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• The distribution tail has humps, that is an evidence of dragon-kings extreme events in three-wave model.
• Aiming to suppress the dragon-kings, we propose a fourth wave as a control method.
• Fourth-wave applied during a short time can prevent catastrophic dragon-kings events in the three-wave interactions.
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a b s t r a c t

Extreme events are by definition rare and exhibit unusual values of relevant observables.
In literature, it is possible to find many studies about the predictability and suppression
of extreme events. In this work, we show the existence of dragon-kings extreme events
in nonlinear three-wave interactions. Dragon-king extreme events, identified by phase
transitions, tipping points and catastrophes, affects fluctuating systems. We show that
these events can be avoided by adding a perturbing small amplitude wave to the system.

© 2019 Published by Elsevier B.V.

1. Introduction

Extreme events are by definition rare and exhibit unusual values of relevant observables. These events have been
observed in weather [1], optics [2], plasma physics [3], records with long-range memory [4], and stock markets [5]. In
optical rogue waves, extreme events emerge from a turbulent state [6]. Riccardo et al. [7] reported that extreme events
are compatible with general halo current trends in magnetically confined plasma physics in the tokamak Joint European
Torus (JET).

Extreme events have been estimated through the extrapolation of power law frequency-size distributions [8]. Many
extreme events, known as dragon-kings, do not belong to a power law distribution [9]. Sornette [9] introduced the concept
of dragon-kings corresponding to meaningful outliers. Dragon-kings events are characterised by frequency distribution
with extreme valued outliers about the power law tails [10]. Devastating effects can happen due to these events, then it
is important to find a way to suppress or anticipate them. The dragon-kings were reported by Johansen and Sornette [11]
in the distribution of financial drawdowns. Sornette and Ouillon [12] discussed the mechanisms, statistical tests, and
empirical evidences of dragon-kings. Dragon-king extreme events were found in neuronal networks by Mishra et al. [13].
They presented evidence of these events in coupled bursting neurons.
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Fig. 1. Temporal evolution of wave amplitudes (a) |A1| and (b) |A2| of the nonlinear three-wave interactions model (r = 0). The figure exhibits
chaotic behaviour for �3 = 2.2 and ⌫ = �14.5.

Recently, many articles about the suppression of extreme events have been published. Direct corrective reset to the
system was used as a suppression method [14]. Cavalcante et al. [15] studied coupled chaotic oscillators and showed that
extreme events can be suppressed by means of tiny perturbations. Small perturbations were used to reduce the appearance
of extreme events in damped one-dimensional nonlinear Schrödinger equation [16]. Krüger et al. [17] demonstrated that
the existence of extreme events can be controlled by means of the properties of the phase space in Hamiltonian systems.

We analyse a nonlinear three-wave interactions model. The nonlinear three-wave interaction is the lowest order effect
in systems described by waves superposition [18]. It plays an important role in nonlinear optics, plasma physics and
hydrodynamics [19]. Chian and Abalde [20] developed a nonlinear theory of three-wave interactions of Langmuir waves
with whistler waves in the solar wind. Batista et al. [21] considered three-wave interaction to investigate drift-wave
turbulence in tokamak edge plasma. In our simulations, we identify Lorentzian pulses. These pulses have been observed
in magnetised plasmas and interactions of drift-Alfvén waves [22]. They can appear in flow trajectories due to topological
alterations and in chaotic orbits [23,24].

We calculate the frequency-size distributions of the wave amplitude in the three-wave interactions model. Three-wave
coupling was used to analyse drift wave turbulence and transport in magnetised plasma [25]. Experimental evidence of
three-wave coupling was observed on plasma turbulence by Hidalgo et al. [26]. Galuzio et al. [16] showed the occurrence
of extreme events in wave turbulence. In our results, depending on the parameter, the distribution follows a power law,
except for large sizes. This behaviour indicates the existence of dragon-kings extreme events. In this work, we focus
on the suppress of the dragon-kings through a fourth wave. Batista et al. [27] used a fourth resonant wave of small
amplitude to control chaotic behaviour of three interacting modes. Coexistence of attractors was observed in a dissipative
nonlinear parametric four-wave interactions [28]. We show that a fourth wave is able to kill the dragon-kings in nonlinear
three-wave interactions.

