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Magnetic footprints, or deposition patterns of chaotic magnetic field lines in a tokamak wall, are
studied for a configuration with resonant modes due to an ergodic limiter. The formation of magnetic
footprints using a nontwist symplectic mapping for a nonmonotonic safety factor radial profile is
investigated numerically. The radial position of the resonant mode we focus on changes drastically
the magnetic footprints. Deeper resonant modes produce a concentrated field line deposition pattern,
whereas a resonant mode closer to the plasma edge yields a broader deposition pattern. Although
these shearless equilibria can present robust transport barriers, the magnetic footprints are still
present and can deteriorate the plasma confinement quality. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2186047]

I. INTRODUCTION

In the study of plasma-wall interactions in tokamaks, a
great deal of efforts have been put into the study of particle
transport in the tokamak outer plasma column, and how such
processes affect the tokamak wall."? If the heat and particle
loadings are too spatially localized, for example, sputtering
processes occurring on the wall may release contaminants
into the plasma column, deteriorating the overall confine-
ment quality.3 Hence, various ingenious techniques have
been developed in order to uniformize the spatial distribution
of particle and heat transport in the tokamak outer region as
the use of chaotic magnetic field lines generated by an er-
godic limiter.*”

However, this initial expectation has been rather frus-
trated by a series of experimental results obtained in many
tokamaks in which ergodic limiters were mounted, which
often pointed out to a nonuniform distribution of field lines
hitting the tokamak wall.>"® The term magnetic footprints
has been coined to indicate the deposition pattern of field
lines in the tokamak wall."* It should be remarked that the
information conveyed by the magnetic footprints does not
reflect necessarily the actual pattern of particle loading, but
only a lowest-order description (guiding-center motion)
which can be improved by adding drift and curvature effects.

Further theoretical work, focusing on the mathematical
properties of the chaotic field line region, has pointed out
that the nonuniformity of the field line deposition patterns is
due to the fractal nature of the underlying manifold structure
(homoclinic tangles).m_16 Accordingly, we expect in general
grounds that the distribution of magnetic footprints be frac-
tal. This finding agrees more closely with the experimental
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results than the original claim of a uniform distribution of
chaotic field lines over the tokamak wall.

The purpose of this paper is twofold. First, we wish to
investigate the effect of considering the radial position of a
resonance on the deposition pattern of magnetic footprints.
The chaotic magnetic field will be produced by an ergodic
magnetic limiter (EML), which creates resonances in the
plasma like several other external coil systems. The ergodic
limiter field can be designed to excite resonances closer or
farther from the tokamak wall, depending on the mode num-
bers chosen for the limiter winding.17

Second, we consider modifications of the tokamak equi-
librium field, in that it can be obtained from a monotonic or
nonmonotonic safety factor profile. Although monotonic pro-
files are far more well known, nonmonotonic profiles have
been suggested to yield improved tokamak performance due
to a substantial reduction of transport through barrier
formation.'® " Whether or not the existence of such a barrier
would affect the nature and/or distribution of magnetic foot-
prints was hitherto not known.

The generation of very long chaotic magnetic field line
trajectories is required for computing magnetic footprints
with a graphical resolution good enough to put into evidence
their fractal nature. Since direct numerical integration of field
line equations is a very time-consuming task, we use an ana-
Iytically obtained area-preserving field line map.17 The equi-
librium field was chosen from an approximated analytical
solution of the Grad-Schliiter-Shafranov equation in a con-
venient coordinate system.zl’22 Varying the safety factor pro-
file parameters we can study both monotonic and nonmono-
tonic configurations. Likewise, the perturbing magnetic field
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from an ergodic limiter is designed in such a way that the
integrability of the field line configuration is broken and
Lagrangian chaos is possible. We can choose parameters so
as to excite a main resonance (whose partial destruction ul-
timately causes the appearance of chaos) in a desired radial
location.

Our analytical mapping has been used in previous works
to investigate the homoclinic tangles underlying chaotic field
line regions in the outer tokamak region, when monotonic
safety profiles are used.'>? The formation of a transport bar-
rier, in the case of nonmonotonic profiles, has been also put
into evidence with the help of this map.24 This work aims to
complete, at least in part, this investigation, by considering
both profiles from the point of view of magnetic footprints.
Although we have used, for estimating parameters of the
field line mapping, the TCABR tokamak of University of
Sao Paulo, our results are valid for a wider range of similar
machines.

