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Abstract
Analytical tokamak plasma equilibria, with non-monotonic plasma current profile and perturbed by ergodic magnetic
limiters, are described by non-twist conservative maps. Examples are given of concentration of magnetic field lines
escaping to the tokamak wall. The robustness of invariant curves on the shearless region is also observed.

PACS numbers: 05.45.Ac, 05.45.Pq, 52.25.Fi

1. Introduction

The presence of non-integrable magnetic field lines in a certain
plasma region within the tokamak implies the loss of the
plasma confinement, due to the absence of flux surfaces.
However, the chaotization of a limited plasma region, if
properly handled, can be beneficial to the plasma confinement,
as exemplified by the ergodic magnetic limiter [1–5] and the
Dynamic Ergodic Divertor at TEXTOR tokamak [6]. Another
situation in which the presence of non-integrable magnetic
fields can help plasma confinement is the creation of a barrier
to reduce Lagrangian field line escape in tokamaks with a
negative magnetic shear region. Such a region is created by
means of a non-peaked plasma current density, corresponding
to a non-monotonic radial profile for the safety factor [7]. A
resonant magnetic perturbation in the shearless region gives
rise to a barrier separating the internal region with magnetic
surfaces from the external stochastic region. The field line
escape outside the barrier, at the plasma edge, is similar to
those observed for monotonic equilibria. In fact, outside
the barrier, the safety factor increases monotonically. The
presence of the Lagrangian barrier in the shearless region
limits the volume of the escape region. All this may
contribute to the enhanced plasma confinement which has
been observed in some experiments with magnetic shearless
equilibria [8, 9].

Unlike most magnetic configurations, negative shear
configurations are best described by non-twist area-preserving
maps [10, 11]. Such maps violate the non-degeneracy
condition for the Kolmogorov–Arnold–Moser (KAM) theorem
to be valid, so that many well-known results of canonical
mappings no longer apply to them [12–14]. For example, it
may happen that two neighbour island chains approach each
other without being destroyed through the breakup of KAM
curves [15]. The transport barrier arises from a combination
of typical features of non-twist maps: reconnection and
bifurcation, occurring in the reversed shear region [16]. This
barrier is embedded in a chaotic field line region located in
the tokamak peripheral region. Further investigation of this
barrier requires a conservative map like the ones used in this
article.

In this paper we introduce non-twist maps obtained by
considering the superposition of an ergodic magnetic limiter
field on the tokamak equilibrium field with a negative shear
region due to a non-peaked plasma current. The limiter
perturbation generates resonant magnetic fields that interact
with the equilibrium field, causing a selective destruction of
the magnetic surfaces at the plasma edge. On the inner plasma
region, the field lines lie on magnetic surfaces, while the
chaotic and unstable periodic lines are in the outer scrape-off
layer. The external chaotic layer configuration is essentially
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determined by the chaotic set on the scrape-off layer [17–21].
As a consequence of this chaotic configuration, the field
lines with long connection lengths hit the tokamak wall non-
uniformly producing the so-called field line escape pattern.

In this work, we use one of the introduced non-twist maps
to study the connection of the chaotic lines to the tokamak
wall. These maps are also used to numerically evidence
the formation of a transport barrier due to a reconnection–
bifurcation mechanism, and its effect on the plasma transport
can be inferred from the study of field line diffusion by using
the obtained maps.

The paper is organized as follows: in section 2, we
present an area-preserving non-twist map to study, in toroidal
geometry, the field line escaping to the tokamak wall. In
section 3, we introduce another symplectic non-twist map to
study the robustness of the internal shearless barriers in large
aspect ratio tokamaks. Our conclusions are presented in the
last section.

2. Field line escaping

In this section, we study the Lagrangian field line transport and
the line escaping to the tokamak wall for a plasma equilibrium
with reversed magnetic shear. We use a suitable coordinate
system to describe magnetic field line geometry in a tokamak:
(rt , θt , ϕt ), given by [22]

rt = R′
0

cosh(ξ) − cos(ω)
, (1)

θt = π − ω, (2)

ϕt = �, (3)

in terms of the usual toroidal coordinates (ξ, ω, �) as presented
in [23]. The meaning of these variables is the following: rt is
related to the radial coordinate of a field line with respect to
the magnetic axis. R′

0 is the major radius with respect to the
magnetic axis. R0 and b are (see figure 1(a)), respectively,
the major and minor radii with respect to the geometric axis.
The angles θt and ϕt are, respectively, the poloidal and toroidal
angles of this field line.

