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Abstract

The dynamics of vibro-impact systems of engineering interest is numerically studied by means of a prototype con-
sisting of an oscillating cart containing a ball undergoing inelastic collisions with its walls. We have described a mul-
tistable regime, for which different attractors coexist with a complicated basin boundary structure in the phase space.
We investigated the effect of adding a certain amount of parametric noise in this model, focusing on the basin hopping,
i.e., the intermittent switching between basins of different attractors.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vibro-impact oscillators have moving parts colliding with either moving or stationary components, and are often
found in engineering applications, as vibration hammers, driving machinery, milling, impact print hammers, and shock
absorbers [1,2]. The practical interest in the study of vibro-impact oscillators lies in both their desirable and undesirable
effects. The former are the basis of their operation, like an impact hammer, whereas the latter can be exemplified by
large amplitude response leading to material fatigue and rattling in gearboxes, bearings, and fuel elements in nuclear
reactors [3]. In both cases, it is of paramount importance to understand how vibro-impact systems behave dynamically,
and what is the role of the parameter change on the observed dynamical regimes [4,5]. From the purely theoretical point
of view vibro-impact oscillators have received a great deal of interest since they are non-smooth dynamical systems for
which usual mathematical methods, like bifurcation theory, are applicable only to a limited extent [6–10].

One of the most conspicuous influences on vibro-impact and, in general, on any oscillator system, is caused by
extrinsic noise, which is unavoidable in laboratory and industrial contexts. For simple periodic motions the effects
of noise are fairly well understood, and their control or suppression can be achieved by standard procedures, like noise
0960-0779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chaos.2005.11.056

* Corresponding author. Tel.: +55 41 3613098; fax: +55 41 3613418.
E-mail address: viana@fisica.ufpr.br (R.L. Viana).

mailto:viana@fisica.ufpr.br


S.L.T. de Souza et al. / Chaos, Solitons and Fractals 32 (2007) 758–767 759
filtering [11]. Such treatments may fail, however, for complex motions comprising both periodic, quasi-periodic and
chaotic regimes, often coexisting with a complicated basin of attraction structure [12]. One of the outstanding features
in noisy multistable systems is basin hopping, which consists of the intermittent switching between two or more basins
of attraction, when the system is subjected to noise [13–19].

The effects of basin hopping can be dramatically enhanced if the multiple coexisting basins of attraction have fractal
boundaries. In this case, it may well happen that even a small amount of noise is able to drive the oscillator out from its
asymptotic state to another state, either periodic or chaotic. In vibro-impact systems, in particular, basin hopping can
be highly undesirable and even dangerous, since it may produce large amplitude jumps in the oscillations of the moving
parts and a consequent fatigue of the material, if not the complete system breakdown. This paper aims to shed some
light on the effects of the parametric noise on the dynamics of a prototypical vibro-impact system, specially the inter-
mittent transitions among different asymptotic states due to basin hopping.

This paper is organized as follows: Section 2 presents the prototypical impact-pair system and its equations of
motion [20,21]. The noiseless dynamics of this system is considered in Section 3, whereas the effects of parametric noise
are dealt with in Section 4. Our conclusions are left to the last section.
2. Mathematical description

In this section we present the basic equations and an impact map of the impact-pair system [20,21]. The impact map
is useful to calculate the Lyapunov exponents [22]. The impact-pair system is shown schematically in Fig. 1 and is com-
posed by a point mass m, whose displacement is denoted by x, and an one-dimensional box with a gap of length m. The
mass m is free to move inside the gap and the motion of the box is described by a periodic function, a sin (xt).