In particular, the ergodic limiter in the TCABR has been
designed to control plasma oscillations.”> We remark that
measurements of the vacuum magnetic field of a prototype
(mounted outside the tokamak TCABR) are reported in Ref.
26. As far as other tokamaks are concerned, the ergodic lim-
iter has been used in TORE SUPRA to improve plasma
confinement.>’ Moreover, there are recent related works from
the TEXTOR?® and the D3D groups.29

The rest of this paper is organized as follows: in Sec. II
we review the model fields for the tokamak equilibrium and
the ergodic limiter perturbation, and an analytically obtained
field line mapping. Section III presents our numerical results
concerning invariant sets, escape patterns, and magnetic
footprints, where both monotonic and nonmonotonic profiles
are considered. Our conclusions are left to the last section.

Il. MODELS FOR THE EQUILIBRIUM
AND THE LIMITER FIELDS

The choice of a convenient coordinate system to de-
scribe magnetic field line geometry is chiefly determined by
the better attainable agreement between coordinate surfaces
and magnetic flux surfaces of the plasma confinement sys-
tem. In this spirit, we have chosen the nonorthogonal polar-
toroidal coordinates (r,, 6,,¢,), given by>

!
Ry
r=——"—", 6=7m-o,

= , =0, 1
" cosh é—cos w i )

where R}, is the magnetic axis radius and (¢, w,P) are the
toroidal coordinates. The coordinate surfaces r,=const are
displaced with respect to the tokamak geometric axis so as to
emulate the Shafranov shift effect.”

Magnetic surfaces are characterized by nested surfaces
of r,=const, for which the safety factor reads™
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where I, is the total plasma current, a is the plasma radius,
and the parameters y and (3, with
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describe the plasma current profile.

In the following, we will choose g=35 at the plasma
edge (r,=a). For a monotonic profile we will consider
v=3.25 and B=0 resulting in g~ 1 at the magnetic axis. On
the other hand, to obtain a nonmonotonic safety factor pro-
file, for which there is a region of negative magnetic shear as
well as a shearless radius, we adopt y=0.75 and 8=2.80 so
as to have ¢ =4.80 at the magnetic axis. We will also choose
parameters so that a/R(=0.26, which is a typical value for
tokamak discharges.3'

Since the equilibrium magnetic field is axisymmetric, we
may set the ignorable coordinate ¢, as a time-like variable, ¢
(to be used as a field line parametrization), and put the field
line equations in a Hamiltonian form.** This enables us to
define angle-action variables (Z,d¥) for an equilibrium
Hamiltonian given by

dl
glr(DT

The explicit form of the relations between these angle-action
variables and the toroidal polar coordinates can be found in
Ref. 17. The equilibrium flux surfaces exhibit the Shafranov
shift with respect to the geometric axis and thus are not con-
centric with the tokamak wall, which is at a fixed position
7=0.055 determined by the radius of the material limiter.

Figure 1(a) shows a nonmonotonic safety factor profile
for a tokamak equilibrium field for which the safety factor at
the plasma edge is g(a)=5. The concavity of the profile is so
as to have a shearless radius near 7=0.02. We see that there
are two radii for which the safety factor is equal to 4.0, for
instance. As a consequence, a perturbation resonant with this
mode will create two island chains centered at these radii. By
way of contrast, in Fig. 1(b) we present a monotonic safety
factor profile sharing the same value of g(a), and which will
be used in the next sections to compare results with those
obtained in the nonmonotonic case. In the monotonic case
there is only one resonant surface corresponding to g=4.0,
and thus just one island chain.

We consider an ergodic magnetic limiter design which
consists of N, slices of a pair of resonant helical windings,
with adequate mode numbers and equally positioned along

24,30

Hy(T) =27 J (s)
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FIG. 1. (a) Nonmonotonic safety factor profile in terms of the action vari-
able 7 and corresponding to an equilibrium field with y=0.75, 8=2.80, and
g(a)=5. (b) Monotonic safety factor profile for y=3.25, =0, and g(a)=5.

the toroidal direction (see Fig. 2). The design of the helical
windings needs to take into account the effects of the toroidal
geometry, which makes the toroidal magnetic field compo-
nent stronger in the inner side of the torus than in the outer
one. Consequently, the magnetic field line pitch is nonuni-
form. We use a winding law that emulates the actual paths
followed by magnetic field lines. A tunable parameter, \, is
introduced such that the variable u,=mg[ 6,+\ sin(6,)]-nye;,
where (mg,n,) are the poloidal and toroidal mode numbers,
respectively, is constant along a field line.

