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Abstract

We propose a Hamiltonian formulation to study the magnetic field line structure in a tokamak with ergodic

magnetic limiter. An analytical stroboscopic mapping, derived from this formulation, is used to investigate the onset of

global field line chaos at the plasma edge and the Hamiltonian bifurcations of magnetic axes. � 2002 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Among the large number of fusion-oriented plasma devices, the tokamak seems to be one of the most promising

candidates for a future thermonuclear power plant. Many factors conspire against the obtention of long lasting plasma

confinement in tokamaks, however [1,2]. One of them is the ubiquitous presence of plasma instabilities, that may

destroy plasma confinement due to a variety of causes [3–5]. Another major problem in tokamak physics is the control

of plasma contamination by impurities released from the inner wall by surface processes [6].

Tokamaks are toroidal pinches in which plasmas are generated by ohmic heating of a filling gas and confined by

externally applied magnetic fields: a toroidal field produced by external coils, and a poloidal field generated by the

plasma column itself [1,2]. This combination will be called the equilibrium field. The corresponding magnetic field lines

have helical shape so that, at least in a first approximation, particles are confined by them. We may think of these field

lines as lying on magnetic surfaces with topology of nested tori.

From the point of view of a magnetohydrodynamical (MHD) theory, these surfaces are also isobaric ones, on which

the plasma expansion caused by a pressure gradient is counterbalanced by the Lorentz force resulting from the in-

teraction between the equilibrium magnetic field and the plasma electric current density. The existence of closed toroidal

magnetic surfaces is a necessary, albeit not sufficient, condition for plasma confinement in tokamaks [3,7].

In order to control the abovementioned plasma–wall interactions, that may lead to loss of confinement, it has been

proposed to create a cold boundary layer of chaotic field lines in the periphery of the tokamak vessel [8–10]. This region

comprises the outer plasma column and the vacuum region that surrounds it from the inner tokamak wall. This can be

accomplished by destroying some, but not all, magnetic surfaces located in this region. A way to do this, without

spoiling the plasma column itself, is to generate external magnetic fields that interact with the equilibrium field and

cause a selective destruction of magnetic surfaces, which is the basic principle of the ergodic magnetic limiter concept.

Chaotic magnetic field lines are taken here from a magneto-static perspective, i.e., there is sensibility to initial

conditions in the sense that two field line points, very close from each other, evolve through a large number of revo-

lutions around the tokamak so that the distance between the resulting field lines deviates with a positive exponential

Chaos, Solitons and Fractals 14 (2002) 403–423
www.elsevier.com/locate/chaos

*Corresponding author.

E-mail address: elton@if.usp.br (E.C. da Silva).

0960-0779/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0960-0779 (01 )00133-3



rate [3,7]. By identifying field line equations with canonical equations, we can build a Hamiltonian theory for the

magnetic field line structure in symmetrical systems [11,12]. The equilibrium field is a one degree-of-freedom, hence

integrable, Hamiltonian system. In this framework we identify magnetic surfaces with KAM tori and chaos appears

from the mechanism widely understood for this type of dynamical systems [13].

The application of magnetostatic perturbations due to currents external to the tokamak vessel, causes the de-

struction of some, but not all, magnetic surfaces [8–10]. In the Hamiltonian theory of near-integrable systems, which is

applicable if the perturbing currents are not too large, we know that some surfaces are destroyed, producing island-

shaped structures that resemble the orbit structure of a nonlinear pendulum [14–16]. In the plasma physics literature

these structures are named magnetic islands, and they have a complicated structure near their hyperbolic (unstable)

fixed points, in the sense that the invariant manifolds that stem from these points intercept each other in a rather

complicated way, forming the so-called homoclinic figure. The field line dynamics on these homoclinic points is chaotic

[14].

According to the KAM theorem however, there remains a large number of surviving, albeit distorted, magnetic

surfaces. They act as barriers, preventing large scale field line diffusion [12]. On the other hand, the use of an ergodic

magnetic limiter requires a wide region of chaotic field lines in the tokamak periphery. The transition to such a situation

occurs in an abrupt way, since one requires that no undestructed magnetic surfaces should exist between neighbor

magnetic islands. If this is true, the locally chaotic regions related to each islands’ separatrices may coalesce and yield

large scale chaotic motion [15].

As we further increase the perturbation strength, other phenomena take place. Even after a widespread chaotic

region is created, the islands’ centers are still stable fixed points and surrounded by an increasingly small number of

KAM tori. At some another critical perturbation intensity, however, even those centers can lose stability and become

unstable. Moreover, after we reach this critical parameter value, two new stable fixed points appear. This configures a

bifurcation, that has important consequences, since it implies both in the disappearance of a magnetic axis (degenerate

surface with zero radius) as well as in the formation of two new magnetic axes, altering in a dramatic way the topology

of magnetic confinement.

Besides the ergodic limiter, the ergodic divertor has received great attention in modern tokamak research. In the

ergodic divertor, the separatrix between the last confining magnetic surface and the open surfaces is replaced by a layer

of chaotic field lines that divert plasma particles to divertor plates, where they can be recycled and pumped to reduce

impurity levels in the plasma [17,18]. Ergodic divertors have received treatments based on simple analytical maps for

field lines [19] and more recently there were used canonical mappings from a Hamiltonian treatment [20,21]. It turns out

that some simple twist maps like the Chirikov–Taylor standard map may not be appropriate to model field line be-

havior [22,23].

The ergodic limiter has been studied by means of a simplified mapping [15] that has been later improved with to-

roidal corrections and parameters describing the equilibrium and perturbed magnetic fields [24,25]. The ergodic limiter

is a symmetry breaking form of perturbation, in the sense that it spoils axisymmetry of the equilibrium tokamak field.

