
Chaos, Solitons and Fractals 19 (2004) 171–178

www.elsevier.com/locate/chaos
Controlling chaotic orbits in mechanical systems with impacts
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Abstract

We stabilize desired unstable periodic orbits, embedded in the chaotic invariant sets of mechanical systems with

impacts, by applying a small and precise perturbation on an available control parameter. To obtain such perturbation

numerically, we introduce a transcendental map (impact map) for the dynamical variables computed just after the

impacts. To show how to implement the method, we apply it to an impact oscillator and to an impact-pair system.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical systems exhibiting impacts occur in many branches of technology. Such systems are called vibro-impact

systems and have been recently the subject of growing interest in the literature [1,2]. Besides, the study of the vibro-

impact systems shows that chaotic behavior occurs widely [3–6]. Thus, controlling chaos can improve technological

applications [7–12].

In this work, we implement the Ott–Grebogi–Yorke (OGY) method of controlling chaos [13] for the the vibro-

impact systems. As examples, we consider an impact oscillator [14,15] and an impact-pair system [16]. The temporal

evolution of dynamical variables of these two systems is a combination of smooth motion governed by a linear dif-

ferential equation interrupted by a series of non-smooth impacts. Using the analytical solution of the differen-

tial equation and the impact rule, we can determine a transcendental map [16,17], whose dynamical variables are

computed at the impact instants. Furthermore, for these systems the trajectories are discontinues in phase space due to

impacts.

The OGY method consists on stabilizing a desired unstable periodic orbit embedded in a chaotic attractor by using

only a small perturbation on an available control parameter. For the vibro-impact systems due to discontinuities,

the hard part of the control process is how to determine the value of parameter perturbation. For that, we will use the

transcendental map, that is two-dimensional in this case. Thus, we calculate the necessary parameter perturbation in the

similar way of classical two-dimensional maps, as H�eenon map [18]. In addition, it is important to say that the motion of

the systems can not be obtained from the transcendental map. This map here is used only to implement the control

method.

This paper is organized as follows: In Section 2 we present the mathematical models of the vibro-impact systems

and introduce the transcendental maps. In Section 3 we describe the procedure to implement the OGY method for

these systems. In Section 4 we show numerical results of this implementation. Our conclusions are presented in

Section 5.
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2. Mathematical description

2.1. Impact oscillator

Fig. 1 depicts the model of the impact oscillator. This system is composed by a periodically forced oscillator whose

oscillation is limited by an amplitude constraint.

The differential equation of motion of the system between impacts is
€xxþ x ¼ a cosðxtÞ; x < xc ð1Þ
where xc, a and x are the amplitude constraint, the forcing amplitude, and the forcing frequency, respectively.

Integrating Eq. (1) and invoking initial condition xðt0Þ ¼ x0 and _xxðt0Þ ¼ _xx0, the displacement x and the velocity _xx
between impacts are
x ¼ x0

�
� a
ð1� x2Þ cosðxt0Þ

�
cosðt � t0Þ þ _xx0

�
þ ax
ð1� x2Þ sinðxt0Þ

�
sinðt � t0Þ þ

a
ð1� x2Þ cosðxtÞ ð2Þ

_xx ¼
�
� x0 þ

a
ð1� x2Þ cosðxt0Þ

�
sinðt � t0Þ þ _xx0

�
þ ax
ð1� x2Þ sinðxt0Þ

�
cosðt � t0Þ �

ax
ð1� x2Þ sinðxtÞ ð3Þ
An impact occurs wherever x ¼ xc (amplitude constraint). After each impact, we apply into Eqs. (2) and (3) the Newton

law of impact
t0 ¼ t; x0 ¼ x; _xx0 ¼ �r _xx ð4Þ
where r is a constant coefficient of restitution.