A perturbing Hamiltonian, H,(Z, ¥,1), describing the ac-
tion of the EMLs, is obtained from the magnetic field gener-
ated by the helical windings. This magnetic field is an ana-
lytical approximated solution of the Laplace equation,
supposing a vacuum field (valid for low-beta plasma only).17
The boundary conditions are written down with the help of a
singular current distribution located at the tokamak wall.

Although the equilibrium Hamiltonian Hy(Z) is inte-
grable, the addition of a nonsymmetric perturbation,
H,(Z,9,t), caused by the EML rings, breaks the integrability

Ergodic Magnetic
Limiter

Geometric axis

FIG. 2. Schematic diagram of one ergodic magnetic limiter (EML) ring.
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of the system. Therefore, we model the action of the EML
rings on the equilibrium magnetic field lines as a sequence of
pulses described by the following 1+% degree-of-freedom
Hamiltonian:

H(Z,9,1) = Hy(Z) + eH,(Z, 9,1 > 5<t— kfv—Tr) (6)

k=—

Due to the ¢ dependence of the Hamiltonian in the form of a
sequence of delta functions, it is possible to define dis-
cretized variables (Z,,J,,) as the corresponding values of the
angle-action variables just after the nth crossing of a field
line with the plane #,=2wk/N, with k=0,1,2,... ,N,—1.
Proceeding in this fashion, the following area-preserving
mapping can be associated with the EML Hamiltonian [Eq.

©)]:"
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Although the map above is exactly area preserving, we stress
that it has been obtained through the integration of differen-
tial equations involving delta functions, which can be ill-
defined in some cases. However, there exists a rigorous
method for deriving such mappings from equations with im-
pulsive functions.™

Figure 3 shows two examples of Poincaré cross sections
produced by the area-preserving mapping given by Egs.
(7)—(9). In Fig. 3(a), we choose y=0.75 and B=2.80 corre-
sponding to the nonmonotonic ¢ profile of Fig. 1(a). The
perturbing parameter A=0.4327 is used in order to focus the
perturbation on the most external surface with g=4. In Fig.
3(b), we choose y=3.25 and B=0. We used A=0.5902 in
order to focus the perturbation on the g=5 surface. Both
Figs. 3(a) and 3(b) display well-known features comprised
of: (i) chains of islands which appear due to the breaking of
equilibrium flux surfaces with rational ¢ values; (ii) invariant
tori formed by surviving, although deformed, flux surfaces
for which ¢ is an irrational number; and (iii) chaotic area-
filling field lines which appear due to the crossing of the
unstable and stable manifolds of unstable periodic orbits, as
we shall discuss in more depth in the next section.

The main difference between Figs. 3(a) and 3(b) is the
fact that, in the former (nonmonotonic) case, the perturbation
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FIG. 3. Examples of Poincaré cross section produced by the EML mapping,
in terms of the action-angle variables (/,4). (a) Nonmonotonic ¢ profile
with y=0.75 and B=2.80, N,=4, (mgy,ny)=(4,1), N=0.4327, and
I,=1.4 kA. (b) Monotonic g profile with y=3.25 and B=0, N,=4, (m,n)
=(5,1), A=0.5902, and I,,=1.4 KA. The straight line at the top stands for the
tokamak wall position.

caused by the limiter is resonant with two surfaces in the
plasma bulk, since it is near the shearless radius. On the
other hand, these island chains do not interact according the
usual scenario of resonance overlapping, since they approach
without destruction of invariant tori. The surfaces actually
reconnect and the islands suffer a dimerization process,
forming a single connected mesh of meandering tori, as
clearly seen in Fig. 3(a). This ultimately results from the
failing of many standard results, including the Kolmogorov-
Arnold-Moser (KAM) theorem, for nontwist canonical map-
pings derived from nonmonotonic safety profiles. The cha-
otic orbit generated by the breakdown of integrability in this
case is too small to play a significant role in the field line
dynamics.

The chaotic region closer to the tokamak wall, which is
also seen in Fig. 3(a), comes from a usual resonance over-
lapping scenario. Due to the integrability breakdown not just
the resonant magnetic surfaces, but every rational surface
(namely those with rational values for their safety factors)
yields an island chain. The distinctive feature of resonant
perturbations is that they yield larger islands than they do in
nonresonant magnetic surfaces. As the safety factor near the
tokamak wall is monotonic [without shear reversals, as
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shown by Fig. 1(a)], KAM theory holds again permitting the
creation of chaotic regions at the tokamak edge.