Equation of motion of the point mass m in the absolute coordinate is
€x ¼ 0 ð1Þ
Denoting the relative displacement of the mass m by y, we have
x ¼ y þ a sinðxtÞ ð2Þ
Substituting Eq. (2) into Eq. (1), the equation of motion in relative coordinate is
€y ¼ ax2 sinðxtÞ; �m=2 < y < m=2 ð3Þ
Integrating Eq. (3) and invoking initial conditions yðt0Þ ¼ y0 and _yðt0Þ ¼ _y0, the displacement y and the velocity _y,
between impacts, are
yðtÞ ¼ y0 þ a sinðxtoÞ � a sinðxtÞ þ ½ _y0 þ ax cosðxt0Þ�ðt � t0Þ ð4Þ
_yðtÞ ¼ _y0 þ ax cosðxt0Þ � ax cosðxtÞ ð5Þ
An impact occurs whenever y = m/2 or �m/2. After each impact, we apply into Eqs. (4) and (5) the new set of initial
conditions (Newton’s law of impact)
t0 ¼ t; y0 ¼ y; _y0 ¼ �r _y; ð6Þ
where r is a constant restitution coefficient.
Therefore, the dynamics of the impact-pair system is obtained from Eqs. (4)–(6) and the system depends on control

parameters m, r, a, and x.
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Fig. 1. Model of an impact-pair system.
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Since there is an analytical solution for the motion between impacts, we can obtain an impact map, also called tran-
scendental map [22]. First, we define the discrete variables yn, _yn, tn as the displacement, the velocity, and the time (mod-
ulo2p) collected just after the nth impact. Substituting the Newton of impact into Eqs. (4) and (5), we have a two-
dimensional map that is given by
Fig. 2
strobo
For th
ynþ1 ¼ yn þ a sinðxtnÞ � a sinðxtnþ1Þ þ ½�r _yn þ ax cosðxtnÞ�ðtnþ1 � tnÞ
_ynþ1 ¼ �r _yn þ ax cosðxtnÞ � ax cosðxtnþ1Þ

ð7Þ
where yn = m/2 or �m/2.
As mentioned before, this map is used in this work to calculate the Lyapunov exponents [22]. Such exponents are

computed through ki = limn!1(1/n)lnjKi(n)j(i = 1,2), where Ki(n) are the eigenvalues of the matrix A = J1 Æ J2, . . . ,Jn

where Jn is the Jacobian matrix of the map (7), computed at time n.
3. Noiseless dynamics

Initially, we investigate by numerical simulations the dynamical behavior of the impact-pair system (Fig. 1) without
noise perturbation in order to determine coexisting attractors. For that, we fix the control parameters at m = 2.0 (length
of the gap), x = 1.0 (excitation frequency) and vary the parameters r (restitution coefficient) and a (excitation
amplitude).

As a representative example of the kind of dynamics generated by the impact-pair system, we present in Fig. 2(a) a
bifurcation diagram for the velocity, _yT , versus the amplitude excitation, a. The dynamical variable _yT is obtained from
a stroboscopic map (Time-2p). In the diagram, we can see two-coexisting attractors (plotted in gray and in black) for
some range of the control parameter; for example, there are two period-1 orbits at a = 3.25. In this case, these attractors
are symmetric and appear due to the pitchfork bifurcation at a � 3.0228.

In order to characterize the nature of the behavior observed in Fig. 2(a), we show in Fig. 2(b) the Lyapunov expo-
nents for the attractors plotted in black. If the largest Lyapunov exponent is positive the attractor is chaotic, if not the
attractor is periodic. As mentioned before, to calculate the Lyapunov exponents we use the impact map according the
algorithm presented in Ref. [22] and shortly described in Section 2.

To better analyze the dynamics of the coexisting attractors at a = 3.25, we depict in Fig. 3(a) another bifurcation
diagram of the two-coexisting attractors in terms of the restitution coefficient, r. This diagram shows that the evolution
of these attractors is given by a reverse period-doubling bifurcation cascade. Fig. 3(b) shows the Lyapunov exponents
corresponding to the attractors of the Fig. 3(a) plotted in black.
. (a) Bifurcation diagram showing two-coexisting attractors (gray filled circles and black points) for the velocity _yT , for a
scopic map, as a function of the amplitude excitation, a and (b) the Lyapunov exponents, k1,2, for the attractor plotted in black.
e control parameter r = 0.7.



