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During an infectious disease outbreak, mathematical models and computational simulations are essential
tools to characterize the epidemic dynamics and aid in design public health policies. Using these tools,
we provide an overview of the possible scenarios for the COVID-19 pandemic in the phase of easing
restrictions used to reopen the economy and society. To investigate the dynamics of this outbreak, we
consider a deterministic compartmental model (SEIR model) with an additional parameter to simulate
the restrictions. In general, as a consequence of easing restrictions, we obtain scenarios characterized by
high spikes of infections indicating significant acceleration of the spreading disease. Finally, we show how
such undesirable scenarios could be avoided by a control strategy of successive partial easing restrictions,
namely, we tailor a successive sequence of the additional parameter to prevent spikes in phases of low
rate of transmissibility.
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1. Introduction

The emergence of infectious diseases with epidemic potential
requires massive interdisciplinary efforts to understand and de-
velop measures to prevent or, at least, mitigate outbreaks [1,2]. In
this context, mathematical models have played an important role
in understanding the dynamics of infectious diseases and in de-
signing health policy strategies [3-7]. In fact, these models have
been used extensively to investigate different types of infection dy-
namics such as influenza A [8], Zika [9], Ebola [10], SARS [11,12],
MERS [13,14], and, more recently, COVID-19 [15-20].

During a pandemic like COVID-19, besides the important work
of forecasting [21] and evaluating public health strategies [22], the
impact of easing containment measures should be carefully evalu-
ated to avoid drastic spikes in infections and, consequently, reim-
pose heavy social and economic restrictions.

In this work, we investigate possible outcomes for the COVID-19
outbreak in the phase of lifting containment measures. For numer-
ical studies, we consider the SEIR model (Susceptible - Exposed -
Infected - Removed) with an additional parameter to simulate the
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restrictions. We also provide a control strategy to prevent spikes in
infections by easing restrictions. In other words, our main purpose
is to cast further light on the dynamical scenarios for the course of
the COVID-19 pandemic in the context of reopening the economy
and society.

This paper is organized as follows: In Section 2, we introduce
the SEIR model with an additional control parameter providing an
initial overview of the epidemic behavior. In Section 3, we investi-
gate the impact of easing restrictions on the infection dynamics. In
Section 4, we explore a control strategy to avoid spikes and reduce
the transmission rate. The last section contains our main remarks.

2. Mathematical modeling of epidemics

Compartmental models derived from classical SEIR model have
been used extensively to forecast the evolution of the COVID-19
outbreak [23-27]. The main idea to introduce these type of mod-
els is to divide the population into a set of distinct classes. For
example, individuals for the basic SEIR model are separated into
four compartments: susceptible (S), exposed (E), infected (I), and
recovered or removed (R) classes.

For numerical simulation, we consider the SEIR model with ad-
ditional control term (1 — o) as used by Boldog and collaborators
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[28]. Thus, the compartmental deterministic model is given by the
set of ordinary differential equations:

% = —%51(1 -0), (1)
‘;_f = gsm —0) - o, (2)
%:ws—yl, 3)
Z_f -y, (4)

where B = Ry/Tj;s is the transmission rate, @ = 1/T, is the tran-
sition rate from E to I, y = 1/Ty;s is the transition rate from I to
R, and N=S+E +1+R is the total population for incubation pe-
riod T, infectious period Ti;f, and basic reproductive number Ry
with o on the interval [0,1]. In this case, the effective reproductive
number is given by R; = Ry(1 — o)S/N. Thus, in case of Ry = 3 the
parameter o must be 2/3 or greater (2/3 <o < 1) in order to sup-
press the epidemic spreading [29]. Additionally, the parameter o
describes the intensity of restrictions associated with control poli-
cies to reduce the infection spread. For example, this parameter
can represent the fraction of the infected individuals subjected to
isolation.