Thus, the evolution of the impact oscillator is given by Eqs. (2)–(4). Consequently, the system depends on the control

parameters xc, a, x, and r.
In order to determine the transcendental map needed for the control application, we consider the variables xn, _xxn,

and tn computed just before the impact n. The variables xnþ1, _xxnþ1 and tnþ1 are obtained from Eqs. (2) and (3) for the

initial conditions:
t0 ¼ tn; x0 ¼ xn; _xx0 ¼ �r _xxn ð5Þ
Thus, we can introduce the transcendental map (obtained from Eqs. (2), (3) and (5)):
xnþ1 ¼ xn

�
� a
ð1� x2Þ cosðxtnÞ

�
cosðtnþ1 � tnÞ þ

�
� r _xxn þ

ax
ð1� x2Þ sinðxtnÞ

�
sinðtnþ1 � tnÞ

þ a
ð1� x2Þ cosðxtnþ1Þ

_xxnþ1 ¼
�
� xn þ

a
ð1� x2Þ cosðxtnÞ

�
sinðtnþ1 � tnÞ þ

�
� r _xxn þ

ax
ð1� x2Þ sinðxtnÞ

�
cosðtnþ1 � tnÞ

� ax
ð1� x2Þ sinðxtnþ1Þ

ð6Þ
where xnþ1 ¼ xn ¼ xc.
Fig. 1. Model of an impact oscillator.
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Here, we use the transcendental map (6) only to specify the parameter perturbation needed to implement the

OGY method. In order to study the temporal evolution of dynamical variables we use Eqs. (2)–(4), as mentioned

earlier.
2.2. Impact-pair system

The impact-pair system is shown schematically in Fig. 2. This system is composed of a point mass m (whose dis-

placement is denoted by x) and a box with a gap of length m. The mass m is free to move inside the gap and the motion of

the box is represented by a periodic function ðA sinðxtÞÞ.
Equation of motion of the point mass m in the absolute coordinate is
€xx ¼ 0 ð7Þ
Denoting the relative displacement of the mass m by y, we have
x ¼ y þ a sinðxtÞ ð8Þ
Substituting Eq. (8) into Eq. (7), equation of motion in relative coordinate is
€yy ¼ ax2 sinðxtÞ; �m=2 < y < m=2 ð9Þ
Integrating Eq. (9) and invoking initial conditions yðt0Þ ¼ y0 and _yyðt0Þ ¼ _yy0, the displacement y and the velocity _yy,
between impacts, are
yðtÞ ¼ y0 þ a sinðxt0Þ � a sinðxtÞ þ ½ _yy0 þ ax cosðxt0Þ�ðt � t0Þ ð10Þ

_yyðtÞ ¼ _yy0 þ ax cosðxt0Þ � ax cosðxtÞ ð11Þ
An impact occurs wherever y ¼ m=2 or �m=2. After each impact, we apply into Eqs. (10) and (11) the new set of initial

conditions (the Newton law of impact)
t0 ¼ t; y0 ¼ y; _yy0 ¼ �r _yy ð12Þ
where r is a coefficient of restitution.

Therefore, the temporal evolution of the dynamical variables of the impact-pair system is given by Eqs. (10)–(12).

Thus, the system depends on control parameters m, r, a, and x.

To obtain the transcendental map, we use the analytical solution (Eqs. (10) and (11)) and the Newton law of impact.

Thus, we have
ynþ1 ¼ yn þ a sinðxtnÞ � a sinðxtnþ1Þ þ ½�r _yyn þ ax cosðxtnÞ�ðtnþ1 � tnÞ
_yynþ1 ¼ �r _yyn þ ax cosðxtnÞ � ax cosðxtnþ1Þ

ð13Þ
where yn ¼ m=2 or �m=2.
Here, we use the transcendental map (13) only to specify the parameter perturbation needed to implement the

OGY method. In order to study the temporal evolution of dynamical variables we use Eqs. (10)–(12), as mentioned

earlier.
Fig. 2. Model of an impact-pair system.
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3. Stabilizing periodic orbits

In this section, we describe the procedure to apply the OGY method of controlling chaos for the vibro-impact

systems.

