and defined as

RPi+k, j+k = 1 (k = 1,2, . . . , l), (4)

RPi, j = RPi+k+1, j+k+1 = 0, (5)

where l is the length of a diagonal line. The determinism is the 
percentage of recurrence points that form diagonal lines,

DET =
∑N

l=lmin
lP (l)

∑N
l=1 lP (l)

, (6)

where P (l) is the frequency distribution of the lengths l of the 
diagonal lines, and lmin is a minimal length. The diagonal lines oc-
curs when a segment in a spatial profile runs parallel to another 
segment. The third measure is related with the presence of vertical 
lines in the recurrence plot. The definition of a vertical line is

RPi, j+k = 1 (k = 1,2, . . . , v), (7)

RPi, j = RPi j+v+1 = 0, (8)

where v is the length of a vertical line. The laminarity is the per-
centage of points that form vertical lines,

LAM =
∑N

v=vmin
v P (v)

∑N
v=1 v P (v)

, (9)

where P (v) is the frequency distribution of the lengths v of the 
vertical lines, and vmin is a minimal vertical line. The vertical 
structures occurs in a recurrence plot when a spatial state remains 
equal or change very little. In particular, the laminarity will be use-
ful in this work to distinguish the coherent and the incoherent in 
the chimera states.

We can see in Fig. 3 the recurrence quantification analysis for 
different values of the phase lag parameter. Fig. 3a, for α = 1.57, 
shows that the laminarity and the determinism present irregu-
lar oscillations with values larger than the recurrence rate, that 
is the case for spatially incoherent state. We have plotted a his-
togram that shows the distribution of lengths of the vertical lines. 
For the spatially incoherent state the histogram presents one peak 
that is associated with a minimum value equal to one (Fig. 3b). 
When α = 1.47 we have the chimera state, and we verify that 
the irregular oscillations of the laminarity and the determinism 
continue with values larger than the recurrence plot, as shown 
in Fig. 3c. However, in this case the values oscillate with am-
plitude larger than the spatially incoherent state. The histogram 
is skewed right, as showed in Fig. 3d. Decreasing the phase lag 
parameter for 1.37 the network exhibits spatially coherent state, 
as a result this behaviour we observe by means Fig. 3e which 
the recurrence rate, the laminarity, and the determinism have val-
ues equal to 1. Consequently, the histogram exhibits one peak at 
N − 1 (Fig. 3f). In addition, we calculate the global order param-

eter Z(t) = 1
N

∣∣∣
∑N

j=1 exp(i� j(t))
∣∣∣, where Z = 1 when the network 

presents completely synchronisation, and Z � 1 for uncorrelated 
behaviour. In Fig. 3, we can see that the global order parameter 
exhibits a small irregular oscillation for the spatially incoherent 
behaviour, irregular oscillation around 0.75 for chimera state, and 
value equal to 1 for the spatially coherent state. Therefore, in these 
situations the recurrence quantification analysis and the global or-
der parameter present similar results.

In this work, we have verified that spatially incoherent state 
exhibits smaller values for the laminarity, determinism, and re-
currence rate than coherent and chimera states. The coherent 
state presents approximately constant values for the laminarity, 
determinism, and recurrence rate. Therefore, the identification of 
chimera states is possible through recurrence quantification analy-
sis, due to the fact that recurrence rate, laminarity, and determin-
ism present not only larger values in the chimera states than in 
spatially incoherent state, but also the values are not constant as 
in spatially coherent state.

It is possible to observe the collapse of chimeras, namely the 
chimera states may disappear after a temporary stable existence. 
After the collapse the system modifies the behaviour from inco-
herent to a coherent. Wolfrum and Omel’chenko studied chimera 
states in identical non-locally coupled phase oscillators [34]. They 
verified that, for a small populations of oscillators, the chimera 
states sudden collapse after a certain time span. With this in mind, 
we consider a network with 40 and 100 oscillators to analyse the 
collapse through recurrence quantification. Fig. 4a and 4b exhibit 
the phase �i in colour scale according to Fig. 1. The time evolu-
tion shows a chimera state that disappears after a certain time. We 
can see the collapse of the chimera for a time approximately equal 
to 26 800 (Fig. 4a) and 2300 (Fig. 4b). In terms of recurrence plot 
this means a presence of some vertical structures before the col-
lapse of the chimera. This can be observed in Fig. 4c and 4d with 
the recurrence plot using the probability distribution of the vertical 
lengths. Before the collapse, we have a positive non-zero value of 
the probability distribution of the vertical lengths, in other words, 
this means that we have the simultaneous coexistence of coher-
ent and incoherent regions. After the collapse, as shown in Fig. 4e, 
the value of the distribution of the vertical length is the maxi-
mum value because the spatial synchronisation of the oscillators. 
As a result, the laminarity, the determinism, the recurrence rate, 
and global order parameter present constant values (equal to 1) 
after the collapse (Fig. 4e), due to the network arrives in a co-
herent state. Nevertheless, if the network arrives in a frequency 
synchronisation, the laminarity, the recurrence rate, and the global 
order parameter present small values, while only the determin-
ism goes to a value equal to 1, as shown in Fig. 4f. Therefore, 
time series of the global order parameter series provide values 
less than one when the breakdown of the chimera is a state of 
a frequency synchronisation. Then, the recurrence quantification 
analysis is able to identify the collapse and distinguish when the 
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Fig. 3. (Colour online.) Recurrence rate (RR), laminarity (LAM), determinism (DET), and global order parameter (Z) for r = 0.35, N = 40, ε = 0.1, (a) α = 1.57, (c) α = 1.47, 
and (e) α = 1.37. Histogram of lengths of the vertical lines for (b) α = 1.57, (d) α = 1.47, and (f) α = 1.37.