The influence of the type of symmetry-breaking perturbation was studied from the point of view of analytical and

numerical field line maps [26]. A Hamiltonian treatment of ergodic limiters has been proposed in a rectangular ge-

ometry [27]. We have recently proposed a Hamiltonian map in a realistic toroidal geometry and using magnetic fields

consistent with a general MHD equilibrium theory [28]. This map may be derived from the canonical equations with a

field line Hamiltonian where the ergodic limiter action is supposed to be a sequence of delta-functions in the toroidal

direction.

The purpose of this paper is twofold: we will study the onset of magnetic field line chaos produced by an ergodic

limiter, by analyzing the interaction between adjacent magnetic islands. Secondly, we investigate bifurcations that occur

before the mainly chaotic region is generated in the tokamak periphery. We will use an analytically obtained field line

mapping [28]. The advantage of this procedure, in comparison with a direct numerical integration of field line equa-

tions, is the higher computation speed of map iterations compared with usual integration schemes, like predictor–

corrector methods for differential equation. This difference may be crucial if long-term behavior of field lines is being

considered, as in numerical studies of anomalous diffusion [29]. However, the use of oversimplified physical models for

both the equilibrium and the ergodic limiter magnetic field may lead to misleading results, so that we use in this work an

appropriate geometry to fully incorporate toroidicity effects, and a MHD equilibrium model from which the equilib-

rium field is obtained.

This paper is organized as follows: in Section 2 we present the model fields for the equilibrium and the ergodic limiter

perturbation, an analytically obtained field line mapping, and an explicit form of a field line Hamiltonian. Section 3 is

devoted to an application of standard perturbation techniques to describe the magnetic island structure, which gives the

location and width of each island of interest. Section 4 focuses on the onset of chaos, describing the application of

a modified Chirikov criterion, and discusses the conditions under which we get chaotic behavior in the tokamak
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periphery. In Section 5 we study bifurcations that occur after global field line chaos. Our conclusions are left to the last

section.

2. Model fields

In Fig. 1 we depict the basic tokamak geometry to be used throughout this paper. The tokamak vessel has a minor

radius b and a major radius R0, so that an aspect ratio A ¼ R0=b can be defined. Polar coordinates ðr; hÞ may be defined

from the minor axis, with U as a toroidal angle. This choice of coordinates may give inaccurate results, since the re-

sulting coordinate surfaces may not match, even in an approximate way, actual equilibrium magnetic surfaces. This has

led us to the use of a (non-orthogonal) polar toroidal coordinate system ðrt; ht;utÞ [30]. In the large aspect ratio limit

ðA � 1Þ these coordinates reduce to the polar coordinates ðr; h;UÞ. For arbitrary aspect ratio they may be defined in

terms of the toroidal coordinates ðn;x;UÞ [31] by the following relations:

rt ¼
R0
0

cosh n � cosx
; ð1Þ

ht ¼ p � x; ð2Þ

ut ¼ U; ð3Þ

where R0
0 is the magnetic axis radius (defined as a degenerated magnetic surface of zero volume), different from R0 by a

small quantity called Shafranov shift. In Fig. 2 we depict some of the coordinate surfaces for this system, in the plane

u ¼ 0, and ðR; ZÞ are usual cylindrical coordinates.

The tokamak equilibrium magnetic field B0 is obtained from an ideal MHD static equilibrium model, described by

the following equations [1,2,12]

J� B0 ¼ rp; ð4Þ

r � B0 ¼ l0J; ð5Þ

r 	 B0 ¼ 0; ð6Þ

where p and J are the pressure and current density, respectively. We assume that the equilibrium field is axisymmetric,

i.e., physical quantities of interest do not depend on the toroidal angle ut. Taking the dot product of (4) with B0 results

in B0 	 rp ¼ 0, so that the magnetic field lies on constant pressure surfaces with the topology of closed tori. These

magnetic surfaces may be also described by a poloidal flux Wp ¼ Wpðrt; htÞ in such a way that

B0 	 rWp ¼ 0: ð7Þ

Fig. 1. Schematic diagram of a tokamak.
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Another scalar function that is necessary to describe the equilibrium field is the poloidal current I ¼ Iðrt; htÞ satisfying

B0 	 rI ¼ 0: ð8Þ

The set of MHD Eqs. (4)–(6) may be shown to be equivalent, in the axisymmetric case, to a partial differential (Grad–

Schl€uuter–Shafranov) equation involving the two scalar functions Wp and I. In the polar toroidal coordinate system used

in this work, this equation is written as [32]:

1

rt

o

ort
rt
oWp

ort

� �
þ 1

r2t

o2Wp

oh2
t

¼ l0J3ðWpÞ þ l0R
02
0

dp
dWp

2
rt
R0
0

cos ht

�
þ r2t
R02
0

sin2 ht

!