Fig. 3. (a) Bifurcation diagram showing two-coexisting attractors (gray and black) for the velocity _yT , for a stroboscopic map, as a
function of the coefficient of restitution, r and (b) the Lyapunov exponents for the attractors plotted in black, for the control parameter
a = 3.25.
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Fig. 4. Phase portrait of velocity versus displacement of two coexisting periodic attractors (a) and (b), that can be seen in Figs. 2(a) and
3(a); time histories of two equilibrium points (c) and (d), for the control parameters a = 3.25 and r = 0.7.
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Fig. 5. Basins of attraction, in white and light gray, for the two coexisting attractors shown in Fig. 3(a) and, in dark gray and black,
two equilibrium points (shown in Fig. 4(c) and (d)), for the restitution coefficient fixed at r = 0.6 (a), r = 0.7 (b), r = 0.8 (c), and r = 0.9
(d), for the control parameter a = 3.25.
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Phase portraits of the two symmetrical coexisting periodic attractors, for a = 3.25 and r = 0.7, are shown in Fig. 4(a)
and (b). Besides these attractors, for the same set of parameters we identify two equilibrium points that are shown in
Fig. 4(c) and (d). In Fig. 5(b) we present the basins of these attractors.

To evaluate the basins structure for the attractors (shown in Fig. 3(a)) and the two equilibrium points (Fig. 4(c) and
(d)), we fix a value y0 = 0 and work with a two-dimensional section of the phase space ð _y0; t0Þ. For a grid of 400 · 400
pixels, we present the evolution of the basins structures in Fig. 5(a) and (b). First, in Fig. 5(a) we see the basins of the
chaotic attractors, plotted in white and light gray, and of the equilibrium points, in black and dark gray. As can be seen
the basin boundary between chaotic attractors is apparently fractal, whereas the basin of the equilibrium points is
smooth.
4. Noise dynamics

In this section, we investigate the effects of a parametric noise perturbation on the performance of the impact-pair
system. For that, we consider a random perturbation on the control parameter a. In other words, it is considered a
parametric noise in following form:
a! að1þ rpnÞ ð8Þ
where pn represents a uniform random variable on the interval (�1,+1) with unit variance and zero mean, and r is re-
ferred to as the noise level of the parametric fluctuations. In addition, the rpn term is applied just after the moment of
the impact.

Let us study the effects of such noise in the dynamical scenario of the impact-pair system. As an example, we con-
sider the case of the coexisting periodic attractors shown in Fig. 4(a) and (b). First, adding a small amount of noise,
0.8%, we do not observe noticeable dynamical effects; see Fig. 6(a). Increasing the noise levels, in Fig. 6(b) and (c),
we see the attractor hopping phenomena. In other words, the trajectory visits alternately, by sudden bursts, the two
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Fig. 6. Time series for the stroboscopic velocity _yT , for a = 3.25 and r = 0.7, and increasing noise: (a) r = 0.008; (b) r = 0.03, (c)
r = 0.1 and (d) time series of a chaotic attractor for a = 3.5 and r = 0.7.
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coexisting attractors. Moreover, we can also observe during the bursts that the trajectory leaves the neighborhood of
the attractors and spend a certain time in the chaotic saddle. To clarify the last statement, we show in Fig. 6(d) the time
series of a chaotic attractor and we can see here the same pattern of the evolution. In addition, we depict in Fig. 7(a) and
(b) the orbit of this chaotic attractor (in black) and the orbit for the system with 5% of noise perturbation (in gray). As
can be seen the orbit with noise and the chaotic attractor occupy practically the same place in the space phase. The
corresponding Lyapunov exponents are plotted in Fig. 7(c).

Now we determine how much noise level is necessary to observe basin hopping. For this purpose, we construct a
diagram in the control parameter space, as shown in Fig. 8, using practically the same range of the restitution coefficient
parameter of the bifurcation diagram (Fig. 3(a)). The white region shows values of noise where we observe basin hop-
ping. From this result, considering that low level of noise implies in basin hopping phenomena, we can say that noise
has an important role in the dynamical behavior of the impact-pair system.