By way of contrast, Fig. 3(b), which has been obtained
by a twist mapping coming from an entirely monotonic
safety factor profile [see Fig. 1(b)], presents a resonant island
chain closer to the tokamak wall. We see that, for compa-
rable limiter currents, the monotonic case was able to yield a
larger chaotic region than the nonmonotonic one, where the
chaotic region comes from smaller and nonresonant island
chains near the tokamak wall. This has some observable ef-
fects on the escape channels of field lines hitting the tokamak
wall, as shall be seen in the forthcoming section.

lll. UNDERLYING STRUCTURE OF THE CHAOTIC
FIELD LINES

In this section we analyze primarily the underlying struc-
ture of the chaotic region obtained for a nonmonotonic safety
profile, in order to investigate the effect of using nontwist
maps on the magnetic footprint patterns on the tokamak wall.
The cases of resonances closer and farther from the wall are
considered. Afterwards, a comparison is made with the
monotonic case (twist map), for a resonance fixed at a given
radial position.

A. Invariant sets

Unstable periodic orbits are in a key position in the dy-
namics, for they are the skeleton of a chaotic orbit. This fact
was fully appreciated by Poincaré, who described in precise
mathematical terms the formation of chaotic orbits many de-
cades before they could be observed in computer screens or
printouts.34 In particular, for two-dimensional symplectic
maps we focus on hyperbolic points, having both stable and
unstable directions. These points can be viewed of as un-
stable fixed points of the map, or, if they belong to a period-p
orbit, as the fixed point of the pth map iteration. From these
points emanate invariant one-dimensional manifolds. Such
sets are invariant in the sense that, once an initial condition is
placed exactly on them, the ensuing orbit will belong to these
sets. The invariant manifold is stable (unstable) provided the
orbit points approach (depart) the saddle point.”

In conservative and integrable systems, the unstable and
stable manifolds join together smoothly. However, if the sys-
tem loses integrability due to a perturbation, these manifolds
cross themselves an infinite number of times. The words ho-
moclinic and heteroclinic points are used to describe an in-
tersection between unstable and stable manifolds belonging
to the same or different saddle points, respectively. Since
symplectic maps are area preserving, and once the number of
homoclinic or heteroclinic points are infinite (they map to
one another ad infinitum), the manifolds are expected to un-
dergo extremely complicated folds. The involved set of ho-
moclinic or heteroclinic points caused by manifold intersec-
tions forms the underlying structure on which a chaotic orbit
develops..35

Hence, the graphical representation of invariant mani-
folds helps to understand the nature of chaotic orbit and its
consequences on the transport of field lines. This is not a
trivial task, since they form a set of Lebesgue measure zero

Downloaded 22 Jun 2006 to 200.17.209.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



052511-5

in the phase space (i.e., given a randomly chosen point, its
probability of being located exactly in the manifolds is zero),
and the most we get is a numerical approximation to the true
curves. There are many techniques available in the nonlinear
dynamics toolbox to represent such manifolds: the iteration
of linear segments along the invariant subspaces of the
saddle point,34 the sprinkler method,36 and the saddle-
straddle triple method.”’

We have used all of these methods with practically in-
distinguishable results, hence we shall explain only the first
method, since it is simpler than the other ones we mentioned.
The above-mentioned techniques are sufficient for our pur-
poses, but if a large number of forward or backward itera-
tions of the mapping are necessary, numerical errors may
accumulate and give a bad approximation for the invariant
manifolds. In such cases, other more sophisticated tech-
niques should be used (e.g., in Ref. 38).

We start from computing, at the saddle point chosen
within the chaotic orbit, the eigenvalues and eigenvectors of
the Jacobian matrix of the field line map. The unstable eigen-
vectors, which are related to eigenvalues whose moduli are
greater than unity, span the unstable eigenspace, which turns
to be simply a straight line pointing along the unstable mani-
fold. In fact, this unstable eigenspace is tangent to the un-
stable manifold at the saddle point. We select a small interval
aligned with the unstable subspace containing a very large
number of points, and iterate forward this interval according
to the mapping. It turns out that, provided we choose a num-
ber of points large enough, and the time is not so large, the
resulting iterates of this interval are a numerical approxima-
tion of the unstable manifold. To obtain the stable manifold,
we first set a similar interval along the stable subspace and
iterate the mapping backwards. We followed the manifold for
about 20 forward and backward iterations for the unstable
and stable manifolds, respectively.