þ rt
R0
0

cos ht 2
o2Wp

or2t

��
þ 1

rt

oWp

ort

�
þ sin ht

1

r2t

oWp

oht

�
� 2

rt

o2Wp

ohtort

��
; ð9Þ

where the toroidal current density is given by

J3ðWpÞ ¼ �R02
0

dp
dWp

� d

dWp

1

2
l0I

2

� �
: ð10Þ

The contravariant components of the equilibrium magnetic field, according to Eqs. (7) and (8), are

B1
0 ¼ � 1

R0
0rt

oWp

oht

; ð11Þ

B2
0 ¼

1

R0
0rt

oWp

ort
; ð12Þ

B3
0 ¼ � l0I

R2
; ð13Þ

where

R2 ¼ R0
02 1

"
� 2

rt
R0
0

cos ht �
rt
R0
0

� �2

sin2 ht

#
: ð14Þ

(m)

(m)

Fig. 2. Some coordinate surfaces of the polar toroidal coordinate system in the u ¼ 0 plane.
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We assume, at the large aspect ratio limit, that in lowest order the poloidal flux does not depend on ht, i.e., WpðrtÞ. In
this case, Eq. (9) reduces to an equilibrium equation similar to that obtained in a cylindrical geometry, but in terms of rt
[1]. The intersections of magnetic surfaces WpðrtÞ ¼ const: with a toroidal plane are not concentric circles but present a

Shafranov shift toward the exterior equatorial region [30]. Equilibrium magnetic surfaces are well-approximated by

rt ¼ const: coordinate surfaces.

The unknown function Wp in Eq. (9) appears both as a dependent and independent variable. Hence, in order to seek

a solution for Eq. (9) we need to assume profiles for both the pressure p ¼ pðWpÞ and current function I ¼ IðWpÞ. In
lowest order, however, there is another and easier way to proceed, since it is sufficient to assume a single spatial profile

for the toroidal current density J3, as it is already given by Eq. (10) in terms of p and I. We are free to choose any profile

consistent with the boundary conditions to be adopted. In particular the plasma density must vanish at r ¼ a, the
plasma radius that is fixed by a material ring mounted inside the chamber. In this paper we adopt a peaked current

profile, commonly observed in tokamak discharges [1,2], and given by

J3ðrtÞ ¼
IpR0

0

pa2
ðc þ 1Þ 1

�
� r2t
a2

�c

; ð15Þ

where Ip is the total plasma current and c is a positive constant.

An approximate solution for (9) may be sought expanding the poloidal flux Wp in powers of the aspect ratio rt=R0
0.

The details of this calculation may be found in [28]. At lowest order the equilibrium field contravariant components are

given by

B1
0 ¼ 0; ð16Þ

B2
0 ¼

l0Ip
2pr2t

1

"
� 1

�
� r2t
a2

�cþ1
#
; ð17Þ

B3
0 ¼

l0Ie
2pR02

0

1

�
� 2

rt
R0
0

cos ht

��1

; ð18Þ

where Ie � �2pI is the external current that generates the equilibrium toroidal field. Field lines spiral along the

magnetic surfaces with a specific pitch characterized by a winding number, a term much used in Hamiltonian dynamics.

In plasma physics its inverse, or safety factor, is more often used. If it has a rational (irrational) value, the corre-

sponding surface is also called a rational (irrational) one. The name ‘‘safety factor’’ comes from plasma stability criteria

involving the equilibrium field at the magnetic axis.

We define a poloidally averaged safety factor as

qðrtÞ ¼
1

2p

Z 2p

0

B3
0ðrt; htÞ

B2
0ðrt; htÞ

dht ð19Þ

Using Eqs. (17) and (18) there results

qðrtÞ ¼ qcðrtÞ 1

�
� 4

r2t
R02
0

!�1=2

; ð20Þ

where

qcðrtÞ ¼
Ie
Ip

r2t
R02
0

1

"
� 1

�
� r2t
a2

�cþ1
#�1

; ð21Þ

We suppose that qð0Þ ¼ 1, in order to avoid certain instabilities [1,2], so that it suffices to specify c in order to have

qðaÞ, so we choose qðaÞ � 5. In the numerical simulations to be described in this paper, we normalize the minor

radius bt � b and plasma radius a to the major radius R0
0, so that a=R0

0 ¼ 0:26, bt=R0
0 ¼ 0:36 [4]. Fig. 3(a) shows

some equilibrium flux surfaces for this set of parameters, and Fig. 3(b) depicts the corresponding radial profile of

the safety factor.

The design for the ergodic magnetic limiter to be considered here is essentially the same as in [28], and consists of Na

current rings of length ‘ located symmetrically along the toroidal circumference of the tokamak (Fig. 4). These current

rings may be regarded as slices of a pair of external helical windings located at the tokamak minor radius rt ¼ bt,
conducting a current Ih in opposite senses for adjacent conductors. The role of these windings is to induce a resonant
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perturbation in the tokamak, and to achieve this effect we must choose a helical winding with the same pitch as the field

lines in the rational surface we want to perturb. Suppose that this surface have safety factor q ¼ m0=n0, where m0 and n0
are positive integers. Hence the winding law must contain these two numbers. However, it should contain in addition a

term expressing the helical field line pitch nonuniformity caused by the toroidal effect. So, we proposed the following

winding law [28]

ut ¼ m0ðht þ k sin htÞ � n0ut ¼ constant; ð22Þ

where k is a parameter which value is dictated by the location of the main resonant magnetic surface to be destroyed,

and where we aim to produce chaotic field lines. In our case, we choose the resonant effect to occur at the equilibrium

rational magnetic surface with q ¼ 5, since it is located near the plasma edge [see Fig. 3(b)], and corresponds to

k ¼ 0:54.
The magnetic field produced by the resonant helical winding from which we build the EML rings is obtained by

neglecting the plasma response and the penetration time through the tokamak wall. In this case, it is assumed to be a

vacuum field BL ¼ r� AL. In lowest order, the only non-vanishing component of AL is [28]

AL3ðrt; ht;utÞ ¼ � l0IhR
0
0

p

Xþm0

k¼�m0

Jkðm0kÞ
rt
bt

� �m0þk

ei½ðm0þkÞht�n0ut �; ð23Þ

Fig. 3. (a) Equilibrium flux surfaces, and (b) safety factor radial profile for a tokamak.
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The limiter field components are given by

B1
L ¼ � 1

R0
0rt

oAL3

oht

; ð24Þ

B2
L ¼ 1

R0
0rt

oAL3

ort
ð25Þ

and the model field will be the superposition: B ¼ B0 þ BL.

