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ABSTRACT

The description of neuronal activity has been of great importance in neuroscience. In this field, mathematical models are useful to describe
the electrophysical behavior of neurons. One successful model used for this purpose is the Adaptive Exponential Integrate-and-Fire (Adex),
which is composed of two ordinary differential equations. Usually, this model is considered in the standard formulation, i.e., with integer
order derivatives. In this work, we propose and study the fractal extension of Adex model, which in simple terms corresponds to replacing the
integer derivative by non-integer. As non-integer operators, we choose the fractal derivatives. We explore the effects of equal and different
orders of fractal derivatives in the firing patterns and mean frequency of the neuron described by the Adex model. Previous results suggest
that fractal derivatives can provide a more realistic representation due to the fact that the standard operators are generalized. Our findings
show that the fractal order influences the inter-spike intervals and changes the mean firing frequency. In addition, the firing patterns depend
not only on the neuronal parameters but also on the order of respective fractal operators. As our main conclusion, the fractal order below the
unit value increases the influence of the adaptation mechanism in the spike firing patterns.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0176455

Non-integer derivatives are able to provide a more realistic rep-
resentation of different dynamical systems activities due to the
generalization of the derivative operator. Motivated by this, we
study the dynamic behavior of the adaptive exponential integrate-
and-fire model with derivative fractal extension. We observe that
the neuron dynamics depend on the fractal order. Decreasing
the fractal order, the adaptation and the coefficient of variation
increase, as well as the firing frequency reduces. For some specific
values of reset parameters, the fractal order plays a crucial role in
the firing pattern. In our simulations, we show that the firing pat-
tern is not only dependent on the reset conditions, as the standard

model, but it also has a dependency on the derivative fractal order
of the membrane potential and adaptation current.

I. INTRODUCTION

The description of the membrane potential is a fundamental
question in neuroscience.1 Mathematical models have been used
to investigate this subject,2 such as Hodgkin-Huxley,3 Hindmarsh-
Rose,4 Izhikevich,5 Lapicque integrate-and-fire (IF),6 adaptive expo-
nential integrate-and-fire (Adex),7 Rulkov map,8 among others.9–13
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The differences among these models are in the mathematical frame-
work, the biological description,2 and the computational cost.14

Usually, models with greater biological fidelity require many param-
eters and high computational costs. It is possible to describe the
membrane potential in a really simplified way, however, sometimes
with no satisfactory biological meaning. In this work, we consider
the Adex model which has a good balance between the biological
meaning, computational process cost, and a relatively small set of
parameters.15–17

The Adex model was proposed in 2005 by Brette and Gerst-
ner as an improvement of the leak conductance neuronal model.7

Such improvement consists of the inclusion of a spike mechanism
term in the potential variable and an additional variable to describe
the adaptation mechanism. Besides the simplicity of this model and
its low computational cost, it presents a great biophysical accuracy2

and fits neuronal dynamics.18 In the Adex, the membrane potential
depends on the adaptation current that describes the slow activation
and deactivation of some potassium ionic channels in the neuron.19

A spike threshold mechanism, represented by an exponential term,
describes the fast arising when an action potential is generated.2,7,16

However, the exponential term introduces a discontinuity in the
model which is solved considering the reset condition when the
membrane potential overpasses a certain threshold. Depending on
the reset condition in the potential and adaptation current, it is pos-
sible to reproduce different firing patterns.16 Moreover, for some sets
of these parameters, chaotic solutions are found.20

The standard description of the Adex model is based on
ordinary differential equations (ODE), where the differential oper-
ators have integer order. This description has good accuracy in
describing real patterns16 and exhibits rich dynamic solutions of the
neuronal activities.21 Nonetheless, recent developments have been
showing that extensions of integer operators to non-integer can
increase the accuracy of the models to fit real data22 and modify
the dynamical properties.23 The most famous non-integer exten-
sions are the fractional operators. Fractional calculus has been
used in many fields, such as quantum mechanics,24,25 Hamiltonian
systems,26 photothermal,27 epidemiology,28 and others.29–35 In the
neuroscience models, fractional extensions of Hindmarsh–Rose,36,37

Hodgkin–Huxley,38,39 Rulkov,40,41 and leaky integrate-and-fire42,43

have been studied. However, the literature about fractional exten-
sions of the Adex model is scarce. We address this lack of literature
to the discontinuity of integrate-and-fire models and the difficulty
to take this particularity into account in fractional derivatives. Due
to fractional calculus properties, it is very hard to work with non-
smooth systems. As an alternative of non-integer operators that we
can employ are the fractal ones. The fractal derivative was proposed
as local operators,44 which are directly connected with the fractal
dimension.45 In this way, one form to understand the non-integer
effects in the Adex model is by means of fractal derivatives.