Fig. 4. (Colour online.) (a) and (b) i × t where the phase �i are coloured according to the colour bar of Fig. 1, respectively, for r = 0.35, α = 1.47 and N = 40 (left column), 
r = 0.25, α = 1.47 and N = 100 (right column). (c) and (d) temporal evolution of the probability distribution of vertical lengths. (e) and (f) recurrence rate (RR), determinism 
(DET), laminarity (LAM), and global order parameter (Z ) for ε = 0.1.
final state is the spatial synchronisation, or the frequency synchro-
nisation.

We compute the average lifetime T of the chimera states vary-
ing the network size N . Wolfrum and collaborators observed an 
exponential growth T ∼ exp(kN), where k is the exponential rate, 
detecting the collapse by means of the global mean field [34]. We 
obtain the average lifetime through recurrence analysis. According 
to Fig. 4c, the average lifetime can be computed by means of the 
time that orbits, starting from a set of initial conditions, spend be-
fore the values of recurrence rate, determinism, and laminarity are 
equal to one reach. We fix the value of N , and compute the mean 
of the average lifetime for a set of 2000 random initial conditions 
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Fig. 5. (Colour online.) Average collapse time of chimera states as a function of the 
network size for r = 0.35, α = 1.47 and from 2000 trajectories, where the black 
circles are obtained from simulation and the red line is the fitted exponential.

slightly disturbed from the trajectory, as shown in Fig. 4a. Fig. 5
shows the average lifetime of chimera states as a function of the 
network size, where the black circles are obtained from simula-
tion and the red line is the fitted exponential growth given by 
T = 4.09 exp(0.22N). As expected the lifetime increases exponen-
tially with the network size [34], with a characteristic exponential 
rate k = 0.22.

4. Conclusions

Since the discovery of chimera states, numerous studies have 
been realised about the evolution of the chimera state using the 
global and local order parameter as diagnostic tool. The order 
parameter presents value close to unity for the coherent state 
and decreases in spatial incoherence domains. Before the chimera 
collapse the incoherent regions are detected using local order pa-
rameter, and after the collapse the network presents only coherent 
regions identified when the global order parameter value is equal 
one. In this work, we show that recurrence quantification analy-
sis is also an useful tool as diagnostic not only to identify chimera 
states, but also to determine the chimera collapse. The quantifica-
tion of recurrence plots is a powerful tool that can also provide the 
degree of determinism, state changes, and degrees of complexity 
of systems.

In conclusion, we have shown that recurrence quantification 
analysis can be used as a diagnostic of chimera states. The dif-
ference between chimera states and spatially incoherent states 
is showed by laminarity, determinism, and recurrence rate. The 
chimera states present values larger than spatially incoherent 
states. However, the difference between chimera states and coher-
ent states are observed through oscillations in the values com-
puted for the chimera states. The histogram of lengths of the 
vertical lines obtained from recurrence plots is skewed right for 
the chimera states. Moreover, the recurrence quantification anal-
ysis can be used to identify the collapse of chimera states. After 
the collapse of the chimera we can see that the laminarity, the 
determinism, and the recurrence rate present constant values. The 
recurrence quantification is a good diagnostic tool to identify the 
chimera collapse when the final state is not only the spatial syn-
chronisation, but also the frequency synchronisation. In the fre-
quency synchronisation, the network presents a high determinism 
while the laminarity and recurrence rate are low. We also verified 
that the average life time of chimera states increases exponentially 
as a function of the size network.
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