3. Derivation of the symplectic mapping

The magnetic field line equations B� d‘ ¼ 0, corresponding to the model fields described in the previous section, are

written, using Eqs. (11)–(13), (24) and (25), as

drt
dut

¼ � 1

rtBT

1

�
� 2

rt
R0
0

cos ht

�
o

oht

AL3ðrt; ht;utÞ; ð26Þ

dht

dut

¼ 1

rtBT

1

�
� 2

rt
R0
0

cos ht

�
o

ort
Wp0ðrtÞ



þ AL3ðrt; ht;utÞ
�
; ð27Þ

where BT � �l0I=R
0
0 is the toroidal magnetic field at the magnetic axis.

Since the equilibrium field is axisymmetric, we may set the angle ut ¼ t as a time-like variable, and put field line Eqs.

(26) and (27) in a Hamiltonian form

dJ

dt
¼ � oH

o#
; ð28Þ

d#

dt
¼ oH

oJ
; ð29Þ

where ðJ; #Þ are the action–angle variables of a Hamiltonian system. If H does not depend on u, due to the axi-

symmetry, the equilibrium magnetic field configuration is a one-degree-of-freedom system, hence integrable in the

Liouville sense. We may calculate the action ðJÞ and angle ð#Þ variables for this problem by defining:

JðrtÞ ¼
1

2pR0
0BT

Z Z
B3
0ðrt; htÞrt drt dht ¼

1

4
1

"
� 1

�
� 4

r2t
R02
0

!1=2
3
5; ð30Þ

#ðrt; htÞ ¼
1

qðrtÞ

Z ht

0

B3
0ðrt; htÞ

B2
0ðrt; htÞ

dh ¼ 2 arctan
1

XðrtÞ
sin ht

1þ cos ht

� �� �
; ð31Þ

Fig. 4. Schematic diagram of an ergodic magnetic limiter.
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where B2
0 and B3

0 are given by (17) and (18), respectively, and

XðrtÞ ¼ 1

�
� 2

rt
R0
0

�1=2

1

�
þ 2

rt
R0
0

��1=2

; ð32Þ

The addition of the magnetic field produced by a resonant helical winding characterized by Eq. (23) may be regarded

as a Hamiltonian perturbation, so that we write

HðJ; #; tÞ ¼ H0ðJÞ þ H1ðJ; #; tÞ 1

BTR02
0

Wp0ðJÞ



þ AL3ðJ; #; tÞ
�
: ð33Þ

The perturbing Hamiltonian, characterizing the EML field, may be expanded in the action–angle variables of the

equilibrium field as:

H1ðJ; #; tÞ ¼
X2m0

m0¼0

Hm0 ðrtðJÞÞei½m0htðJ;#Þ�n0 t�; ð34Þ

where

Hm0 ðrtÞ ¼ �Jm0�m0
ðm0kÞ

rt
bt

� �m0

: ð35Þ

These expressions may be conveniently rewritten as

H1ðJ; #; tÞ ¼
X2m0

n¼0

H �
n ðJÞeiðn#�n0tÞ; ð36Þ

with

H �
mðJÞ ¼

X2m0

m0¼0

Hm0 ðrtðJÞÞSm;m0 ðJÞ; ð37Þ

where the numerical coefficients are given by

Sm;m0 ðJÞ ¼ ð�1Þm c1ðJÞ
c2ðJÞ

� �mþm0 Xm
n¼0

ð�1Þnanðm;m0Þ c1ðJÞ
c2ðJÞ

� ��2n

; ð38Þ

with

c1ðJÞ ¼ 1� 1

XðrtðJÞÞ ; ð39Þ

c2ðJÞ ¼ 1þ 1

XðrtðJÞÞ ; ð40Þ

anðm;m0Þ ¼

1 if m ¼ 0 and n ¼ 0;

m0 if m ¼ 1 and n ¼ 0 or n ¼ 1;

m0 ðmþm0�n�1Þ!
ðm�nÞ!ðm0�nÞ!n! if m > 1 and n6m0;

0 if m > 1 and n > m0:

8>>>>>><
>>>>>>:

ð41Þ

This treatment, however, does not include the effect of the finite length ‘ of each EML ring, which is typically a small

fraction of the total toroidal circumference 2pR0
0. This introduces a time-dependent term which explicitly breaks the

integrability of the configuration. If ‘ is small enough, we can model its effect as a sequence of delta-functions centered

at each ring position [27]:

HLðJ; #; tÞ ¼ H0ðJÞ þ ‘

R0
0

H1ðJ; #; tÞ
Xþ1

k¼�1
d t
�

� k
2p
Na

�
; ð42Þ

where the Na rings are symmetrically distributed in the toroidal direction.
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We can derive, due to the impulsive perturbation, a stroboscopic map for field line dynamics, by defining Jn and #n

as the action and angle variables just after the nth kick due to a limiter ring at the toroidal positions uk ¼ 2kp=Na, with

k ¼ 0; 1; . . . ;Na � 1 [26]. The (area-preserving) mapping for this near-integrable system is [14]

Jnþ1 ¼ Jn þ �f ðJnþ1; #n; tnÞ; ð43Þ

#nþ1 ¼ #n þ
2p

NaqðJnþ1Þ
þ �gðJnþ1; #n; tnÞ; ð44Þ

tnþ1 ¼ tn þ
2p
Na

; ð45Þ

where

f ðJ; #; tÞ ¼ � oH1ðJ; #; tÞ
o#

; ð46Þ

gðJ; #; tÞ ¼ oH1ðJ; #; tÞ
oJ

; ð47Þ

and the perturbation parameter is

� ¼ �2
‘

2pR0
0

� �
Ih
I

� �
: ð48Þ

which is usually small, since in experiments we have ‘ � 2pR0
0 and Ih � I .