The OGY method consists on stabilizing a desired unstable periodic orbit embedded in the chaotic attractor by using

small perturbations on an control parameter. We apply the perturbations when the chaotic orbit is in a region around a

periodic orbit. In addition, it is interesting to emphasize that a chaotic attractor has embedded within it a large number

of unstable periodic orbits. Besides, due to ergodicity of chaotic systems, a chaotic orbit visits the neighborhood of each

one of these periodic orbits.

To implement the OGY method, we first determine a chaotic attractor and choose an unstable periodic orbit. Then,

we define a small region (a neighborhood) around this orbit. We can consider this region as a circle, whose radius is here

denoted by �. Finally, we tailor the small parameter perturbations.

In our numerical investigations, we use the amplitude of excitation, a, as control parameter to be perturbed. As

mentioned earlier, the parameter perturbations, Da, are determined from a transcendental map, that is two-dimensional

in this case. Thus, we can determine the perturbation in the similar way of classical two-dimensional maps, as H�eenon
map.

In order to specify the perturbations, first we have to linearize a transcendental map about the parameter value a0

(the attractor is chaotic for a ¼ a0) and the unstable periodic orbit ð_zzi; tiÞ. Thus, we have
Znþ1 ¼ AZn þ Bða � a0Þ ð14Þ

where
Zn ¼
_zzn � _zzi
tn � ti

� �
ð15Þ
For the period-1 orbits ði ¼ 1Þ, the matrices A and B are given by
Að_zznþ1; _zzn; tnþ1; tnÞ ¼
a11 a12

a21 a22

 !
¼

otnþ1

otn

otnþ1

o_zzn
o_zznþ1

otn

o_zznþ1

o_zzn

0
BB@

1
CCA ð16Þ

Bð_zznþ1; _zzn; tnþ1; tnÞ ¼
b1

b2

 !
¼

otnþ1

oa
o_zznþ1

oa

0
BB@

1
CCA ð17Þ
For the period-2 orbits ði ¼ 1; 2), the matrices A and B are given by
A ¼ a11 a12
a21 a22

� �
¼

otnþ2

otnþ1

otnþ2

o_zznþ1

o_zznþ2

otnþ1

o_zznþ2

o_zznþ1

0
BB@

1
CCA

otnþ1

otn

otnþ1

o_zzn
o_zznþ1

otn

o_zznþ1

o_zzn

0
BB@

1
CCA ð18Þ

B ¼ b1
b2

� �
¼

otnþ2

otnþ1

otnþ2

o_zznþ1

o_zznþ2

otnþ1

o_zznþ2

o_zznþ1

0
BB@

1
CCA

otnþ1

oa
o_zznþ1

oa

0
BB@

1
CCA ð19Þ
The components of these matrices are evaluated at the periodic orbit ð_zzi; tiÞ and at a0. Besides, the components depend

on _zzn, tn and _zznþ1, tnþ1. In contrast of classical maps, whose components only depend on nth iteration of the dynamical

variables.

Second, we consider
½Znþ1� �~ffu;iþ1 ¼ 0 ð20Þ
where ~ffu is a contravariant vector and ½Znþ1� is a vector whose elements are components of matrix Znþ1.

The contravariant vectors, ~ffu and ~ffs, are obtained from the relations ~ffs �~ees ¼~ffs �~eeu ¼ 1;~ffu �~ees ¼ ~ffs �~eeu ¼ 0: The
vectors ~ees and ~eeu are the stable and unstable unit eigenvectors at ð_zzi; tiÞ, respectively, and correspond the stable

eigenvalue ðjksj < 1Þ and unstable eigenvalue ðjkuj > 1Þ of the matrix A.
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In this case, the eigenvectors are given by
~ees ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

p21 þ 1
p ðp1x̂xþ ŷyÞ; ~eeu ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 1

p ðp2x̂xþ ŷyÞ ð21Þ
where
p1 ¼ ðks � a22Þ=a21; p2 ¼ ðku � a22Þ=a21 ð22Þ
The contravariant vectors are
~ffs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ 1

p
ðp1 � p2Þ

ðx̂x� p2ŷyÞ; ~ffu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 þ 2

p
ðp2 � p1Þ

ðx̂x� p1ŷyÞ ð23Þ
Finally, from Eqs. (14) and (20), we obtain the parameter perturbation ðDa ¼ an � a0Þ:
an ¼ a0 �
½AiZn� �~ffu;iþ1