Our results are shown in Fig. 4 for a nonmonotonic ¢
profile with y=0.75 and B=2.80, and the perturbing field of
an ergodic limiter with N,=4 rings with mode numbers
(mg,ng)=(4,1), A=0.4327, and a limiter current value I,
equal to 8.5% of the plasma current. For such a large limiter
current there is a wide chaotic region in the outer tokamak
region, as can be seen in the phase portrait [Fig. 4(a)].
Choosing a saddle in the midst of this chaotic region, we
represent the stable and unstable manifolds stemming from
this point in Fig. 4(b).

A typical initial condition chosen within this chaotic re-
gion will produce a trajectory which does not coincide,
strictly speaking, with any of those manifolds. The trajecto-
ries, however, closely follow these directions, forward (back-
ward) iterations of the map producing trajectories arbitrarily
close to a branch of the unstable (stable) manifold. The re-
markable complexity of the manifolds is the ultimate cause
of the wandering behavior characteristic of chaos. The inter-
sections of unstable and stable manifolds form a Lebesgue
measure zero set of homoclinic or heteroclinic points, a nu-
merical approximation of it being shown in Fig. 4(c). We can
observe here a structure topologically equivalent to the prod-
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FIG. 4. (a) Poincaré cross section produced by considering a nonmonotonic
q profile with y=0.75 and B=2.80, N,=4, (my,no)=(4,1), A\=0.4327, and
1,=8.5% of I,. (b) Corresponding stable (dark curve) and unstable (gray
curve) manifolds. (c) Intersections among the manifolds shown in (b).

uct of two transversal Cantor-like sets. The fractal nature of
Cantor-like sets will have observable consequences on the
deposition patterns at the tokamak wall.

B. Magnetic footprints

In our mapping equations, the presence of a tokamak
wall represents an external constraint, rather than a physical
barrier, on the map orbits. Neglecting the thickness of the
vessel wall, we can set the tokamak wall at the same radius
as the ergodic limiter rings themselves r,=ry. Suppose that a
chaotic region does intercept this constraint at one or more
intervals. It is thus necessary to impose that a field line is
considered lost once it reaches this radial position. The mag-
netic footprints are the deposition patterns of field lines from
the chaotic region and which are lost due to collisions with
this constraint."*
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Starting from a typical initial condition picked up from
the “bulk” of the chaotic region, the resulting field line may
spend a long time n, (measured here in number of map it-
erations or toroidal turns along the tokamak) before hitting
the wall. The escape time n, is measured in number of com-
plete toroidal turns. Hence, since there are four limiters and
consequently four Poincaré sections, the minimum value of
n, is 1/4.

Let us suppose that a large number A, of initial condi-
tions is chosen randomly on the chaotic region. It can be
shown, by rather general arguments, that the transient times
n, for such a large number of initial conditions obey an ex-
ponential distribution. This kind of effect has been described
in general terms for the average transient duration in Ref. 39
and, in the context of the present model, in Ref. 15. The
actual value of n, depends in a sensitive way on the initial
condition chosen, since the unstable manifolds (or stable
manifolds, if backward iterations are considered) form chan-
nels of preferential escape. Due to the extremely convoluted
shape of such manifolds, it is natural to expect widely dif-
ferent transient times for different initial conditions.

We can distribute the N initial conditions on the toka-
mak wall position, uniformly choosing values of the corre-
sponding poloidal angle ¥, and iterating the map backwards
in order to compute how many map iterations are necessary
for the resulting orbit to come back to the wall position. This
is a standardized way to compute numerically the transient
time n,. The sensitive dependence of n, with the initial con-
dition, provided we deal with chaotic orbits, can be appreci-
ated in Fig. 5(a), where we depict the transient time as a
function of the poloidal angle. There are regions where the
dependence is quite smooth, with steps with decreasing
length, but no structure. However, for an angular interval
around U=, there is a peaked region with a fine structure
[see the inset of Fig. 5(a) for a magnification of this region].