4. Pendular islands

In this section we will study the effect of resonances caused by the magnetic field produced by an ergodic limiter. In

the phase space the exact resonance will be the center of a magnetic island with pendular shape. In order to use standard

results of perturbation theory we have to start from an expansion of the perturbing Hamiltonian in modes related to the

angles # and t. The Hamiltonian for the tokamak with ergodic limiters, Eq. (42), may be rewritten by Fourier-ex-

panding the periodic delta function, in the following form

HLðJ; #; tÞ ¼ H0ðJÞ þ ~��
X2m0

m¼0

Xþ1

s¼�1
H �

mðJÞei½m#�ðn0þsNaÞt�; ð49Þ

where the small parameter is redefined here as

~�� ¼ � Ih‘Na

2p2IR0
0

¼ Na

2p
�: ð50Þ

Perturbative treatments of the Hamiltonian (49) present divergences at resonances, for which the phase is stationary:

d#=dt ¼ n=m, with n � n0 þ sNa for some pair of integers ðm; nÞ. This is equivalent to find a rational magnetic surface

with safety factor m=n that resonates with some harmonic of the perturbing field. Let us choose m ¼ m0 and s ¼ 0, or

n ¼ n0, in such a way that ðm0; n0Þ characterizes a rational surface in the periphery of the tokamak column. By in-

specting Fig. 3(b) we find that ðm0; n0Þ ¼ ð4; 1Þ or ð5; 1Þ are suitable for our purposes, since the corresponding surfaces

are located in the region comprising the plasma edge and the tokamak inner wall, where chaotic dynamics is expected to

take place.

Hence, we consider the Hamiltonian in the neighborhood of the action J ¼ J0 for which the safety factor is m0=n0.
Expanding the unperturbed Hamiltonian H0 up to quadratic terms, and taking only the resonant term from the per-

turbing Hamiltonian H1, we have

H � H0ðJ0Þ þ
dH0

dJ

����
J¼J0

DJþ 1

2

d2H0

dJ2

����
J¼J0

ðDJÞ2 þ ~��H �
m0
ðJ0Þeiðm0#�n0 tÞ; ð51Þ

where DJ ¼ J�J0.

The standard procedure [14] for removing the ðm0; n0Þ resonant term is to go to a rotating frame through a canonical

transformation of variables ðJ; #Þ ! ðJ0; #0Þ performed by means of the following time-dependent generating function

GðDJ0; #; tÞ ¼ ðm0#� n0tÞDJ0 ð52Þ
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resulting in the relations: DJ0 ¼ DJ=m0, #
0 ¼ m0#� n0t, and H 0 ¼ H � ðn0=m0ÞDJ. The Hamiltonian in the neigh-

borhood of the resonance is written as

H 0ðDJ0; #0Þ ¼ 1

2
W ðDJ0Þ2 � ~��K cos#0; ð53Þ

which is the pendulum Hamiltonian with constants given by

W ¼ m2
0

d2H0

dJ2

����
J¼J0

; ð54Þ

K ¼ �H �
m0
ðJ0Þ: ð55Þ

In the phase space ðDJ0; #0Þ the pendulum libration (closed) curves define a magnetic island, whose half-width is given

by the maximum libration amplitude, given by

DJ0
max ¼ 2 ~��

K
W

����
����

� �1=2

: ð56Þ

The frequency of the pendulum small librations around the exact resonance at (DJ0 ¼ 0, #0 ¼ 0) is

x0
0 ¼ ð~��jKW jÞ1=2: ð57Þ

In this approximation the island width and frequency are proportional to
ffiffi
~��

p
�

ffiffiffiffiffiffiffiffiffiffi
Ih=Ip

p
.

Now, we present numerical results for an ergodic magnetic limiter with ðm0; n0Þ ¼ ð4; 1Þ and k ¼ 0:48. Fig. 5(a)
shows a large number of orbits obtained from different initial conditions of the symplectic mapping (43)–(45) for the

Fig. 5. (a) Phase portrait, in action–angle variables, for a tokamak with qð0Þ ¼ 1, qðaÞ ¼ 5, and an ergodic limiter with

ðm0; n0Þ ¼ ð4; 1Þ, k ¼ 0:48, and Ih ¼ 0:81% of Ip; (b) enlargement of an island of the 4:1 chain, with indication of the initial conditions

there used.
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case in which the limiter current Ih is 0:81% of the total plasma current Ip. We may see a chain of four magnetic

islands (a 4:1 chain, with one of their islands being magnified in Fig. 5(b)) located at J0 � 0:027, and other

satellite islands, among which a reasonably large 5:1 chain centered at 0:034. In Fig. 6 we plot the island half-width

and frequency versus the limiter current for the same parameters as in Fig. 5. The black dots are estimated on the

numerically obtained phase portraits like Fig. 5(a), whereas the solid lines are the theoretical predictions of

Eqs. (56) and (57). Whereas for small limiter currents the agreement is good, for higher values of Ih there is a small

but almost constant difference between the numerical and theoretical values. This is explained by the increas-

ing difficulty in determining the boundary of an island when it has got a chaotic region in the vicinity of its

separatrix.