The contravariant components of the tokamak equilibrium
magnetic field B0 = (0, B

(2)
0 , B

(3)
0 ) are obtained from an

approximated analytical solution of the equilibrium magneto-
hydro-dynamical equation in these coordinates [24]. Figure 2
shows the normalized equatorial profiles of the poloidal and
toroidal contravariant components of B0, respectively, for the
equilibrium with reversed magnetic shear considered in this
work.

In order to generate the reversed shear region we have
considered a toroidal current density profile

jϕt
(rt ) = IpR′

0

πa2

(γ + 2)(γ + 1)

β + γ + 2

[
1 + β

( rt

a

)2
] [

1 −
( rt

a

)2
]γ

,

(4)

with a central hole [25, 16]. In equation (4), β and γ are
parameters that can be chosen to fit experimentally observed
plasma profiles. The result is that the safety factor of the
magnetic surfaces, defined as [26]

q(rt ) = 1

2π

∫ 2π

0

B
(3)
0 (rt , θt )

B
(2)
0 (rt )

dθt , (5)
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Figure 1. (a) Basic geometry of the tokamak; (b) scheme of an
ergodic magnetic limiter.

has a non-monotonic profile. For β �= 0 the safety factor
has two different magnetic surfaces within the plasma column
[25, 16] (see figure 3).

The ergodic magnetic limiter consists of Nr current rings
of length 	 located symmetrically along the toroidal direction
of the tokamak (figure 1(b)). These current rings may be
regarded as slices of a pair of external helical windings located
at rt = b, conducting a current Ih in opposite senses for
adjacent conductors. The role of these windings is to induce
a resonant perturbation in the tokamak, and to achieve this
effect a tunable parameter, λ, is introduced such that the
helical windings have the same pitch as the field lines in
the rational surface we want to perturb. This has been carried
out by choosing the following winding law [24] ut = m0[θt +
λ sin(θt )] − n0ϕt = constant, where (m0, n0) are the poloidal
and toroidal mode numbers, respectively.

The magnetic field B1 produced by the resonant helical
windings, from which we build the EML rings, is obtained
by neglecting the plasma response and the penetration time
through the tokamak wall. We are able to obtain an
approximated analytical solution in lowest order for the limiter
field, by solving the corresponding boundary value problem.
The model field to be used in this paper is the superposition
of the equilibrium and limiter fields: B = B0 + B1. Since the
equilibrium field is axisymmetric, we may set the azimuthal
angle, ϕt = t , as a time-like variable and put the magnetic field
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Figure 2. Profiles of the poloidal (a) and toroidal (b) contravariant
components of the equilibrium magnetic field with reversed
shear.

0.00 0.01 0.02 0.03 0.04

I

3.6

4.0

4.4

4.8

5.2

q(
I)

Figure 3. Profile of the safety factor for a reversed shear
configuration of a tokamak in terms of the action variable.

line equations in a Hamiltonian form [27]

dI
dt

= − ∂H

∂ϑ
, (6)

dϑ

dt
= ∂H

∂I
, (7)

where (I, ϑ) are the action–angle variables of a Hamiltonian
H , its explicit form being given by

I(rt ) = 1

4

[
1 − +(rt ) · −(rt )

]
, (8)

ϑ(rt , θt ) = 2 arctan

[
+(rt )

−(rt )
tan

(
θt

2

)]
, (9)

where

±(rt ) =
√

1 ± 2
rt

R′
0

. (10)

The addition of the magnetic field produced by
resonant helical windings may be regarded as a Hamiltonian
perturbation. In order to include the effect of the finite length
	 of each EML ring, which is typically a small fraction of the
total toroidal circumference 2πR′

0, we model its effect as a
sequence of delta-functions centred at each ring position. The
Hamiltonian for the system is thus

H(I, ϑ, t) = H0(I) + εH1(I, ϑ, t)