Even a superficial inspection of Fig. 6(b) and (c) already shows us that the intermittenty switchings between coex-
isting dynamical states occur at different time intervals s. In this case, it is useful to compute the (normalized) proba-
bility distribution function (PDF) for these values, P(s), such that P(s)ds is the number of switching intervals with
durations between s and s + ds. For the system parameters chosen in Fig. 6(a)–(c), this distribution turns to be an expo-
nential function of s for distinct values of the noise level (Fig. 9):
PðsÞ ¼ 1

l
exp � s

l

� �
ð9Þ
where the effect of increasing noise levels is to increase the slope 1/l of the distribution. This is easily explained by con-
sidering that as much noise there is in the system, more frequent are basin jumps, so that most of the switching intervals
are very short. In this case, the average switching time is



Fig. 7. For the coefficient of restitution fixed at r = 0.7. (a) Poincaré map ð _yn; tnÞ just before the impact at y = jm/2j = 1.0. In black a
chaotic attractor for a = 3.5, see Fig. 2(a). In gray attractors hopping for a = 3.25 and the noise level r = 0.05, (b) magnification of a
portion of the previous figure, (c) the convergent series of the Lyapunov exponents, k1,2, as function of the impact number, n, for the
orbits of (a); black for the chaotic attractor and gray for the attractors hopping.
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Fig. 8. Noise level, r, as a function of the restitution coefficient, r. The white region indicates for which values of noise the basin
hopping is observed.
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hsi ¼
Z 1

0

P ðsÞsds ¼ l ð10Þ
On that basis, one can also expect that the average switching time, which we can numerically approximate to the
temporal mean
hsi ¼ 1

N s

XN s

i¼1

si ð11Þ
where Ns is the number of switching intervals during the considered time period, would decrease if we increase the noise
level r. Fig. 10 shows that this is actually the case. Our numerical results are fitted by the following equation:
hsi ¼ crb expð2a ln rÞ ð12Þ
which shows, for low noise levels, a power-law scaling, with an exponential tail for high noise.
In addition, we show that the basins structure of the equilibrium points, shown in Fig. 4(c) and (d), practically does

not change as a function of the noise level. For that, we pick up a box from Fig. 5(b) focusing on this basin structure
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0. Time averaged in a basin as a function of the noise level. hsi = crbexp[a(lnr)2], where a = 14.09, b = 109.40, and
(212.5).



Fig. 11. Magnification of the Fig. 5(b) without noise perturbation (a) and basins of the attraction for the noise levels r = 0.008 (b),
r = 0.03 (c), and r = 0.10 (d). In dark gray it is plotted the basin of the attractors hopping.
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plotted in black. As first step, we use a tiny amount of noise, 0.8%. The result is shown in Fig. 11(b) where we can just
note a slight change on the basins of the two periodic attractors plotted in white and light gray. Even for higher noise
level, we verify the robustness of this structure as shown in Fig. 11(c) and (d) for the noise perturbation 3% and 10%,
respectively.
5. Conclusion

Although vibro-impact systems of engineering interest may present a wide variety of forms, ranging from impact
hammers to shock absorbers, we can grasp the essentials of their dynamics from analyzing simpler models. In this paper
we pursued this task by considering the one-dimensional motion of a cart, externally driven by a sinusoidal source, and
containing a sphere undergoing inelastic collisions with its walls. The noiseless dynamics is found to exhibit, for some
range of the system parameters, coexistence of attractors with a complicated boundary. The addition of parametric
noise causes basin hopping, or the alternate switching among different coexisting attractors. These alternations occur
between different time intervals obeying an exponential distribution. The average duration of such intervals decreases
with increasing noise level, and satisfies a scaling law. We were able to describe some parameter ranges for which basin
hopping is observed, in terms of the parametric noise level.

The theoretical explanation of basin hopping is based in the properties of the chaotic saddles which lie in between the
basins. The noise term kicks the trajectory out of an open neighborhood of some attractor into the basin boundary. The
trajectory spends there a certain amount of time until it reaches again the neighborhood of the same or another attrac-
tor. The chaotic saddle underlying the basin boundary structure is a non-attracting chaotic invariant set, so that the
trajectory, while wandering in the vicinity of the saddle, experiences a transient chaotic motion. This chaotic transient
is related to the chaotic saddle existing in between the coexisting basins and, in presence of noise, can be sustained to
yield an apparently stationary regime very similar to a noiseless chaotic attractor.
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