A different way to characterize the magnetic surfaces consists on following some orbit in the phase space,

tracking for example its #-coordinate, and performing a power spectrum analysis of its frequencies. Fig. 7 shows

such a result for a non-chaotic orbit picked up from Fig. 5(a). We call xSmax
the frequency of the highest peak in

the power spectrum density. It turns out that xSmax
is nothing but the inverse of safety factor 1=q of the magnetic

surface on which this orbit lies, as confirmed by Fig. 8, where the sampling frequency is xA ¼ 1, and many

different non-chaotic orbits inside an island are tested. The other peaks result from a large number of combi-

nations of harmonics and sub-harmonics, as is typical in quasi-periodic orbits on KAM tori [14]. On the other

hand, chaotic orbits correspond to destroyed magnetic surfaces and do not present a well-defined frequency or

safety factor.

When we consider these time series for points inside a given magnetic island, the libration frequency is, in general,

different from that around resonance x0
0. For a m0=n0 island the sampling frequency is xA ¼ 1=m0 so that

xin ¼ m0xSmax
¼ 1=qin, where qin is the safety factor of the tori inside an island. Fig. 9 shows numerical results for xin in

various points inside the 4:1 island depicted in Fig. 5(b). The frequency decreases to zero as we approach the separatrix,

as is also predicted in an exact calculation made with the help of elliptic functions [14].

(a)

(b)

0.05

Fig. 6. (a) Half-width and (b) frequency at the center of a 4:1 island, in terms of the limiter current. The remaining parameters are the

same as in Fig. 5. Dots are values estimated from phase portraits and the solid curves are obtained from Eqs. (56) and (57).
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5. Onset of chaos

The fate of the equilibrium magnetic surfaces, after a perturbation breaks the system integrability, is basically de-

termined by their safety factors. KAM theory predicts that, for those irrational surfaces with safety factors sufficiently

far from a rational m:n, the topology is preserved, and the surfaces are only slightly deformed from the unperturbed tori

(KAM surfaces) [14]. On a rational surface and in a neighborhood about it the KAM theorem fails, and we have to

resort to the Poincar�ee–Birkhoff theorem.

Consider the field line mapping (43)–(45) in the absence of perturbation ð� ¼ 0Þ. The toroidal magnetic surfaces are

invariant circles in the Poincar�ee surface of section (for the time-2p=Na map), each of them characterized by a safety

factor qðrtðJÞÞ. If it is a rational surface, then any point on the invariant circle qðJÞ ¼ m=n is a period-n fixed point of

the mapping. According to the Poincar�ee–Birkhoff theorem there exists an even number (2kn, with k ¼ 1; 2; . . .) of fixed
points that remain after the perturbation. Half of them are elliptic (linearly stable), with closed trajectories encircling

them, and the other half are hyperbolic (linearly unstable). Successive hyperbolic points are connected by a separatrix,

Fig. 7. Power spectral density of frequencies for the time series of the #-coordinate of orbit points taken from the island depicted in

Fig. 5(b).

Fig. 8. Frequency of the highest power spectral peak in terms of the corresponding safety factor.
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repeating the pendulum Hamiltonian pattern. In other words, rational surfaces disappear under the perturbation

leaving an even number of fixed points, around which there exists an island chain.

There is a crucial difference, however, since for a pendulum the separatrices smoothly join adjacent hyperbolic

points, and for a near-integrable system (� small) this is no longer true. The unstable manifold leaving one hyperbolic

point intersects the stable manifold arriving at the neighboring hyperbolic point. If the latter is topologically the same

point as the former, the intersection is called a homoclinic point; otherwise is a heteroclinic intersection. If a single

intersection occurs, there are infinitely many such intersections, leaving a sequence of homoclinic points. Since the areas

enclosed by the intersections are mappings of one another, these areas are preserved and as successive crossings become

closer, the unstable and stable manifolds have to oscillate more wildly. The region near the separatrix, where the

homoclinic or heteroclinic points are abundant, is characterized by the absence of KAM surfaces and it shows chaotic

motion. For sufficiently small perturbations, however, this chaotic behavior occurs in regions bounded by KAM

surfaces, that act as dikes, preventing large-scale chaotic diffusion. These regions of local separatrix chaos grow as the

perturbation amplitude increases. We expect a barrier transition to global field line chaos if this amplitude exceeds a

critical value.

These two situations are illustrated in Figs. 10 and 11, where we present phase portraits of a large number of orbits,

when the perturbation amplitude – which turns out to be the normalized limiter current – is increased past a critical

value. Fig. 10, obtained when the limiter current is 1:1% of the plasma current, shows two adjacent island chains (4:1

and 5:1) with small chaotic regions restricted to the neighborhood of their separatrices and hyperbolic points. Many

KAM surfaces remain between these chains, as well as many higher-order resonances with their own locally chaotic

regions. Increasing the limiter current to 1.4% of the plasma current (Fig. 11) is sufficient to destroy all the KAM

surfaces between the 4:1 and 5:1 chains and make the locally chaotic regions of these two resonances to overlap. This

yields a large-scale chaotic region, where the excursion of chaotic field lines is larger than before, since it spans more

than two times the width of each island.

The question of the onset of global or large-scale chaos has been investigated in depth for 11
2
degree of freedom near

integrable systems. Sophisticated methods, as the renormalization scheme [33], or the residue technique [34], can de-

termine with great accuracy the threshold for destruction of the last KAM surface between two neighbor resonances.