Based on recent study on dynamics of transmission and control
of COVID-19 [30], we consider the control parameters T, = 5.2
days, Tj;r =2.9 days and Ry = 3. The basic reproductive number
Ry depends on various factors, such as the probability of infec-
tion and the rate of contacts. In Wuhan during January of 2020,
the median Ry values ranged from 1.6 to 2.6 [30]. At the begin-
ning of the outbreak of COVID-19, the European Union presented
Rg =4.22 £ 1.69 [31]. Therefore, Ry equal to 3 is inside the inter-
val of values observed in many places. For numerical investigation
we use [y =Ry =0, Ey =1 and Sy = N — 1 as initial conditions, fix-
ing the population at N = 1000 (normalized to 1000). In order to
evaluate the number of individuals S, E, I, and R for a real popula-
tion of people (P), we have to multiply these dynamical variables
by P/1000.

Fig. 1 a displays a typical time-series picture of the SEIR model
in terms of the dynamical variables S (blue line), E (yellow line),
I (red line), and R (green line) for o = 0.0. In Fig. 1b, taking into
account o to reduce the spread of the epidemic, we provide a
qualitatively robust verification of the curve phenomenon flatten-
ing, whose signature is indicated by attenuated and delayed peaks
of infections. In other words, increasing the o value, the ampli-
tude of peaks decreases considerably from 105.5 infections (o = 0,
red line) to 774 (o = 0.2, blue line), 42.2 (o = 0.4, indigo line),
22.7 (o = 0.5, green line), and 5.6 (o = 0.6, black line) infections
per 1000. Considering Ey = 1, the peak of I for N = 108 is obtained
later than the one for N = 103. The results for N = 103 and N = 10°
are the same when it is considered E; =1 and Eg = 103, respec-
tively.

In fact, for practical purposes flattening the curve is a desir-
able outcome associated with mitigation strategies, such as physi-
cal distancing, mobility restriction, isolation of infected people, and
so on. Despite the importance of restriction measures, during the
epidemic process easing restrictions will be certainly considered as
planning procedures to reopen the economy and society. To evalu-
ate the impact of these procedures we explore the dynamics of the
contagious curve by varying the parameter o.

3. Impact of restriction measures

Initially, we report possible outcomes as a result of moving to a
situation without any restrictions (old normal life) modeled by ap-
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Fig. 1. (a) Time-series of S (blue line), E (yellow line), I (red line), and R (green line)
for B=3/2.9, w=1/5.2, y =1/2.9, and o = 0. (b) Time-series of I for o = 0 (red
line), o = 0.2 (blue line), o = 0.4 (indigo line), o = 0.5 (green line), and o = 0.6
(black line). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

plying o = 0. In Fig. 2a, a soft flattened curve in black (o =0.4)
is driven to an amplified peak in red (o =0.0) or a moderated
curve in blue (o = 0.0), depending on the intervention moment.
This unrealistic scenario illustrates a biased view that getting past
peak (curve in black) the epidemic is over (curve in blue) and
the public health interventions can be totally relaxed. In general,
the second peak is much more prominent, whose amplification is
associated with the number of susceptible people. For instance,
Fig. 2b shows a more realistic case for a flattened curve in black
(o =0.57) driven to an amplified second peak in blue (¢ = 0.0). In
case of the effectiveness of containment measures, removing all re-
strictions, independently of the moment, results in a drastic spike
in the number of infections, as shown in Fig. 2c. As an additional
possibility, Fig. 2 d presents a typical case of second wave (in blue),
which is characterized by a resurgence of infection after several
days of reporting few cases.

To provide a better overview of the effects resulting from re-
moving all restrictions, we investigate the epidemic model using
two-dimensional diagrams. (Such diagrams have been used exten-
sively to characterize the dynamics of the diverse chaotic oscilla-
tors in two-parameter space [32-37].) In Fig. 3a-d we display the
diagrams in terms of time and the parameter o for a grid of 1000
x 1000 cells. In the same manner as designed in Fig. 2a-d, the
simulation is performed for an epidemic curve by applying a par-
ticular o (ranging from 0.4 to 0.7) at the very beginning and turn-
ing off o (setting o = 0) at a specific time (ranging from 0 to 400
days).