The paper is organised as follows: In Section 2, we describe the nonlinear three-wave interactions model. Section 3
shows the dragon-kings extreme events and presents our method to suppress these events. In the last Section, we draw
our conclusions.

2. Nonlinear three-wave interactions model

The nonlinear three-wave interactions are described by three first-order differential equations [29–31]. We include a
fourth wave interacting with the first and second waves [28]. The equations of the four-wave interactions are given by

Ȧ1 = ⌫1A1 + A2A3 � rA

⇤
2A4, (1)

Ȧ2 = ⌫2A2 � A1A
⇤
3 � rA

⇤
1A4, (2)

Ȧ3 = ⌫3A3 � A1A
⇤
2 + i�3A3, (3)

Ȧ4 = ⌫4A4 � i�4A4 + rA1A2, (4)

where A

i

is the wave amplitude (i = 1, 2, 3, 4), A⇤
i

denotes the conjugate complex, ⌫1 is the energy injection coefficient,
⌫
i

(i = 2, 3, 4) is the dissipation parameter, and �3,4 are a small mismatch. We consider ⌫1 = 1, ⌫2 = ⌫3 = ⌫,
�4 = 0, ⌫4 = �0.83, transient time equal to 104, and random initial condition in the interval [0, 1] for A

i

, and A

⇤
i

. The r

parameter controls the intensity of the fourth wave, at the limit when r = 0, the four-wave interaction model becomes
the three-wave interaction model.

The temporal evolution of waves |A1| and |A2| for the three-wave model is exhibited in Figs. 1(a) and 1(b), respectively.
The time evolution of wave |A3| is similar to |A2|, so it was not shown in Fig. 1. We consider �3 = 2.2, ⌫ = �14.5, and
r = 0. For the considered parameters, the system exhibits chaotic behaviour, namely the dynamical system is sensitive
to initial conditions. The chaotic attractor is plotted in Fig. 2(a). The system has a large number of periodic orbits that can
be found by varying the parameter �3. Fig. 2(b) shows a period-4 stable periodic orbit for �3 = 1.1 and ⌫ = �14.5.

The short time interval of the temporal evolution (pulse) of |A2| (Fig. 1(b)) can be fitted by a Lorentzian function, as
shown in Fig. 3(a) (red line) for the same parameter values of Fig. 1. Recently, Lorentzian pulses have been associated with
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Fig. 2. |A2| versus |A1| for the nonlinear three-wave interactions model (r = 0). (a) Chaotic attractor for �3 = 2.2 and ⌫ = �14.5. (b) Period-4 stable
orbits for �3 = 1.1 and ⌫ = �14.5 (periodic evolution). We consider a transient equal to 104 and r = 0.

Fig. 3. (a) Temporal evolution of |A2| (black line) and its fit by a Lorentzian function (red line) for �3 = 2.2, ⌫ = �14.5, and r = 0. (b) Bifurcation
diagram for �3 showing periodic and chaotic regimes.

Fig. 4. Probability density function (PDF) for r = 0, (a) �3 = 2.2 and ⌫ = �14.5, and (b) �3 = 2 and ⌫ = �15.

chaotic behaviour [23,24]. Chaotic dynamics are characterised by exponential power spectrum. Maggs and Morales [24]
reported that Lorentzian pulses are responsible for power spectrum with exponential form. They showed results from
different plasma devices, where it is observed exponential fluctuation power spectra due to the occurrence of Lorentzian
pulses in time signals of observed quantities [23]. In fact, the chaotic behaviour for these parameters is seen in Fig. 3(b)
where is plotted the bifurcation diagram for the maximum value of |A2| as a function of �3.

3. Dragon-kings death

Dragon-kings are extreme events that belong to a special class of events. The extreme events are characterised by
power law statistics. However, the dragon-kings are beyond the power laws. They exhibit humps in the tail of the
distributions for the extended size of events [9].