½Bi� �~ffu;iþ1

ð24Þ
Therefore, when the control is applied, we have the new control parameter an for the nth iteration (impact). As we use

the transcendental maps (impact maps) to obtain the parameter perturbations, the parameter is determined at a given

moment of the impact and is evaluated in the next impact. Therefore, between impacts the parameter determined, an,

does not change.

4. Numerical results

4.1. Impact oscillator

In this section, as numerical examples of the control method implementation, we stabilize both a period-1 and a

period-2 orbits for the impact oscillator. For this system, the periodicity of an unstable orbit is equal to the number of

the impacts. (This does not happen for the impact-pair system, as we will see in Section 4.2.)

To apply the control method, we compute new parameter an from expression (24) when the chaotic orbit falls in the

�-neighborhood of the unstable orbit. The components of matrix A are
otnþ1

otn
¼ 1

_xxnþ1

½�xn þ a cosðxtnÞ� sinðtnþ1 � tnÞ � r _xxn cosðtnþ1 � tnÞ

otnþ1

o _xxn
¼ 1

_xxnþ1

½r sinðtnþ1 � tnÞ�

o _xxnþ1

otn
¼ otnþ1

otn
½�xnþ1 þ a cosðxtnþ1Þ� þ ½xn � a cosðxtnÞ� cosðtnþ1 � tnÞ � r _xxn sinðtnþ1 � tnÞ

o _xxnþ1

oxn
¼ otnþ1

o _xxn
½�xnþ1 þ a cosðxtnþ1Þ� � r cosðtnþ1 � tnÞ

ð25Þ
and the components of matrix B are
otnþ1

oa
¼ 1

_xxnþ1ð1� x2Þ ½cosðxtnÞ cosðtnþ1 � tnÞ � x sinðxtnÞ sinðtnþ1 � tnÞ � cosðxtnþ1Þ�

o _xxnþ1

oa
¼ otnþ1

oa

hn
� xc þ

a
1� x2

i
cosðtnþ1 � tnÞ þ r _xxn

h
� ax
1� x2

sinðtnþ1 � tnÞ
i
sinðtnþ1 � tnÞ

o
þ 1

1� x2
½cosðxtnÞ sinðtnþ1 � tnÞ þ x sinðxtnÞ cosðtnþ1 � tnÞ � x cosðxtnþ1Þ�

ð26Þ
Fig. 3(a) shows the two unstable periodic orbits embedded in the chaotic attractor ða ¼ a0 ¼ 1:0Þ for the dynamical

variables computed just before the impacts ðx ¼ x0 ¼ 0Þ. Fig. 3(b) depicts a Stroboscopic map for these periodic orbits

and this chaotic attractor. Furthermore, comparing these figures we can note that the numbers of the impacts (Fig. 3(a))

and the periodicity of the unstable orbits (Fig. 3(b)) are equal, as mentioned earlier.

For the numerical application we consider the neighborhood radius � ¼ 0:01. The point of period-1 orbit

is ðt1; _xx1Þ 
 ð1:092635; 0:336177Þ and the points of the period-2 orbits are ðt1; _xx1Þ 
 ð1:3978; 0:4447Þ and

ðt2; _xx2Þ 
 ð0:7352; 0:4669Þ.
Fig. 4(a) shows the stabilization of both period-1 orbit and period-2 orbit for the different times. In Fig. 4(b) we

depict the indicative of variation of the parameter perturbations, da, needed to implement the control, where we can see
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Fig. 4. Stabilization of unstable periodic orbits indicated in Fig. 3: (a) dynamical variable tn (impact-time) as a function of the impact

number n and (b) indicative of variation of the control parameter a (da ¼ 100ða � a0Þ=a0).

