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Damping control law for a chaotic impact oscillator
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Abstract

We apply a feedback control technique to suppress chaotic behavior in dissipative mechanical systems by using a
small-amplitude damping signal. The control signal is obtained by varying the damping coefficient according to the
velocity direction. As an application of this method, we present numerical simulations of an impact oscillator and
the required damping law used to achieve the control. Our numerical results show the method effectiveness even for
high levels of noisy perturbation.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic behavior, sensitively depending on initial conditions, has been identified in many dynamical systems [1]. One
important type of dynamical system that exhibits chaotic behavior is formed by impact oscillators, also called vibro-
impact systems. These systems arise whenever their components collide with each other or with rigid obstacles. These
impact oscillators have been the subject of growing interest in dynamical systems literature [2,3]. In addition, it is inter-
esting to point out that these oscillators do not satisfy the usual smoothness assumptions. Thus, classical mathematical
methods are applicable only to a limited extent and require extensions both for analytical and numerical methods.

For several years, this behavior was thought to be quite undesirable and, consequently, it was strongly avoided,
mainly in mechanical systems designed for technological applications. It turns out, however, that chaotic behavior,
if properly handled, can be of practical interest in real-world applications.

In 1990, an original scheme of chaos control was put forward by Ott et al. [4]. The control procedure is known now-
adays as the OGY method and has had a great impact on nonlinear science. The OGY method consists on stabilizing a
desired unstable periodic orbit embedded in a chaotic attractor by using only a tiny perturbation on an available control
parameter. This is in marked contrast with usual control methods, such those used for periodic motion, for which tiny
perturbations causes only small-size effects.
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Another interesting chaos control strategy was proposed by Pyragas in 1992 [5]. The Pyragas method also considers
the dynamical properties of a chaotic attractor to stabilize unstable periodic orbits. In this case, the method implemen-
tation requires a delayed feedback signal.

After OGY and Pyragas methods, a wide variety of control chaos strategies was developed and verified experimental
and numerically. Recently, a new kind of feedback control method was proposed [6,7], and consists in suppressing
chaos by using a small-amplitude control signal, applied to alter the energy of a chaotic system. For that, it was used
a sigmoid function in the forcing term of the equations of motion to represent the control signal. This analytical func-
tion was useful to show the conceptual applicability of the proposed method. However, in a real system it would be
worthful to know a signal prescription to implement the control considered in [6,7].

In order to overcome possible difficulties to apply the method of controlling chaos by using a small-amplitude
signal, we use a piecewise-linear absolute value function to describe the control signal instead of using the sigmoid func-
tion proposed in Refs. [6,7]. With this choice, the control signal considered can be readily obtained by varying the
damping coefficient [16–18]. As an example, we apply this control signal to suppress chaos in an impact oscillator
[8–15].

This paper is structured as follows: in Section 2 we present the mathematical model for the impact oscillator con-
sidering the control function. Section 3 explores some aspects of the model dynamics from numerical simulations,
emphasizing the performance of the control method. Our conclusions are presented in Section 4.
2. Theoretical model

Fig. 1 depicts the model of the impact oscillator. This system is composed by a periodically forced and damped linear
one-dimensional oscillator whose displacement is limited by an amplitude constraint, x = xc, which is a rigid wall with
which the oscillator collides inelastically.

Between two successive impacts, the smooth motion, without control input, is given by
€xþ c _xþ x ¼ F cos xt; ð1Þ
where c is the damping coefficient, F the forcing amplitude, and x the forcing frequency. Both the oscillator mass and
the elastic constant have been normalized to unity for simplicity.

Considering the damping control law u ¼ kj _xj, the resulting equation of motion is described by
€xþ fdð _xÞ þ x ¼ F cos xt; ð2Þ
where
fdð _xÞ ¼ c _x� kj _xj ¼
ðc� kÞ _x if _x P 0;

ðcþ kÞ _x if _x < 0

�

and k is a constant coefficient.
An impact occurs whenever x = xc. After each impact, we reset the velocity of the oscillator using the Newton

impact law. In other words, we model the collisions with a rigid wall (amplitude constraint) by the law of inelastic
impact: the velocity after the impact is taken to be �R times the velocity before the impact, where R is a constant res-
titution coefficient (0 < R < 1).
x=xcx

F cos(ωt )

c

Fig. 1. Model of an impact oscillator.
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3. Numerical results

Numerical simulations were performed by using a fourth order Runge–Kutta method. We adopted a fixed step for
displacements far away from the rigid wall (amplitude constraint) and an adaptive step if we are close enough to the
wall. The adaptive step was obtained using the Newton–Raphson’s method. Here, the control parameter values are
fixed at xc = 0, R = 0.8, F = 2.0, and x = 2.8.

For the control switched off, in Fig. 2(a) we show a bifurcation diagram of the velocity, _x, in terms of the damping
coefficient c. Hence, as can be seen, there is a wide range of the parameter for which the system presents chaotic dynam-
ics, with one, two and three bands, occasionally interrupted by narrow periodic windows. In Fig. 2(b) for c = 0.5, we
plot the phase portrait of a chaotic attractor, that we choose to implement the control method.