Fig. 3 a shows the resulting responses, whose color is allocated
according to the value of peaks. The crosses (in white and blue)
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Fig. 2. Time-series of I showing the effect of relaxing totally the restrictions (o =0, red and blue lines) for (a) o = 0.40, (b) o =0.57, (c) o =0.70, and (d) o = 0.53. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Two-dimensional diagram of o versus Time (moment) showing (a) the value of peaks after removing restrictions; (b) the difference between the numbers of infections
at the peak and the moment of relaxing restriction; (c) the ratio between the new peak value and the flattened curve peak; (d) the value of the effective reproductive number
(R: = RyS/N) at the moment of relaxing restriction. The crosses indicate the behavior shown in Fig. 2b.
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Fig. 4. Time-series of I showing the effect of relaxing the restrictions from o = 0.57 (black line) to (a) o = 0.50 (red and blue lines), (b) o = 0.30 (blue line), (c) o =0.30
(blue line), and (d) o = 0.20 (blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

indicate the behavior shown in Fig. 2b and the area in blue cor-
responds to the same attenuated curve behavior shown in Fig. 2a.
Fig. 3b presents another display showing colors according to the
difference between numbers of infections at the peak and at the
initial suppression of restriction moment (o = 0). Besides, we con-
sider two more possibilities to evaluate the outcomes by using the
ratio between the new peak value and the flattened curve peak
and using the effective reproductive number (R; = RyS/N) as shown
in Fig. 3c and d, respectively. Comparing Fig. 3b and d we verify
that the size of peaks depends directly on effective reproductive
numbers (susceptible people). Moreover, we also identify in Fig. 3a
and c that the size of peaks for a specific time is subject to the
hardiness of a priory restrictions. In other words, the new peaks
increase according to the intensity level of the initial o. In sum-
mary, any scenario described by a reasonable level of restrictions
moving to total suppression restrictions results in a spike denoting
the acceleration of spreading.

Fig. 4 a presents the effect of a partial relaxing intervention,
changing o from 0.57 (in black) to 0.50 (in red and in blue). In this
case, it is remarkable the difference between applying the same
intensity of intervention at before and after passing the peak of
the outbreak. Before passing the peak moment any easing restric-
tion (a small change in o) results in a significantly different out-
come composed of a high amplitude spike. In addition, as shown
in Fig. 4b for o = 0.30, even after the peak (in black) a high spike
(in blue) can be obtained. However, in Fig. 4c using again o = 0.30
and postponing the implementation, a second peak (in blue) with-
out high amplitude is obtained as outcome. Here, the second peak,
like the main one, presents around 10 infections (10 per 1000 pop-
ulation). In Fig. 4d applying, after the main peak again, a smaller
o (0 =0.20) at the moment for a few numbers of infections, we
face the manifestation of a second wave.
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Fig. 5. Two-dimensional diagram of o versus Time (moment) showing the ratio be-
tween the new peak value and the flattened curve peak for o = 0.57. The golden
dashed line indicates the peak for initially applied restriction o = 0.57 and the cross
in blue corresponds to the response indicated in Fig. 4c. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

In Fig. 5, we investigate the class of cases previously shown in
Fig. 4a-d using a two-dimensional diagram in terms of the time
(ranging from O to 400 days) and the new o (ranging from 0.40
to 0.57) to simulate easing restrictions. The color is allocated ac-
cording to the value of the ratio between the new peak value and
the flattened curve peak (0=0.57). The golden dashed line at 142
days indicates the peak for initially applied restriction 0=0.57 and
the cross (in blue, in-between yellow and cyan areas) corresponds
to the response indicated in Fig. 4c (same amplitude for flattened
and second peak curves). Moreover, amplified peaks are obtained
for any easing restriction before 142 days (dashed line). For in-

1/19/21, 11:51 AM

Page 4 of 9



Dynamics of epidemics: Impact of easing restrictions and control of infection spread | Elsevier Enhanced Reader

S.L.T. de Souza, A.M. Batista, I.L. Caldas et al.