Fractal calculus has been considered to describe many phenom-
ena when the standard calculus fails,46 which is based on the fractal
space-time concept.35,47,48 In the context of porous media, where
the space is discontinuous, the fractal framework has presented a
great description of phenomena.49–51 In theoretical physics, fractal
calculus is well explored in dark energy topics.35 El Naschie con-
sidered the fractal space-time and pointed out that dark energy is
around 95.5% of the total energy-mass of the Universe.52,53 In the

context of diffusion process, fractal calculus is used to study the
anomalous relaxation process.33,44 In biological models, the fractal
derivatives describe very well the heat conduction in the polar bear
hairs.34 In addition, when fractal derivatives are considered in the
SIS epidemiological model, the description of real data increases.
For example, considering Brazilian data from syphilis, it is possi-
ble to obtain a correlation coefficient equal to 0.998 with fractal
operators;54 meanwhile, the integer derivative operator produces a
correlation coefficient equal to 0.990. Other applications are found
in Ref. 55, where the authors showed that for some non-integer
order differential operators new system properties emerge.

In this work, we study the behavior of the Adex model when it
is described by fractal order differential equations. We investigate
the effect of fractal order (α) with equal values in both neuronal
variables (V and w) as well as in independent order in each vari-
able. For small values of α, we show that the inter-spike intervals
(ISIs) increase. The change in ISI is proportional to an exponential
function of α. Furthermore, we show that the firing pattern changes
when the potential membrane and the adaptation current are of two
different fractal orders.

II. INTEGER ADEX MODEL

The adaptive exponential integrate-and-fire model7 is
described by the following equations:

C
dV

dt
= −gL(V − ER) + gL1T exp

(

V − VT

1T

)

− w + I, (1)

τw

dw

dt
= a(V − ER) − w, (2)

where C is the membrane capacitance, V is the membrane potential,
t is the time, gL is the leak conductance, ER is the rest potential, 1T

is the slope factor, VT is the threshold potential, w is the adaptation
current, I is the injected current, τw is the time constant, and a is
the level of sub-threshold adaptation. When V reaches a maximum
value (Vmax), the following reset conditions are applied:

V → Vr, (3)

w → wr = w + b. (4)

For this model, we employ numerical solutions by the Runge–Kutta
fourth-order method. In our simulations, we use C = 200 pF,
gL = 12 nS, ER = −70 mV, 1T = 2 mV, VT = −50 mV, I = 512 nA,
a = 2 nS, τw = 300 ms, and Vmax = −40 mV.16 The initial condi-
tions are given by V(0) = ER and w(0) = 0, which correspond to
a neuron initially absent of external current in a rest state.

Considering different combinations of Vr and b, it is possible
to distinguish firing patterns,17 as displayed in Table I. We identify
five firing patterns, adaptation [Fig. 1(a)], tonic spiking [Fig. 1(b)],
initial bursting [Fig. 1(c)], irregular bursting [Fig. 1(d)], and regu-
lar bursting [Fig. 1(e)]. In the adaptation dynamics, the inter-spike
intervals (ISIs) increase throughout the time during the application
of a constant current (I) due to the adaptive current mechanism.
This behavior is not observed in tonic spiking, where ISI is con-
stant. On the other hand, for initial bursting, the first ISI starts
short and then increases over time. For regular bursting, the interval
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TABLE I. Distinguish firing patterns depending on the reset parameters.

Firing pattern (region) Vr (mV) b (pA) Fig.

Adaptation (I) −68.0 60 1(a)
Tonic spiking (II) −65.0 5 1(b)
Initial bursting (III) −48.8 35 1(c)
Irregular bursting (IV) −47.4 41 1(d)
Regular bursting (V) −45.0 40 1(e)

between each bursting train after the transient is constant. Whereas,
in irregular bursting, the interval between bursting trains is not
constant.