+∞∑
k=−∞

δ

(
t − k

2π

Nr

)
,

(11)

where

H0(I)=
∫

2πdI
q(rt (I))

and H1(I, ϑ, t)=
2m0∑
m=0

H ∗
m(I)ei(mϑ−n0t),

(12)

with

H ∗
m(I) =

2m0∑
m′=0

Hm′(rt (I)) · Sm,m′(I), (13)

Hm′(rt ) = −Jm′−m0(m0λ)
( rt

b

)m′

, (14)

Sm,m′(I) = 1

2π

∫ 2π

0
ei[m′θt (I,ϑ)−mϑ]dϑ. (15)

Due to the t-dependence of the Hamiltonian in the form
of a sequence of delta-functions, it is possible to define
discretized variables (In, ϑn) as the corresponding values
of the angle–action variables just after the nth crossing of
a field line with the plane tk = (2πk/Nr) with k =
0, 1, 2, . . . , Nr − 1 [28]. Proceeding in this fashion, the
following area-preserving mapping can be associated with the
EML Hamiltonian (equation (11)) [24]:

In+1 = In + εf (In+1, ϑn, tn), (16)

ϑn+1 = ϑn +
2π

Nrq(In+1)
+ εg(In+1, ϑn, tn), (17)

tn+1 = tn +
2π

Nr

, (18)

with

f = −∂H1

∂ϑ
, g = ∂H1

∂I
and ε = 2

Ihl

IeR
′
0

,

(19)
where l is the EML coil width and Ie is the total current on the
solenoid that creates the toroidal magnetic field.

It should be remarked, however, that the integration
along the delta functions is not well defined. A more exact
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Figure 4. Poloidal distribution of the EML modes.

perturbative method of construction of symplectic maps for
Hamiltonian systems of the type of equation (11) has been
recently developed [29, 30]. According to this method, the
exact mapping for the Hamiltonian given by equation (11)
has a symmetric form, in the sense discussed in [31]. Our
non-symmetric mapping equations (equations (16)–(19)) can
be obtained as an approximation of the exact symmetric map
only for small perturbations and a weak dependence of the
perturbation Hamiltonian, H1(I, ϑ, t), on the toroidal flux.

The Hamiltonian treatment of field line flow is useful to
study the creation of a chaotic magnetic field line layer in
the plasma due to the interaction between resonant perturbing
fields and the tokamak equilibrium magnetic field [33]. Here
the word chaos must be intended in its Lagrangian sense: two
field lines very close to each other, depart exponentially as
we follow their revolutions along the toroidal chamber. In
terms of the field line map, chaos means an area-filling orbit in
the surface of section, through which a field line can wander
erratically.

Figure 4 shows the Fourier poloidal distribution of the
EML perturbation for m0 = 4. The main modes created by
the EML are m = 4 and m = 5.

The stochastic condition could be estimated from the over-
lapping condition of islands. The mode amplitudes (figure 4)
and the q profile at their resonant surfaces determine this
condition [32].

Figure 5 shows two Poincaré cross-sections produced by
the area-preserving mapping, given by equations (16)–(18),
for Ih = 2% of Ip, where Ip is the plasma current. We choose
γ = 0.75 and β = 2.80 corresponding to the non-monotonic
q profile of figure 3. The perturbing parameter λ = 0.4327 is
used in order to focus the perturbation on the most external
surface with q = 4. The maps show the islands due to
the main resonances observed in the poloidal spectrum of
figure 4. Figure 5(a) displays well-known features comprising
(i) chains of islands which appear due to the breaking of
equilibrium flux surfaces with rational q values; (ii) KAM
tori formed by surviving, although deformed, flux surfaces for
which q is irrational and (iii) chaotic area-filling field lines
which appear due to the crossing of homoclinic/heteroclinic
invariant manifolds of unstable periodic orbits. Increasing
the perturbing current to Ih = 8.3% of Ip (figure 5(b)),

Figure 5. Poincaré cross-section, in terms of the angle–action
variables, produced by the EML mapping. Non-monotonic q profile
with γ = 0.75 and β = 2.80, Nr = 4, (m0, n0) = (4, 1),
λ = 0.4327. (a) Ih = 2% of Ip and (b) Ih = 8.3% of Ip .