(a)
50

40t

30

~
20

1 1 1 1

1
0 100 200 300 400 500 600

(b)
50

1 ] 1
300 400 500 600
Time (days)

1 1
0 100 200

Fig. 6. Time-series of I (infected) showing the effects of the interventions with the
appearance of the second wave (black line).

stance, taking 0=0.35 into account the spikes present amplifica-
tion of peaks between three and five times compared to the flat-
tened curve peak. Even passing the peak (142 days) relaxing re-
striction can provoke spikes associated with high second peaks, as
obtained for 0=0.20 around 200 days with a spreading amplifica-
tion of twice.

In Fig. 6a and b, we show the effects of the containment mea-
sures during the outbreak and the late appearance of the second-
wave infections. Fig. 6a displays the epidemic curve (blue line) for
o = 0.6. When o is changed to 0, we observe a second wave (black
line). Similarly, Fig. 6b displays the infection evolution, but initiat-
ing the intervention at two weeks with o = 0.6 (red line). As a
consequence of delaying containment measures, the number of in-
fections increases considerably in a short time.

We use the two-dimensional diagrams to explore the dynamical
properties for the effects shown in Fig. 6a and b. Fig. 7a displays
the impact on the amplitude of the first wave in terms of the in-
tensity of intervention o (ranging from 0 to 0.8) and the number
of infections I (initial moment of intervention, ranging from 1 to
100). The amplitude of the first wave is amplified by increasing
the delay moment of interventions. Figure 7 b illustrates the effect
of the second wave, whose amplitude increases by enlargement of
parameter o applied to the first wave. The red cross corresponds to
the curve shown in Fig. 6a with peaks of 5 infections (Fig. 7a, cyan
area) and 39 infections (Fig. 7b, light gray area) for the first and
second waves, respectively. Moreover, the amplitude of the second
wave is associated with the number of susceptibles at the end of
the first wave. This effect is verified by comparing Fig. 7c (magni-
fication of Fig. 7b) with Fig. 7d for color allocated according to the
effective reproductive numbers (R; = RyS/N).
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Chaos, Solitons and Fractals 142 (2021) 110431
4. Controlling the spread of infections

In the end, we investigate a possible strategy to suppress spikes
during easing plan measures. First, considering 10 infected people
for the first wave as an acceptable level of infection to prevent
collapse in healthcare systems. Such strategy is adopted for just 2
years, based on the assumption that a vaccine or an effective treat-
ment will be available in this period. The interventions are applied
at a specific time after the main wave peak and 0.1 infected people
moment. Moreover, the new values of parameter o are evaluated
checking the number of susceptible people S and setting R; = 1 for
Rt = Rg(1 — o)S/N.

Fig. 8 a illustrates a case of early response measures for o =
0.57 (in black) with the following interventions: first one with
o = 0.51 (in blue) applied at 30 days after the peak; and the sec-
ond one with o = 0.36 (in red) applied at 0.1 infected people mo-
ment. In case of vaccination or effective treatment unavailable in
two years, a second wave (in green) appears as a consequence of
removing all restrictions. Fig. 8b shows the similar procedure with
o =0.45 and o = 0.37 for the first, applied at 60 days, and sec-
ond interventions, respectively. Comparing the results of delaying
the intervention from 30 days to 60 days, we evidently obtain a
decrease in the intensity of the first intervention (from o = 0.51 to
o = 0.45) and, most importantly, a variation of the susceptible at
two years (from S = 512 to S = 525).

In Fig. 8c, we investigate another case considering the effects of
delaying containment measures at the initial stage of the outbreak.
To contain the rapid transmission for o =0 (in black), we apply
o =0.65 (in light green) at the moment with 7.5 infected peo-
ple, maintaining the number of infections below 10. The follow-
ing interventions are given by o = 0.61 (at 30 days, in blue) and
o =0.51 (in red). The necessary intensive intervention is closely
associated with neglecting the outbreak at the initial stage. How-
ever, this configuration implies a considerable number of suscepti-
ble people, 667, at the end of 2 years. In contrast to the previous
case, in Fig. 8d we apply moderate early o = 0.65 (the same value
of o used in Fig. 8c) at the moment with 2.5 infected people (in-
stead of 7.5), resulting attenuation of the main peak to (in light
green) and significant increase in susceptibles (from 667 to 788) at
two years.