Fig. 3. Chaotic attractor and unstable periodic orbits of period 1 (�) and 2 (+) of the impact oscillator for the control parameters

a ¼ a0 ¼ 1:0, x ¼ 2:8, r ¼ 0:8, and xc ¼ 0: (a) Poincar�ee map just before impact at x ¼ xc ¼ 0 and (b) Stroboscopic map (t ¼ 2p=x).
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that da for the period-1 orbit is around zero. However, da for the period-2 orbit is not around zero because the point

of this orbit was not obtained with a good precision due to some numerical problems.

Furthermore, we can note in Fig. 4(b) that variation of the parameter perturbation is less than 1%.

4.2. Impact-pair system

Here, we stabilize a period-1 orbit for the impact-pair system. For this orbit, there are two impacts for a time interval

½0; 2p=x�. Besides, the parameter perturbation is specified at the moment of impacts. Consequently, to apply the control

method for this orbit we have to treat it like a period-2 orbit.

To apply the control method, we compute new parameter an from expression (24) when the chaotic orbit falls in the

�-neighborhood of the unstable orbit. The components of matrix A are
otnþ1

otn
¼ � 1

_yynþ1

½r _yyn þ €eeðtnÞðtnþ1 � tnÞ�

otnþ1

o _yyn
¼ r

_yynþ1

ðtnþ1 � tnÞ

o _yynþ1

otn
¼ � otnþ1

otn
€eeðtnþ1Þ þ €eeðtnÞ

o _yynþ1

o _yyn
¼ � otnþ1

o _yyn
€eeðtnþ1Þ � r



Fig. 5. Chaotic attractor and unstable periodic orbits of period 1 (þ) of the impact-pair system for the control parameters a ¼
a0 ¼ 2:3, m ¼ 2:0, r ¼ 0:7, and x ¼ 1:0: (a) Poincar�ee map just before impact at y ¼ jm=2j ¼ 1:0 and (b) Stroboscopic map (t ¼ 2p=x).

0 1500 3000
n

-0.8

0.0

0.8

δα

-4.0

0.0

4.0

y n

(a)

(b)

.

control
on

Fig. 6. Stabilization of unstable periodic orbit indicated in Fig. 5: (a) evolution of relative velocity _yyn as a function of the impact

number n and (b) indicative of variation of the control parameter a (da ¼ 100ða � a0Þ=a0).
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and components of matrix B are
otnþ1

oa
¼ 1

_yynþ1

½sinðxtnþ1Þ � sinðxtnÞ � x cosðxtnÞðtnþ1 � tnÞ�

o _yynþ1

oa
¼ otnþ1

oa
ax2 sinðxtnÞ þ x cosðxtnÞ � x cosðxtnþ1Þ

ð27Þ
Fig. 5(a) shows an unstable period-1 orbit, with two impacts per cycle (time interval ½0; 2p=x�), embedded in a chaotic

attractor determined for a ¼ a0 ¼ 2:3. In Fig. 5(b) we present the Stroboscopic map for the period-1 orbit and the

chaotic attractor shown in Fig. 5(a).

In this case, we consider the neighborhood radius � ¼ 0:05. The points of period-1 orbit are ðt1; _yy1Þ 

ð1:7312311; 2:4494606Þ and ðt2; _yy2Þ 
 ð4:8728238;�2:4494606Þ.

Fig. 6(a) shows the stabilization of period-1 orbit. In Fig. 6(b) we depict the indicative of variation of the parameter

perturbations needed to implement the control, where we can see that variation of the parameter perturbation is less

than 0.5%.
5. Conclusion

In conclusion, we present a new procedure to implement the OGY method in mechanical systems with impacts. For

that, we use a transcendental map to determine the required small changes on the control parameter. As examples of
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this procedure, we apply the OGY control method to an impact oscillator and an impact-pair system. Thus, we stabilize

unstable periodic orbits embedding in chaotic attractors commonly observed in the considered systems.
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