the last barrier between the plasma and the tokamak wall is
destructed and a wide region of chaotic field lines is produced.
Surrounding the remaining q = 4 islands chain there is a
sticking region where field lines stay for a long time before
eventually escaping and reaching the wall. The observed field
line trapping on the shearless region produces an effect similar
to that of a transport barrier and is interpreted in terms of an
invariant chaotic set around this region. Thus, the formation
of the chaotic layer at the plasma edge is determined by the
invariant sets, such as the stable and unstable manifolds and
the chaotic saddles of unstable periodic lines that exist in this
region. Moreover, we study the resonant perturbation field
lines considering the so-called exit basins or sets of points in
the chaotic region which originate field lines that hit the wall
in some specified region. This investigation shows that, for
a tokamak with reversed magnetic shear, depending on the
perturbed magnetic configuration, the field line escape pattern
spreads over the tokamak wall or concentrates on its external
equatorial region [17]. In particular, in figure 5(b), we observe
that the field lines, which eventually escape, reach the wall in
a very thin region, around θt = π , on the external equatorial
plane.

Experimental evidence of the influence of chaotic scrape-
off layers on the plasma confinement, with magnetic field line
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shear, have been recently reported [18, 34]. This evidence
confirms the importance of invariant chaotic saddles to predict
the scrape-off layer magnetic structures [19–21].

3. Transport barrier

The basic geometry of a tokamak is determined by its major
(R0) and minor (b) radii (figure 1(a)). When the tokamak
aspect ratio R0/b is large enough we can neglect, in a zeroth
approximation, the effects of the toroidal curvature and treat it
as a periodic cylinder of length 2πR0, whose axis of symmetry
is parametrized by the coordinate z = R0ϕ in terms of the
toroidal angle ϕ [26]. In this case, the equilibrium toroidal field
B0 is practically uniform. Accordingly, a point in the tokamak
is located by its cylindrical coordinates (r, θ, z) with respect to
that axis. On the other hand, in the study of the region near the
tokamak wall, it turns out that even the poloidal curvature does
not change results noticeably, so that a rectangular system can
be found by defining the following coordinates: x ′ = bθ and
y ′ = b − r [35]. The tokamak wall is thus characterized by
the line segment y ′ = 0 extending from x ′ = 0 to 2πb. In the
following we will use normalized coordinates x = x ′/b and
y = y ′/b.

In the description used in this section the structure of
the magnetic field lines in a tokamak can be more easily
appreciated by taking a Poincaré surface of section at the plane
z = 0. Let (rn, θn) be the polar coordinates of the nth piercing
of a given field line with that surface. Since the magnetic
field line equations determine uniquely the position of the next
piercing, we have a Poincaré map (rn+1, θn+1)

T = F1(rn, θn)
T .

Due to the solenoidal character of the magnetic field, this map
is area-preserving in the surface of section [36]. The regular
orbits lay in invariants magnetic surfaces described by the
equation

r dϕ

R0 dθ
= q, (20)

where θ and ϕ are the angles on the surface identified by the
safety factor q.

In the absence of any perturbation, the configuration is
described by a map (r∗

n , θ∗
n )T = F1(rn, θn)

T [37], where

r∗
n = rn

1 − a1 sin θn

, (21)

θ∗
n = θn +

2π

q(r∗
n )

+ a1 cos θn, (22)

which have a correction for the effect of the toroidal curvature
whose strength is given by the a1 parameter.

The dependence of the safety factor with the radius is
dictated by the details of the equilibrium magnetic field. The
following expression describes in a satisfactory way typical
non-monotonic q profiles of plasma discharges in tokamak
experiments [25]:

q(r) = qa

r2

a2

[
1 −

(
1 + β ′ r

2

a2

) (
1 − r2

a2

)γ +1

�(a − r)

]−1

,

(23)
where a is the plasma radius (slightly less then the tokamak
minor radius b), qa , β and γ are parameters that can be
chosen to fit experimentally observed plasma profiles (β ′ =
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Figure 6. Safety factor profile.

β(γ + 1)/(β + γ + 1)) and �( · ) is the unit step function.
We choose β = 2 and γ = 1 that results in a slightly non-
monotonic profile with a minimum near y = 0.5 (figure 6).