We calculate the probability density function (PDF) of the temporal evolution of |A2|. Fig. 4 shows the appearance of
dragon-kings in the three-wave interactions model. In Figs. 4(a) and 4(b), we consider �3 = 2.2 and ⌫ = �14.5, and
�3 = 2 and ⌫ = �15, respectively. The dragon-kings are identified by a hump in the PDF tail. The events with amplitude
above 10 are outliers and generate the dragon-kings.

With regard to the four-wave model, the fourth-wave interacts with the first and second waves. Lopes and Chian [31]
used a small sinusoidal wave to control chaos in the nonlinear three-wave coupling. They demonstrated that a desired
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Fig. 5. The three-wave interactions model with a fourth wave interacting with the first and second waves, where r is the parameter that controls
the intensity of the fourth wave. (a) r and (b) |A4| as a function of t . (c) Temporal evolution of |A1| for �3 = 2.2, ⌫ = �14.5, r = 0 (red line), r = 0.5
(black line), and �t = 0.4.

Fig. 6. (a) Probability density function (PDF) for �3 = 2.2, ⌫ = �14.5, r = 0 (red line), r = 0.5 (black line), and �t = 0.4. We verify that the
dragon-kings events are suppressed for r = 0.5 (black line). (b) Lorentzian fitting for r = 0 (blue line) and r = 0.5 (green line).

periodic orbit can be obtained applying a fourth wave with small amplitude and coupled to the first and second waves.
Aiming to suppress the dragon-kings, we apply a fourth wave (|A4|) during a time interval �t = 0.4 and r = 0.5 when
d|A1|/dt > 0, as shown in Fig. 5(a). Fig. 5(b) exhibits the temporal evolution of |A4|. The energy of the first wave is
decreased due to the application of the fourth wave (Fig. 5(c)). In Fig. 5(c), we see the behaviour of |A1| for �3 = 2.2 and
⌫ = �14.5 when r = 0 (red line) and r = 0.5 (black line).

Fig. 6(a) displays the PDF for r = 0 (red line), r = 0.5 (black line), and �t = 0.4. In our simulations, the fourth wave
is able to produce a small alteration in the PDF. The PDF maintains the same slope, but the hump in the tail disappears,
namely dragon-kings death. In Fig. 6(b), we see Lorentzian pulses not only in the nonlinear three-wave interactions (blue
line), but also in the wave interactions (green line) where the dragon-kings are suppressed. Then, a fourth-wave kills the
dragon-kings and does not destroy the Lorentzian pulses observed without the perturbation.

4. Conclusions

In conclusion, we study extreme events in a nonlinear three-wave interactions model. This model exhibits a rich variety
of dynamical behaviour, such as periodic and chaotic regime. In the chaotic region, we find Lorentzian pulses, as well
as extreme events. The Lorentzian pulses appear in many physical systems and have been used to characterise chaotic
dynamics. Extreme events are usually rare and the event size distributions follow a power law. Depending on the system
parameters, our simulations show a power law dependence in the wave amplitude distribution, except for larger values
of the amplitude. The distribution tail has humps, that is an evidence of dragon-kings extreme events.

We consider an external perturbation in the three-wave interactions by means of a fourth wave. Lopes and Chian [31]
reported that desired periodic orbits can be achieved applying a wave with small amplitude on the chaotic dynamics of
nonlinear three-wave coupling. In this work, we focus on the suppression of dragon-kings events, for which the system
remains chaotic after the inclusion of a new wave. To do this, we include a fourth-wave which is applied during a short
time �t = 0.4 and increase the intensity of this wave through the parameter r . Increasing r , we verify dragon-kings
suppression for r = 0.5. In the interval 0 < r  0.5, the transition to dragon-kings death is not abrupt. As future work,
we plan to analyse the regions in the parameter space �t versus r for which the fourth-wave can prevent catastrophic
dragon-kings events in the three-wave interactions.
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We believe that in other systems there is a night king, i.e. an external perturbation, that is able to kill only the dragon-
kings. Cavalcante et al. [15] showed that dragon-kings events can be suppressed [32] in a pair of electronic circuits by
means of tiny perturbations.