This fine structure is a direct consequence of the fractal
nature of the manifold skeleton which underlies chaotic dy-
namics there. On the other hand, the existence of a fine struc-
ture only at this interval can be understood by noting that, as
Fig. 4(a) shows, the chaotic region only intercepts the toka-
mak wall (which is the upper margin of the figure) at a nar-
row interval around 7. This makes for an extremely concen-
trated escape, which we found as being very common for
nonmonotonic safety factor profiles.

The magnetic footprints themselves are depicted in Fig.
5(b), where we depict the final poloidal angle ¥, (when a
field line has collided with the wall) as a function of the
initial poloidal angle, 1;, for initial conditions chosen uni-
formly along the poloidal curvature at the limiter radius. For
many intervals the variation is smooth, with discrete steps,
since the discretization of time performed to derive the map-
ping gives us information about what does occur after a com-
plete turn along the torus. In the time between two intercepts
with a Poincaré map we have essentially no information
about the field line behavior. Even though the variation of the
angle would be smooth along a complete turn, its footprint,
at least as revealed by our mapping, will consist of a se-
quence of steps.

For the same interval centered at 7 as in the previous
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FIG. 5. (a) Number of toroidal turns a field line, which originates at the
chamber wall, spends before return to the chamber wall. The inset is a
magnification of the box containing a region with fine structure. (b) Depo-
sition pattern of the longest field lines. The parameters are those of Fig. 4. A
given line can escape only at the four toroidal angles where the limiters are
placed.

figure, a magnification of the box reveals a very involved
structure. There is, however, a clear difference between the
footprints characterizing smooth and fractal behavior of field
lines as they hit the tokamak wall. When the behavior is
smooth the footprints consist of a sequence of steps due to a
finite number of perturbing rings. On the other hand, a non-
smooth behavior will produce fractal footprints, since the
latter present self-similar structures, as shown by the magni-
fication of the fractal region at the inset of Fig. 5(b). More-
over, these fractal regions correspond to field lines with large
escape times and that could guide more energetic particles
towards the wall.

The previous results were obtained for a limiter with
mode numbers (mg,nq)=(4,1), for which the chaotic region
intercepts the tokamak wall in a very narrow interval. We can
alter the limiter parameters so as to generate a chaotic region
which touches the wall in more and wider intervals. Figure
6(a) demonstrates this possibility for mode numbers
(mgy,np)=(5,1). Instead of a single escape channel centered
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FIG. 6. (a) Poincaré cross section produced by considering a nonmonotonic
q profile with y=0.75 and B=2.80, N,=4, (mg,ny)=(5,1), A\=0.5902, and
1,=6% of I,. (b) Corresponding stable and unstable manifolds. (c) Intersec-
tions among the manifolds shown in (b).

at 71, we now have at least four channels. For this case, both
the manifold structure [Fig. 6(b)] and heteroclinic intersec-
tions [Fig. 6(c)] are qualitatively similar to the previous case.

The consequences of having more escape channels are
illustrated by Fig. 7, where both the transient times and mag-
netic footprints are shown for this case. At each escape chan-
nel there appears a region in which fine structure looks evi-
dent, both in the peaks of the transient time [Fig. 7(a)], or in
the Cantor-like footprints of Fig. 7(b). Hence, for these mode
numbers, the deposition patterns are more distributed than
before. Although the field lines hit the tokamak wall through
the same escape channels as before, they do so along a wider
interval (of more than two-thirds of the poloidal circumfer-
ence).

To understand the reason for this behavior one has to
take into account that the number and the width of the inter-
vals at which a chaotic region intercepts the tokamak wall
depends on two basic factors: the mean width of the chaotic
region and which resonance produces it. Although precise
statements here would require a deeper mathematical treat-
ment, the mean width of a chaotic region depends on the
limiter current, as long as it is large enough to generate the
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FIG. 7. (a) Number of toroidal turns a field line, which originates at the
chamber wall, spends before return to the chamber wall. (b) Deposition
pattern of the longest field lines. The parameters are those of Fig. 6. A given
line can escape only at the four toroidal angles where the limiters are placed.

region. This effect has been observed for both monotonic and
nonmonotonic equilibria. On the other hand, for a same cha-
otic region width, the deeper the resonance producing the
chaotic region is, the less it intercepts the wall for obvious
reasons.