Good results (within the experimental accuracy) can be obtained by using simpler methods, as the modified Chirikov

criterion [14]. In its original version, this criterion prescribes the touching of neighbor separatrices in order to achieve

global Hamiltonian chaos [35]. However, it turns out that this is an overestimation of the necessary perturbation

strength, since the locally chaotic regions overlap before the separatrices themselves.

Hence, empirical rules, as the ‘‘two-thirds’’ rule, have been proposed in order to take this fact into account

without modifying the simple form of the Chirikov criterion [14]. However, it turns out that even this rule is not

always a useful tool, since it holds for pairs of islands of similar widths, which is not the case for the perturbation

X

Fig. 9. Frequency of librations inside a 4:1 island versus the value of the action variable.
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produced by an ergodic limiter, that makes islands thinner as we depart from the tokamak periphery. In

this work, we advocate that a ‘‘four-fifths’’ rule would be more appropriate in this and other similar situations

[27].

Fig. 11. Phase portrait, in action–angle variables, for a tokamak with qð0Þ ¼ 1, qðaÞ ¼ 5, and an ergodic limiter with ðmn; n0Þ ¼ ð4; 1Þ,
k ¼ 0:48, and Ih ¼ 1:4% of Ip.

Fig. 10. Phase portrait, in action–angle variables, for a tokamak with qð0Þ ¼ 1, qðaÞ ¼ 5, and an ergodic limiter with ðmn; n0Þ ¼ ð4; 1Þ,
k ¼ 0:48, and Ih ¼ 1:1% of Ip.
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Bearing in mind these remarks, we define the following stochasticity parameter, according Chirikov to [35]

v ¼ 1

2

ðDJÞ4;1 þ ðDJÞ5;1
jJ0;4 �J0;5j

" #
; ð58Þ

(a)

(b)

Fig. 12. (a) Stochasticity parameter of Chirikov, in terms of the limiter current. The critical current was taken to be the one related to a

value of 4/5 for this parameter; (b) the same for the frequency in the center of the island.

Fig. 13. Frequency of three closed orbits inside a 4:1 island versus the corresponding value of the action. The observed plateaus are due

to secondary resonances therein.
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where Jm;n are the half-widths of the island around a ðm; nÞ resonance, and J0;m are the location of the corresponding

rational surfaces. The threshold for simple island overlap is given by v ¼ 1, and the two-thirds and four-fifths rule

correspond to critical values equal to 2=3 and 4=5, respectively. Fig. 12(a) depicts the behavior of the stochasticity

parameter in terms of the limiter current. It indicates that – according to the latter criterion – the critical limiter current

is about 1:4% of the plasma current, which is a reasonable value since it demands limiter currents of only hundreds of

amp�eeres, for typical discharges of tens of kiloamp�eeres in small tokamaks.

There is a universal relation between the critical value of the Chirikov parameter (58) to the safety factor qe in the

center of an island: vcrit ¼ 4=qe. It is universal in the sense that it holds for resonances of arbitrary higher order. The

critical value for the limiter current we have just estimated corresponds to the appearance of a chain of five secondary

islands, for which qe ¼ 5=1, in the midst of the primary island. This may be observed in Fig. 12(b), which shows the

increase of the frequency at the center of a 4:1 island as a function of the limiter current. For Ih � 1:4% of Ip it turns out
that xe � 0:2.

The presence of secondary island chains may be also evidenced by computing the frequency xin inside a primary

island, as depicted in Fig. 13, where this is done for the 4:1 primary chain and different values of the perturbation

strength. The presence of plateaus in this figure indicates the existence of secondary islands in the midst of this primary

island. Note that if a plateau does not show up it does not mean that there is no secondary island there, but only that we

picked up insufficient orbits inside the island to evidence the secondary islands. In fact, their number is infinite, but most

of them are too small to be distinguished in the phase portraits. Fig. 14 shows the corresponding phase portraits (only a

small portion of the phase space containing the island is shown) for the three values of the limiter current considered in

the previous figure.

Fig. 14. Portions of the phase portrait, in action–angle variables, for an ergodic limiter with ðmn; n0Þ ¼ ð4; 1Þ, k ¼ 0:48, and:

(a) Ih ¼ 1:3% of Ip; (b) 1:6% of Ip; (c) 1:8% of Ip. These cases are taken from the curves of Fig. 13.
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Since the frequency in the center of the primary island increases with the limiter current, according to Eq. (57), the

secondary island chain that appears follows a decreasing sequence for their safety factor. For example, if a 7=1 sec-

ondary chain is observed for a given limiter current, islands with 6=1, 5=1, etc. will appear if the perturbation strength

increases. The secondary island that already exist are pushed toward the primary island separatrix. In Fig. 14 we see

that the 6=1 secondary chain migrates in this way as we increase Ih from 1=3% to 1:8% of Ip.

(a)

(b)

Fig. 16. Portions of the phase portrait, in action–angle variables, for an ergodic limiter with ðmn; n0Þ ¼ ð4; 1Þ, k ¼ 0:48, and:

(a) Ih ¼ 6:3% of Ip; (b) 6.7% of Ip.

Fig. 15. Lyapunov exponent of an orbit picked up from the center of a 4:1 island, as a function of the limiter current.
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6. Bifurcation phenomena

As the current limiter builds up, new phenomena are expected to appear, besides the enlargement of the locally

chaotic regions in the neighborhood of the islands’ separatrices [14,36]. Let us fix our attention on the center of a

Fig. 17. Lyapunov exponent of an orbit picked up from the center of the 8:1 island as a function of the limiter current.