Besides preventing spikes during easing measures, the adopted
control strategy enables an interesting scenario with a low num-
ber of infections (less than 0.1) for a long time (see Fig. 8a—d, lines
in red). This scenario is translated into less than 100 infected peo-
ple for a population of 1 million. A low number of infections fa-
cilitates enormously the implementation of public policy responses
such as identification, isolation of infected individuals, and efficient
contact-tracing approaches [38,39].

Another aspect identified from the control strategy is the varia-
tion of the number of susceptibles at two years according to con-
figurations. In fact, the control actuation reshapes the infection
curves resulting in this variation. The number of susceptibles is an
important outcome, indicating the impact of the disease for the
period. In short, increasing susceptible individuals means decreas-
ing the death rate. Fig. 9 shows susceptibles (at two years, the
number per 1000) in terms of the moment of first intervention
after the peak (At =t —tp) modeled by o =0.57 since the very
beginning (in blue), o = 0.65 since 7.5 infected people (in red),
and o = 0.65 since 2.5 infected people (in green). The pattern of
susceptible outcomes is composed of wells following by satura-
tion plateaus. Fig. 10 provides a solid verification of this pattern
composition for o =0.65 and Iy, as a function of At. The color
is allocated according to the number of susceptibles at two years.
Bearing in mind this quantity the early intervention (before the
peak) plays an important role in increasing the susceptibles. Fur-
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Fig. 7. Two-dimensional diagram of I (number of infections at the moment of intervention) versus o showing (a) the value of the first-wave peak, (b) the value of the
second-wave peak for o =0, (c) magnification of previous figure, and (d) the value of the effective reproductive number (R; = RoS/N) at the moment of relaxing restriction.
The cross corresponds to the curve shown in Fig. 6a.
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people just before of the second wave outbreak. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. The number of susceptibles (at two years) as a function of the moment of
first intervention after the peak (At =t —tp) for o = 0.57 applied since the very be-
ginning (blue line), o = 0.65 since 7.5 infected people (red line), and o = 0.65 since
2.5 infected (green line). We consider that births and natural deaths are balanced.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 10. Two-dimensional diagram showing the number of susceptibles at two years
in terms of I,, (moment of the initial intervention using o =0.65) and At (the
moment of first intervention after the peak). We consider that births and natural
deaths are balanced.

thermore, the moment of the first intervention after the peak must
also be carefully evaluated to improve the outcomes.

5. Final remarks

To study the infection dynamics of COVID-19 pandemic, we
considered the SEIR model with an additional parameter (o) to
simulate the containment restrictions (mitigation measures). Ini-
tially, varying o, we modeled the infection spread obtaining the
flatten curves related to all mitigation measures. The curve phe-
nomenon flattening is related to mitigation measures. Additionally,
we evaluated the effect of easing restrictions, reducing the value
of o, for the process of reopening the economy and society. In this
case, for any easing restrictions applied during increasing infection
rates, we obtained high spikes of cases indicating significant accel-
eration of infections. In general, for the period of decreasing infec-
tions, we also obtained prominent spikes describing second-wave
of infections.

Finally, we provided a control strategy to suppress spikes dur-
ing easing restrictions. The interventions are applied at a specific
time after the main wave peak and at a moment with low number
of infected people. A sequence of control interventions were ap-
plied tailoring the parameter sigma during the decreasing infection
period. Besides preventing spikes, the analyzed control could con-
tain the transmissibility, for a long time, below 0.1 infections, that
means 100 infected people for a population of 1 million. In a prac-
tical situation, this low number of infections facilitates enormously
the implementation of public health policies such as isolation of
infected individuals and contact-tracing.
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In this work, we assume that the recovered people can not be
infected again. We also consider that the births and natural deaths
are balanced, in consequence, the model does not have terms re-
lated to the birth and death rates [40]. In future works, we plan
to analyse the effects of unbalanced birth and death rates, as well
as the possibility of reinfection, in the impact of easing restrictions
and control of infection spread.
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