The resonance excited by mode numbers (4, 1) turned
out to be deeper (i.e., farther from the wall) than the reso-
nance induced by (5, 1). Hence, when comparing the chaotic
regions for both cases, with a nearly equal limiter current, we
expect the chaotic region of the latter intercepting more the
wall than the former. This is not really unexpected, since the
radial location of the (4, 1) resonance is slightly less than of
the (5, 1) one. Even though we are dealing here with a non-
monotonic safety profile, the interval to which both reso-
nances belong has a positive magnetic shear, i.e., there is an
effectively monotonic increasing profile in that region. More-
over, this helps to explain why our results do not show a
noticeable difference when monotonic profiles are consid-
ered.

Take, for instance, Fig. 8, where the chaotic regions from
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FIG. 8. Poincaré cross section produced by considering a monotonic g
profile with y=3.25 and B=0, N,=4. (a) (mg,ny)=(4,1), A=0.4327, and
1,=8.5% of I,,. (b) (mgy,ny)=(5,1), A=0.5902, and I,=6% of I,,.

a monotonic profile, with y=3.25 and =0, are depicted in
phase portraits produced by two resonances: (4, 1) and (5,1)
[(a) and (b), respectively]. If we compare these portraits with
their corresponding counterparts for nonmonotonic profiles
[Figs. 4(a) and 6(a), respectively] we do not observe any
significant difference in the number and thickness of escape
channels. However, the details of the phase portraits farther
from the wall are very different, since in the monotonic case
there are no dimerized island chains and consequently no
transport barrier.

IV. CONCLUSIONS

We summarize our findings by stating that the nonuni-
formity of the deposition patterns on the tokamak wall is a
direct consequence of the manifold structure which underlies
chaotic dynamics near the wall. The magnetic footprints thus
reflect the convoluted nature of the invariant manifolds and
the structures derived from the fractality of these invariant
sets. The escape channels, through which the transport is
enhanced, result from the intersection between the tokamak
wall and the manifold structure.

The number and the distribution of these channels are
determined by two factors: the mean width of the chaotic
region and the resonance from which it starts. The former
depends in a complicated fashion on the limiter current,

Phys. Plasmas 13, 052511 (2006)

whereas the second is dictated by the shape of the safety
current profile in the region of interest. Since this region of
interest turns to be always monotonic and increasing with the
radius, regardless of the details of the safety factor profile
elsewhere, our results show no noticeable difference for
monotonic and nonmonotonic profiles, with respect to the
chaotic region near the wall. In both cases, the deeper the
resonance is from where the chaotic region starts, the more
concentrated are the deposition patterns due to the existence
of fewer escape channels.

The practical importance of these results lies in the fact
that, although nonmonotonic profiles are expected to yield
lower diffusion rates due to the generation of transport bar-
riers, the escape pattern for field lines remains the same, as
compared with the case without such barriers. Finally, if one
wishes to design experiments of the sort described in this
paper, and the limiter current cannot be raised above some
levels, it is better to use resonances near the wall, even when
nonmonotonic profiles should be used.

ACKNOWLEDGMENTS

This work was made possible through partial financial
support from the following Brazilian research agencies:
FAPESP (Sao Paulo) and CNPq.

'D. E. Post and R. Behrisch, Physics of Plasma-Wall Interactions in Con-
trolled Fusion (Plenum, New York, 1986).

’p. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP,
Bristol, 2000).

3R, Parker, G. Janeschitz, H. D. Pacher, D. Post, S. Chiocchio, G. Federici,
and P. Ladd, J. Nucl. Mater. 241-243, 1 (1997).

“F Karger and F. Lackner, Phys. Lett. 61, 385 (1977).

SW. Engelhardt and W. Feneberg, J. Nucl. Mater. 76/77, 518 (1978).

®W. Feneberg and G. H. Wolf, Nucl. Fusion 27, 669 (1981).

"T. J. Martin and J. B. Taylor, Plasma Phys. Controlled Fusion 26, 321
(1984).

8. Takamura, Y. Shen, H. Yamada et al., J. Nucl. Mater. 162-164, 643
(1989); Y. Shen, M. Miyake, S. Takamura et al., ibid. 168, 295 (1989).
°s. C. McCool, A. J. Wootton, A. Y. Aydemir et al., Nucl. Fusion 29, 547

(1989).

19K, H. Dippel, J. Nucl. Mater. 147, 3 (1987).

'], C. Vallet, L. Poutchy, M. S. Mohamed-Benkadda et al., Phys. Rev. Lett.
67, 2662 (1991).