(a)

(b)

Fig. 18. Portions of the phase portrait, in action–angle variables, for an ergodic limiter with ðmn; n0Þ ¼ ð4; 1Þ, k ¼ 0:48, and:

(a) Ih ¼ 8:3% of Ip; (b) 8.4% of Ip.
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primary island chain, where there exists a stable fixed point of the field line mapping. For example, the centers in a 4:1

chain are periodic points of a stable period-4 orbit. As the limiter current is further increased, it may happen that this

periodic orbit looses its stability and a new stable periodic orbit with period-8 appears, configuring a period-doubling

Hamiltonian bifurcation.

Let us follow an orbit starting very close to one of these elliptic period-4 points and compute the corresponding

maximal Lyapunov exponent, using the Ruelle–Eckmann algorithm [37]. The results for many values of the limiter

current are shown in Fig. 15. For Ih � 6:37% of the plasma current this orbit loses stability and becomes an unstable

saddle point. This unstable orbit belongs to a chaotic region, since the Lyapunov exponent has become positive.

In order to visualize the bifurcation that has occurred there, in Figs. 16(a) and (b) we show portions of the phase

portrait that focuses on the evolution of the center of this period-4 orbit as Ih builds up. For Ih ¼ 6:3% of Ip this orbit is
still stable [Fig. 16(a)], whereas for 6:7% it became unstable and two new stable orbits appear in its neighborhood. From

the field line point of view these newborn stable orbits represent magnetic axes that are formed for these extremely high

perturbation amplitudes. This phenomenon has been previously been described in the fusion literature [38,39]. Note

that from Fig. 16(b) that the two newborn stable orbits are centers of island-shaped structures, and that the orbit that

lost its stability is now an unstable saddle in the midst of a locally chaotic region near the separatrices of new island-

shaped structures. This explains the positive values of the Lyapunov exponent that we have observed in Fig. 15.

We were able to observe a second period-doubling bifurcation related to the centers of a period-8 chain. As the

limiter current is further increased we observe the jump of the corresponding Lyapunov exponent (Fig. 17) for

Ih � 8:35% of Ip. The loss of stability of the period-8 orbit and the appearance of a stable period-16 orbit is depicted in

Figs. 18(a) and (b), for limiter currents slightly under and above this bifurcation value, respectively.

Area-preserving maps as Eqs. (43)–(45) present period-doubling bifurcations, but with some important differences

when compared with their dissipative counterparts [14]. Even though the period-doubling cascade is expected to have

an accumulation point, with the distances between successive bifurcations decreasing geometrically, the characteristic

exponents are different from those of dissipative two-dimensional maps [40].

7. Conclusions

In this paper we derived a symplectic mapping to follow magnetic field lines in a tokamak with an ergodic magnetic

limiter. The advantages of our procedure are: (a) we adopted a coordinate system which naturally embodies the plasma

toroidal configurations [1,2,12]; (b) model fields were derived from sound physical assumptions: the equilibrium fields

were not introduced in an ad hoc fashion [25,26], but came from the solution of an MHD equilibrium set of equations;

(c) the limiter field was obtained from a direct calculation, assuming an impulsive character in order to make possible to

obtain an analytical mapping. With the equations obtained, it it feasible to follow a very large number of orbits using

less computer time than the symplectic integration of ordinary differential equations for field lines. This is particularly

important if one is interested in the long-time behavior of field lines, as in studies of field line diffusion and loss due to

collisions with the tokamak wall [29].

We obtained an explicit form of a Hamiltonian for the equilibrium field, with the ergodic limiter effect being

considered a near-integrable perturbation. The canonical equations from this Hamiltonian were integrated to obtain

a mapping. We remark that there is no rigorous derivation of the map (43)–(45) from the Hamiltonian function

(42) because the integration along the delta functions is not well-defined. A general perturbative procedure for the

construction of symplectic maps in Hamiltonian systems of the type (42) has been recently developed [21,41]. On

the other hand, our map satisfies some necessary constraints [22]: (i) it is symplectic in the sense that the Ham-

iltonian structure of the field line equations is reflected in the map, since it is written in terms of action–angle

variables; and (ii) it is compatible with toroidal geometry, since our action variable J is always a non-negative

number, i.e., a field line starting on the magnetic axis may either remain on the axis or move to a positive J, but

never to a negative J. We stress that the second condition is not fulfilled by the Chirikov–Taylor standard map

[35], for example.

Using a secular perturbation technique we obtained the widths and locations of the primary islands due to reso-

nances between the perturbing limiter field and the equilibrium tokamak field. Theoretical results are in good agreement

with numerical results obtained by using our mapping. A detailed analysis of the frequencies of orbits inside a primary

islands gave information about the appearance of secondary and higher-order islands. The onset of chaos due to the

interaction of neighbor island chains was investigated through the use of a modified Chirikov criterion, taking into

account that the creation of a large region of chaotic field lines occurs before the primary islands’ separatrices touch

each other. A ‘‘four-fifths’’ rule was found sufficient to yield a reliable value for the barrier transition to global chaos.

For the interaction of a 4:1 and a 5:1 resonance (which would generate such a region in the outer plasma column) we
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found that the critical limiter current is 1:4% of the plasma current. This is a reasonable value, taking into account the

technical requirements for the operation of an ergodic limiter.

As the limiter current is further increased, even the center of an island may become unstable and bifurcate into two

new stable points, which correspond to newborn magnetic axes. We were able to follow two of such period-doubling

bifurcations, what suggests a cascade of accumulating bifurcations. Further work is still needed to determine the ac-

cumulation rates and compare them to the universal values theoretically predicted for area-preserving two-dimensional

mappings.
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