Acknowledgements

This work was made possible by support from the following Brazilian government agencies: Fundação Araucária, Brazil,
CNPq, Brazil, CAPES, Brazil, and FAPESP, Brazil (2011/19296-1, 2015/50122-0, and 2015/07311-7).

References

[1] P. Sura, A general perspective of extreme events in weather and climate, Atmos. Res. 101 (2011) 1–10.
[2] M.G. Clerc, G. González-Cortés, M. Wilson, Extreme events induced by spatiotemporal chaos in experimental optical patterns, Opt. Lett. 41

(2016) 2711–2714.
[3] A. Sicard-Piet, D. Boscher, R.B. Horne, N.P. Meredith, V. Maget, Effect of plasma density on diffusion rates due to wave particle interactions

with chorus and plasmaspheric hiss: extreme event analysis, Ann. Geophys. 32 (2014) 1059–1071.
[4] M.I. Bogachev, A. Bunde, On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise

robustness, Physica A 390 (2011) 2240–2250.
[5] G. Cao, M. Zhang, Extreme values in the Chinese and American stock markets based on detrended fluctuation analysis, Physica A 436 (2015)

25–35.
[6] N. Akhmediev, B. Kibler, F. Baronio, M. Beli¢, W.-P. Zhong, Y. Zhang, W. Chang, J.M. Soto-Crespo, P. Vouzas, P. Grelu, C. Lecaplain, K. Hammani,

S. Rica, A. Picozzi, M. Tlidi, K. Panajotov, A. Mussot, A. Bendahmane, P. Szriftgiser, G. Genty, J. Dudley, A. Kudlinski, A. Demircan, U. Morgner,
S. Amiraranashvili, C. Bree, G. Steinmeyer, C. Masoller, N.G.R. Broderick, A.F.J. Runge, M. Erkintalo, S. Residori, U. Bortolozzo, F.T. Arecchi, S.
Wabnitz, C.G. Tiofack, S. Coulibaly, M. Taki, Roadmap on optical rogue waves and extreme events, J. Opt. 18 (2016) 063001–63037.

[7] V. Riccardo, T.C. Hender, P.J. Lomas, B. Alper, T. Bolzonella, P. de Vries, G.P. Maddison, JET EFDA contributors analysis of JET halo currents,
Plasma Phys. Control. Fusion 46 (2004) 925–934.

[8] M.K. Sachs, M.R. Yoder, D.L. Turcotte, J.B. Rundle, B.D. Malamud, Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions,
landslides, wildfires, floods, and SOC models, Eur. Phys. J. Special Top. 205 (2012) 167–182.

[9] D. Sornette, Dragon-Kings, Black swans and the prediction of crises, Intl. J. Terraspace Sci. Eng. 2 (2009) 1–18.
[10] M. Riva, S.P. Neuman, A. Guadagnini, On the identification of dragon kings among extreme-valued outliers, Nonlinear Processes Geophys. 20

(2013) 549–561.
[11] A. Johansen, D. Sornette, Stock market crashes are outliers, Eur. Phys. J. B 1 (1998) 141–143.
[12] D. Sornette, G. Ouillon, Dragon-kings: mechanisms, statistical methods and empirical evidence, Eur. Phys. J. Special Top. 205 (2012) 1–26.
[13] A. Mishra, S. Saha, M. Vigneshwaran, P. Pal, T. Kapitaniak, S.K. Dana, Dragon-king-like extreme events in coupled bursting neurons, Phys. Rev.

E 97 (2018) 062311–62317.
[14] J. Zamora-Munt, C.R. Mirasso, R. Tarol, Suppression of deterministic and stochastic extreme desynchronization events using anticipated

synchronization, Phys. Rev. E 89 (2014) 012921–12927.
[15] H.L.D. de S. Cavalcante, M. Oriá, D. Sornette, E. Ott, D.J. Gauthier, Predictability and suppression of extreme events in a chaotic system, Phys.