The ISI is used to distinguish the patterns of spiking and burst-
ing and it is defined by ISI = tm+1 − tm, where tm is the mth firing
of each neuron. In this way, we consider the coefficient of variation
(CV) of ISI, and CV is given by

CV =
σISI

ISI
, (5)

where σISI is the standard deviation of the ISI normalized by the

mean inter-spike interval ISI.56 The bursting pattern produces CV
≥ 0.5 and the spiking pattern produces CV < 0.5. In the CV mea-
sure, we discard the first four ISIs that are related to transient time.
To measure the mean firing frequency, we consider the definition

F = ISI
−1

.
The adaptive index is employed to distinguish adaptive and

tonic spiking. The adaptive index is defined as

A =
1

q − d − 1

d
∑

m=q

ISIm − ISIm−1

ISIm + ISIm−1

, (6)

where ISIm is the inter-spike interval between the mth and (m+1)th
firings. Due to the numerical transient, we discard the first four
ISI16 by considering q=4, and d is the last ISI. To identify the adap-
tive or tonic firing pattern, it is necessary to define a critical value
of A, which we define as Ac = 0.01.16 A > Ac and −Ac ≤ A ≤ Ac

characterize the adaptive and tonic spiking, respectively.

FIG. 1. Firing patterns generated by the Adex model, using reset parameters in
Table I. Panels (a), (b), (c), (d), and (e) display adaptation spiking, tonic spiking,
initial bursting, irregular bursting, and regular bursting, respectively.

The characterization of initial, regular, and irregular burstings
is done by the analysis of the phase-space (w × V) using the nullcline
(dV/dt = 0).16 Reset condition in the region dV/dt > 0 is associated
with the spiking firing pattern while in the region dV/dt < 0 allows
the emergence of the bursting firing pattern.57 We count the number
of times that dV/dt > 0 when the reset conditions are applied. If the
amount of reset in the region dV/dt < 0 is the same after resets in
the region dV/dt > 0, the firing pattern is regular bursting; other-
wise, we have irregular bursting. If right after the application of the
constant current, it is only counted dV/dt > 0 and after transient
time interval we only count dV/dt < 0, there is an initial bursting.

Figure 2(a) displays the reset parameter space b × Vr, where
each pattern region is identified by different colors. The red color
(region I) shows the parameter combinations that generate adapta-
tion spiking, the green color (region II) exhibits the tonic spiking,
the blue color (region III) denotes the initial bursting, the black
color (region IV) exhibits the irregular bursting, and the yellow color
(region V) corresponds to the parameters that generate the reg-
ular bursting. Figure 2(b) displays the wr bifurcation diagram for

FIG. 2. Reset parameter space and bifurcation diagram of the Adex model.
(a) Parameter space of the firing patterns where each region represents one fir-
ing pattern. Regions I, II, III, IV, and V exhibit adaptation spiking, tonic spiking,
initial bursting, irregular bursting, and regular bursting firing patterns, respectively.
(b) Bifurcation diagram of the Adex model. In panel (b), we plot wr as a function
of Vr for b = 80 pA.
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different values of Vr. As Vr increases, there is a period-doubling
bifurcation, with some periodic and chaotic regions.

III. FRACTAL ADEX MODEL

In this section, we present the extension of the adaptive expo-
nential integrate-and-fire model by means of the fractal operator.
We study the behavior of the Adex model when the same fractal
order is applied to V and w. Moreover, we consider two different
fractal orders, α for the fractal order of the membrane potential and
β for the fractal order of the adaptation current.

A. Fractal Adex model with equal order

In this work, we consider the following definition of the fractal
operator:

df

dtα
= lim

t1→t

f(t1) − f(t)

(t1 − t0)
α

− (t − t0)
α =

1

α(t − t0)
α−1

df

dt
, (7)

as t0 = 0,

df

dtα
=

1

α
t1−α df

dt
, (8)

where α > 0 is the fractal order. This definition is known as Haus-
dorff derivative.46 Considering the model described by Eqs. (1)
and (2), our proposed extension becomes

C
dV

dtα
= −gL(V − ER) + gL1T exp

(

V − VT

1T

)

− w + I, (9)

τw

dw

dtα
= a(V − ER) − w. (10)

Using the fractal derivative definition Eq. (8), we rewrite the fractal
Adex model as

C
dV

dt
= αtα−1

[

−gL(V − ER) + gL1T exp

(

V − VT

1T

)

− w + I

]

,

(11)

τw

dw

dt
= αtα−1 [a(V − ER) − w] , (12)

where the constants are rewritten in order to preserve the system
units.