We consider the ergodic magnetic limiter introduced
in the previous section. The effect of the EML on the
equilibrium configuration can be approximated by a sequence
of delta function pulses at each piercing of a field line in
the surface of section. In cylindrical approximation [3, 28,
35], such a mapping (rn+1, θn+1)

T = F2(r
∗
n , θ∗

n )T has been
described by [37]:

r∗
n = rn+1 +

m0Cb

m0 − 1

( rn+1

b

)m0−1
sin(m0θ

∗
n ), (24)

θn+1 = θ∗
n − C

( rn+1

b

)m0−2
cos(m0θ

∗
n ), (25)

where C = (2m0la
2/R0qab

2)(Ih/Ip) ≈ 1.6 · 10−1Ih/Ip

represents the perturbation strength due to the magnetic ergodic
limiter. In the following, we use the ratio between the
limiter and plasma currents, Ih/Ip, to quantify the perturbation
strength. In this section this ratio varies from 0.1 to 0.3 assuring
a small value for the perturbation strength.

The entire field line mapping is the composition of the
two mappings (F = F1 ◦ F2) and, since the variable rn+1

appears in both sides of the expression, we must solve for it
at each iteration using a numerical scheme (Newton–Raphson
method).

Symplectic mappings are convenient and fast ways of
describing field line behaviour in tokamaks with ergodic
limiters, since we do not need to numerically integrate
the field line equations over the whole toroidal revolution,
in order to get the coordinates of a field line intersection
with the Poincaré surface of section. The mapping F is
strictly area-preserving. However, as the variables (r, θ) are
not canonical, this map preserves the magnetic flux only
approximately.

The phase portraits of figure 7 show, for m0 = 3, the
scenario of separatrix reconnection [15]: due to the non-
monotonicity [12] of our map, there are two island chains with
the same period separated by invariant curves (a); increasing
the perturbation the islands widen and the separatrices merge
(b); then the chains interchange their hyperbolic points (c).
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Figure 7. Phase portraits exhibiting the reconnection scenario: (a) Ih/Ip = 0.05, there are two island chains; (b) Ih/Ip = 0.0635, an
heteroclinic connection takes place; (c) Ih/Ip = 0.10, the chains interchanged hyperbolic points; (d) Ih/Ip = 0.30, one of the island chains
disappeared in a bifurcation and a barrier persists.

(This figure is in colour only in the electronic version)

Figure 7 also exhibits a bifurcation, the disappearance of
an island chain due to the collision of its elliptic and
hyperbolic points (d), as well as the rising and persistence
of a transport barrier separating the chaotic region in the
phase space.

The barrier turns out to be very robust, resisting
perturbations up to Ih/Ip = 0.30. The barrier exists whenever
we find an orbit describing an invariant curve. We establish
a limit to the perturbation necessary to destroy the barrier as
Ih/Ip = 0.3030 by verifying whether or not a long trajectory
(we use 1011 iterations) passes through the barrier. Figure 8
shows the barrier breaking.

4. Conclusions

We use analytically obtained non-twist field line maps to study
the effects of an ergodic magnetic limiter on the magnetic
field line structure which results from a plasma current profile
exhibiting reversed magnetic shear.

The non-twist nature of the maps allows island chains to
approach and dimerize, as the limiter current builds up, in
a reconnective process. The creation of a reasonably wide
chaotic layer is predicted by global stochasticity mechanisms,
eventually forming a chaotic region.

In the external part of the chaotic layer, the field lines
escape to the wall and, depending on the equilibrium and
perturbation parameters, their connections to the wall may
concentrate on a small region. This concentrated connections
should be disadvantageous for the plasma confinement. The
same disadvantage may also be observed for equilibria with
monotonic profiles [17].

Inside the plasma, a Lagrangian barrier may be created.
This barrier is formed in the shearless plasma and results
from the properties of field line trajectories in the vicinity of

Figure 8. Non-monotonic barrier destruction. Phase portraits show
one trajectory above and some on the barrier for different
perturbation strengths: (a) Ih/Ip = 0.303 and (b) Ih/Ip = 0.304. In
the last case the trajectories cross the barrier.
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separatrices of islands in this region. This barrier can help
plasma confinement preventing energetic charged particles
from escaping out radially to an eventual collision with the
tokamak inner wall.

Acknowledgments

This work was made possible through partial financial support
from the following Brazilian research agencies: FAPESP (São
Paulo), CNPq, Fundação Araucária (Paraná) and FUNPAR
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