In order to investigate the influence of the control input (with a control function u ¼ kj _xj) on a chaotic attractor, in
Fig. 3 we present a bifurcation diagram in terms of parameter k, showing the transformation of the chaotic attractor for
small k (Fig. 2(b)) into a period-1 orbit as k is increased from zero, through a reverse period-doubling bifurcation cas-
cade. As examples of periodic behavior identified in this diagram, in Fig. 4(a) we plot the phase portrait of a period-1
orbit (for k = 0.1) and in Fig. 4(b) a period-2 orbit (for k = 0.04). In the background of these figures, it was depicted the
chaotic attractor shown in Fig. 2(b).

We would like to emphasize that the control input u, for the case shown here, is always a small-amplitude signal. An
illustrative example is in Fig. 5 where its evolution is shown, for the controlled period-1 orbit shown in Fig. 4(a), as
compared with value of the system acceleration €x with and without control. The control input remains smaller than
5% of the maximum amplitude of €x (i.e., it is only necessary to apply a small quantity of energy to the control
implementation).
Fig. 2. (a) Bifurcation diagram of the velocity, _x, just before the impact as a function of the damping parameter c; (b) the phase portrait
of the chaotic behavior for c = 0.5.
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Fig. 3. Bifurcation diagram of the velocity, _x, just before the impact as a function of the control parameter k.
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Fig. 4. (a) Period-1 orbit for k = 0.10; (b) period-2 orbit for k = 0.04. In gray is plotted the chaotic attractor of Fig. 2b.
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Fig. 5. Time histories of the control input u, for k = 0.1, in black heavy line. Evolution of acceleration, €x, for control on (black light
line) and for control off (gray line).
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In Fig. 6, for the obtained period-1 orbit, we show the variation of the damper due to control. In dashed and solid
lines are plotted the damping curve for the system with chaotic and periodic behaviors, respectively. Notice that the
addition of control input corresponds to the variations of the damping coefficient. In such way, the damping coefficient
decreases for positive velocities and increases for negative velocities.
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Fig. 6. Damping force fd ¼ c _x� kj _xj; for k = 0 uncontrollable damper (dashed line) and for k = 0.1 controllable damper (solid line).
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Fig. 7. Dynamical variable _x (just before impact) as a function of the impact number n; (a) the evolution without noise; (b) with noise
for r = 0.1.
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Finally, we investigate the effects of an extrinsic noise on the performance of the applied control method. For that,
we use a random perturbation of the control parameter F (forcing amplitude). In other words, it is considered a para-
metric noise on the parameter F in following form:
F ! F ð1þ rpnÞ; ð3Þ
where pn represents a uniform random variable on the interval (�1,+1) with unit variance and zero mean, and r is re-
ferred to as the noise level of the parametric fluctuations. In addition, the rpn term is applied just after the moment of
the impact.

Let us begin showing in Fig. 7(a) an example of the control implementation without noise. This figure shows the
evolution of velocity, collected just before the impacts, as a function of impact number n. The control is only switched
on at time n = 1000 (for k = 0.04) and, as shown in Fig. 4(b), a period-2 orbit is obtained. At n = 2000 the control is
switched off, and, at n = 3000 is switched on again, for k = 0.1, obtaining the period-1 orbit, shown in Fig. 4(a).

In Fig. 7(b) we show a similar process, but now considering the noise perturbation. Indeed, even for the high noise
used perturbation (r = 0.1, i.e., 10% of the parameter variation) the control method is efficient to suppress chaotic
behavior, what shows the robustness of the method proposed.

Furthermore, in Fig. 7(a) and (b), we also note that the suppression of chaos is obtained almost immediately after
the control is turned on. This fact may be important in some technological applications requiring fast response to exter-
nal control.
4. Conclusion

In this paper, we discuss a recently proposed procedure to suppress chaotic regimes of an impact oscillator. The
applied small-amplitude signal we use to achieve this suppression is mathematically described by a piecewise-linear
absolute value function instead of a smooth sigmoid function, which is a more difficult to be implemented in a labo-
ratory setting. Thus, this control signal could be obtained in practical situations (experimentally) by varying the damp-
ing coefficient. We show numerically that the proposed control method is effective to suppress chaos even for a high
level of noise perturbation, what shows the robustness of the control.
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[12] Isomäki HM, Von Boehm J, Räty R. Fractal basin boundaries of an impacting particle. Phys Lett A 1988;126:484–90.
[13] Blazejczyk-Okolewska B, Kapitaniak T. Co-existing attractors of impact oscillator. Chaos, Solitons & Fractals 1998;9:1439–43.
[14] de Souza SLT, Caldas IL, Viana RL, Balthazar JM, Brasil RMLRF. Impact dampers for controlling chaos in systems with limited

power supply. J Sound Vib 2005;279:955–67.
[15] de Souza SLT, Caldas IL. Controlling chaotic orbits in mechanical systems with impacts. Chaos, Solitons & Fractals 2004;19:

171–8.
[16] Anusonti-Inthra P, Gandhi F. Cyclic modulation of semi-active controllable dampers for tonal vibration isolation. J Sound Vib

2004;275:107–26.
[17] Liu Y, Waters TP, Brennan MJ. A comparison of semi-active damping control strategies for vibration isolation of harmonic

disturbances. J Sound Vib 2005;280:21–39.
[18] Fischer D, Isermann R. Mechatronic semi-active and active vehicle suspensions. Control Eng Pract 2004;12:1353–67.


	Damping control law for a chaotic impact oscillator
	Introduction
	Theoretical model
	Numerical results
	Conclusion
	Acknowledgments
	References