We observe that the reduction of the fractal order can increase
the effect of the adaptation for spiking patterns. Figures 3(a)–3(c)
show the potential membrane (V) as a function of the time (t) for
Vr = −68 mV and b = 60 pA. Decreasing the value of α, the value
of ISI between the firings increases. Reducing α to even smaller
values, the neuron ceases its activity. For α > 1.0, the intervals are
shorter. However, the neuron hyperpolarises to unrealistic values.58

To obtain biological solutions, we consider 0.7 ≤ α ≤ 1.0.
For the burst firing pattern, Figs. 3(g)–3(i), the reduction of

the fractal order increases the inter-burst intervals. The fractal Adex
model for a regular bursting pattern is shown in Figs. 3(g)–3(i). Pan-
els (g) is computed for α = 1, (h) is computed for α = 0.8, and (i) is
computed for α = 0.7. The firing pattern does not change by reduc-
ing α, although the interval between each burst train changes. The
intervals between each burst train increase considerably.

FIG. 3. Time evolution of the membrane potential of adaptive [(a)–(c)], tonic
[(d)–(f)], and regular burst [(g)–(i)] patterns for three different values of α.
We consider α = 1 in panels (a), (d), and (g); α = 0.8 in panels (b), (e), and
(h); and α = 0.7 in panels (c), (f), and (i). The reset parameters we considered
are in Table I.

Most of the firing patterns do not change with α reduction;
however, the tonic spiking does change. To show that, we con-
sider the tonic spike firing pattern and reduce the fractal order.
Figures 3(d)–3(f) depict the temporal evolution of the membrane
potential. In panel (d), α = 1 is associated with the tonic spike of
the standard Adex model. The inter-spike intervals are quite similar
over time. In panels (d)–(f), the reduction of fractal order to α = 0.7
generates an adaptation of the spikes over time. Reducing even more
the fractal order generates an increase in the adaptability of the firing
patterns, which in this case is characterized by the adaptive spiking.
In this way, the tonic firing pattern goes to adaptive spiking, where
the fractal order less than the unity acts as an adaptation mechanism
in the neuron, increasing the influence of adaptation current in the
model.

Figure 4 exhibits the reset space parameter for α = 0.7. The
reset parameter space of the standard Adex model [Fig. 2(a)] and
reset parameter space of α = 0.7 (Fig. 4) are very similar in terms
of the firing patterns. However, there are no tonic spiking regions
in Fig. 4. The tonic spiking becomes adaptive as α reduces. For
0.7 ≤ α < 1, the reset parameter space does not change in Fig. 4. For
α = 1, the reset parameter space is the same as the standard Adex
model, displayed in Fig. 2. The sudden change from Figs. 2–4 is due
to the effect of α on the interspike interval, which has a major effect
on the tonic spiking region.

Although the firing pattern does not change for all patterns,
the inter-spike intervals change and depend on the value of α, as

shown in Fig. 3. Figure 5 displays ISI in log scale as a function of
α for the firing patterns, distinguished by the color and point type.
The blue squares are for Vr = −68 mV and b = 60 pA, the black cir-
cles are for Vr = −47.4 mV and b = 41 pA, the red triangles are for
Vr = −45 mV and b = 40 pA, and the green stars are for
Vr = −65 mV and b = 5 pA.

Independent of the reset parameters, ISI changes in a similar
way. Figure 5 shows that such variation follows an exponential func-
tion, ∝ exp(sα), where s is the slope and is displayed in Table II.
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FIG. 4. Reset parameter space forα = 0.7. Region I corresponds to the adaptive
spiking, region III is related to the initial bursting, region IV is associated with the
irregular bursting, and region V corresponds to the regular bursting.

The correlation coefficient indicates that the exponential function
describes how ISI changes as α decreases. The four slopes of lines are

very similar, indicating that ISI variation does not strongly depend
on the reset parameters considered.

B. Fractal Adex model with two fractal orders

Now, we study the model dynamics when the fractal order is
considered independently in V and w, as well as α and β . Both frac-
tal orders are in the same range, 0.7 ≤ α ≤ 1 and 0.7 ≤ β ≤ 1. The
model is given by Eqs. (13) and (14),

C
dV

dt
= αtα−1

[

−gL(V − VR) + gL1T exp

(

V − VT

1T

)

− w + I

]

,

(13)

FIG. 5. ISI vsα for different firing patterns. The ISI values decrease exponentially
with the reduction of α. The reset values are shown in Table I and the slopes in
Table II.

TABLE II. Slopes of the reset parameters considered in Fig. 5.