Rev. Lett. 111 (2013) 198701–198705.
[16] P.P. Galuzio, R.L. Viana, S.R. Lopes, Control of extreme events in the bubbling onset of wave turbulence, Phys. Rev. E 89 (2014) 040901(R)-5.
[17] T.S. Krüger, P.P. Galuzio, T.L. Prado, R.L. Viana, J.D. Szezech Jr., S.R. Lopes, Mechanism for stickiness suppression during extreme events in

Hamiltonian systems, Phys. Rev. E 91 (2015) 062903–62906.
[18] O. Yaakobi, L. Friedland, Multidimensional, Autoresonant three-wave interactions, Phys. Plasmas 15 (2008) 102104–102109.
[19] D.J. Kaup, A. Reiman, A. Bers, Space–time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium, Rev. Modern

Phys. 51 (1979) 275–309.
[20] A.C.-L. Chian, J.R. Abalde, Nonlinear coupling of Langmuir waves with whistler waves in the solar wind, Sol. Phys. 184 (1999) 403–419.
[21] A.M. Batista, I.L. Caldas, S.R. Lopes, R.L. Viana, W. Horton, P.J. Morrison, Nonlinear three-mode interaction and drift-wave turbulence in a

tokamak edge plasma, Phys. Plasmas 13 (2006) 042510.
[22] D.C. Pace, M. Shi, J.E. Maggs, G.J. Morales, T.A. Carter, Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas, Phys.

Plasmas 15 (2008) 122304–122313.
[23] J.E. Maggs, G.J. Morales, Exponential.power. spectra, Exponential power spectra deterministic chaos and Lorentzian pulses in plasma edge

dynamics, Plasma Phys. Control. Fusion 54 (2012) 124041(R)-7.
[24] J.E. Maggs, G.J. Morales, Origin of Lorentzian pulses in deterministic chaos, Phys. Rev. E 86 (2012) 015401–15405.
[25] W. Horton, Nonlinear drift waves and transport in magnetized plasma, Phys. Rep. 192 (1990) 1–177.
[26] C. Hidalgo, E. Sánchez, T. Estrada, B. Brañas, Ch.P. Ritz, T. Uckan, J. Harris, A.J. Wootton, Experimental evidence of three-wave coupling on

plasma turbulence, Phys. Rev. Lett. 71 (1993) 3127–3130.
[27] A.M. Batista, I.L. Caldas, S.R. Lopes, R.L. Viana, Low-dimensional chaos and wave turbulence in plasmas, Phil. Trans. R. Soc. A 366 (2008) 609–620.
[28] J.C. Coninck, S.R. Lopes, R.L. Viana, Multistability and phase-space structure of dissipative nonlinear parametric four-wave interactions, Phys.

Rev. E 70 (2004) 056403–56409.
[29] J.M. Wersinger, J.M. Finn, E. Ott, Bifurcations and strange behavior in instability saturation by nonlinear mode coupling, Phys. Rev. Lett. 44

(1980) 453–456.
[30] C. Meunier, M.N. Bussac, G. Laval, Intermittency at the onset of stochasticity in nonlinear resonant coupling processes, Physica D 4 (1982)

236–243.
[31] S.R. Lopes, A.C.-L. Chian, Controlling chaos in nonlinear three-wave coupling, Phys. Rev. E 54 (1996) 170–174.
[32] A.E. Motter, How to control your dragons, Physics 6 (2013) 120.

http://refhub.elsevier.com/S0378-4371(19)31328-7/sb1
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb2
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb2
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb2
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb3
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb3
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb3
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb4
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb4
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb4
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb5
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb5
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb5
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb6
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb7
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb7
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb7
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb8
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb8
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb8
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb9
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb10
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb10
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb10
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb11
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb12
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb13
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb13
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb13
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb14
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb14
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb14
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb15
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb15
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb15
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb16
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb17
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb17
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb17
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb18
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb19
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb19
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb19
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb20
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb21
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb21
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb21
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb22
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb22
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb22
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb23
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb23
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb23
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb24
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb25
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb26
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb26
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb26
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb27
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb28
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb28
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb28
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb29
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb29
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb29
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb30
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb30
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb30
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb31
http://refhub.elsevier.com/S0378-4371(19)31328-7/sb32