21 L. Caldas, R. L. Viana, M. S. T. Araujo et al., Braz. J. Phys. 32, 980
(2002).

M. W. Jakubowski, S. S. Abdullaev, K. H. Finken e al., Nucl. Fusion 44,
51 (2004).

'S.'S. Abdullaev, K. H. Finken, A. Kaleck, and K. H. Spatschek, Phys.
Plasmas 5, 196 (1998); S. S. Abdullaev, K. H. Finken, and K. H.
Spatschek, ibid. 6, 153 (1999); S. S. Abdullaev, Th. Eich, and K. H.
Finken, ibid. 8, 2739 (2001).

E. C. da Silva, I. L. Caldas, R. L. Viana, and M. A. F. Sanjudn, Phys.
Plasmas 9, 4917 (2002).

'®R. K. Roeder, B. I. Rapaport, and T. E. Evans, Phys. Plasmas 10, 3796
(2003).

'E. C. da Silva, I. L. Caldas, and R. L. Viana, IEEE Trans. Plasma Sci. 29,
617 (2001).

BE M. Levinton, M. C. Zarnstoff, S. H. Batha et al., Phys. Rev. Lett. 75,
4417 (1995).

E. J. Strait, L. L. Lao, M. E. Manel ef al., Phys. Rev. Lett. 75, 4421
(1995).

2R, Mazzucato, S. H. Batha, M. Beer et al., Phys. Rev. Lett. 77, 3145
(1996).

2'M. Y. Kucinski and I. L. Caldas, Z. Naturforsch., A: Phys. Sci. 42a, 1124
(1987).

M. Y. Kucinski, I. L. Caldas, L. H. A. Monteiro, and V. Okano, J. Plasma
Phys. 44, 303 (1990).

Downloaded 22 Jun 2006 to 200.17.209.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



052511-9

5. S. E. Portela, I. L. Caldas, R. L. Viana, and M. A. F. Sanjudn, Int. J.
Bifurcation Chaos Appl. Sci. Eng. (to be published).

M. Roberto, E. C. da Silva, I. L. Caldas, and R. L. Viana, Phys. Plasmas
11, 214 (2004).

M. V. A. P. Heller, I. L. Caldas, A. A. Ferreira, E. A. O. Saettone, A.
Vannucci, and I. C. Nascimento, Czech. J. Phys. 55, 265 (2005).

BC. I A. Pires, E. A. O. Saettone, M. Y. Kucinski, A. Vannucci, and R. L.
Viana, Plasma Phys. Controlled Fusion 47, 1609 (2005).

T, E. Evans, M. Goniche, A. Grosman, D. Guilhem, W. Hess, and J. C.
Vallet, J. Nucl. Mater. 196-198, 421 (1992); J. A. Boedo, D. L. Rudakov,
E. Hollmann et al., Phys. Plasmas 12, 072516 (2005); R. A. Moyer, T. E.
Evans, T. H. Osborene et al., ibid. 12, 056119 (2005).

M. W. Jakubowski, S. S. Abdullaev, and K. H. Finken, and the TEXTOR
team, Nucl. Fusion 44, S1 (2004).

T E. Evans, R. K. W. Roeder, J. A. Carter, and B. I. Rapoport, Contrib.
Plasma Phys. 44, 235 (2004).

Effects of the resonant modes on the magnetic footprint...

Phys. Plasmas 13, 052511 (2006)

*G. A. Oda and I L. Caldas, Chaos, Solitons Fractals 5, 15 (1995); G.
Corso, G. A. Oda, and 1. L. Caldas, ibid. 8, 1891 (1997).

S L. Caldas, R. L. Viana, A. Vannucci, E. C. da Silva, M. S. T. Araujo, K.
Ullmann, M. V. A. P. Heller, and M. Y. Kucinski, Braz. J. Phys. 32, 980
(2002).

2P J. Morrison, Phys. Plasmas 7, 2279 (2000).

#3S.'S. Abdullaev, J. Phys. A 32, 2745 (1989).

*E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge University
Press, New York, 2002).

BAT Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics,
2nd ed. (Springer-Verlag, New York, 1992).

H. Kantz and P. Grassberger, Physica D 17, 75 (1985).

TH. Nusse and J. A. Yorke, Dynamics: Numerical Explorations (Springer-
Verlag, New York, 1997).

3D, Hobson, J. Comput. Phys. 104, 14 (1993).

¥C. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181 (1983).

Downloaded 22 Jun 2006 to 200.17.209.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