Reset parameter (Vr, b) s Correlation coefficient

(−68, 60) −12.23 0.999 97
(−47.4, 41) −12.16 0.999 98
(−45, 40) −11.95 0.999 98
(−65, 5) −12.14 0.999 98

τw

dw

dt
= βtβ−1 [a(V − VR) − w] . (14)

Figures 6(a)–6(c) display A, CV, and F, respectively, for tonic
spiking reset conditions, considering the parameters shown in
Table I. In panel (a), we observe that A increases as α and β reduce.
A increases at a faster rate with the reduction of β . The adap-
tive index reaches greater values than the critical value (Ac = 0.01),
then characterizing the adaptive spiking firing pattern. To increase
spiking adaptability, it is necessary to reduce at least one fractal
order. Based on these results, we verify that the fractal order has a
large influence on the neuron adapting mechanism. In panel (b),
we observe that CV increases with the reduction of the (α, β), it
happens due to the impact of fractal order in the ISI. However,
its increase does not surpass the CV threshold which characterizes
bursting (CV ≥ 0.5). Panel (c) shows the mean firing rate parameter
space. The reduction of the mean firing rate was expected due to the

increase in the ISI occasioned by the fractal order.
The firing pattern depends on the fractal orders (α, β) consid-

ered as shown in Figs. 7(a) and 7(b). In panel (a), it is considered
Vr = −45 mV and b = 40 pA (which characterize regular bursting
in the standard model). A transition from regular bursting (region
V) to initial bursting (region III) is observable. Regular bursting
activity is delimited by the brown line given by

f(α) = 1.03α + 0.088. (15)

It is worth mentioning that Eq. (15) delimits the transition
between regular to initial bursting in Fig. 7(a). This result shows that
distinct fractal order, α and β , changes the firing patterns. There-
fore, in the extended model, the firing patterns depend not only
on the reset parameter but also on fractal orders. For adaptation
reset parameters in Fig. 2(a), the space parameter of β × α does

not change from the adaptive spike. However, the ISI increases.
Considering tonic spiking reset parameters in Fig. 2(a), the β × α

parameter space shows the transition of tonic to adaptive spiking.
Meanwhile, regular bursting reset parameters of Fig. 2(a) produce a
transition between firing patterns in the α × β parameter space.

Considering Vr = −47.4 mV and b = 41 pA (which charac-
terize irregular bursting in the standard Adex model), the results
show four distinct patterns for different pairs of (α, β), as shown
in Fig. 7(b). Region I (red color) displays the adaptive spiking,
region III (blue color) corresponds to the initial bursting, region
IV (black color) is related to the irregular bursting, and region V
(yellow color) shows the regular bursting. Different combinations
of (α, β) transform the irregular firing pattern into regular bursting.
The firing pattern stays as irregular bursting for pairs of α and β

within the band defined by the functions s(α) and k(α), green and
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FIG. 6. Parameter spaceβ × α. The color bars correspond to (a) adaptive index,
(b) CV, and (c) mean firing rate. We consider Vr = −65 and b = 5, tonic spiking
for the standard Adex model.

white line, respectively,

k(α) = α − 0.004, (16)

s(α) = 1.03α. (17)

For k(α) ≤ β ≤ s(α), the firing pattern is the same in the case
α = β = 1. There are transitions between regular and initial burst-
ing. Initial bursting is easily achieved with α reduction. Considering
β = 1, initial bursting is achieved for α = 0.94. Meanwhile, if we
consider α = 1 initial bursting is firstly observed at β = 0.8. Fractal
order α has more influence in the ceasing of bursting, it is possible
to generate initial bursting with a higher value of α. The bursting
inferior boundary is given by (blue dotted line)

q(α) = 1.08α − 0.275, (18)

FIG. 7. Parameter space β × α for (a) Vr = −45mV and b = 40 pA and
(b)Vr = −47.4 mV and b = 41 pA according to Table I. Region I shows the adap-
tive spiking pattern, region III corresponds to the initial bursting, region IV exhibits
the irregular bursting, and region V shows the regular bursting. The dotted lines
are the boundaries of bursting. The brown dotted line in (a) is the regular bursting
boundary. The dotted line in panel (b) is the boundary of the irregular and regular
bursting firing patterns. The purple and blue lines are the boundaries of regular
bursting, superior [g(α)], and inferior [q(α)], respectively. The green and white
dotted lines are irregular bursting boundaries, superior [s(α)], and inferior [k(α)],
respectively.

and the superior (purple dotted line) by

g(α) = α + 0.059. (19)

Another transition occurs from regions III to I, where the boundary
is defined by

r(α) = 1.24α + 0.003. (20)

The reset parameters influence how α and β change the fir-
ing patterns, Fig. 8. The panel (a) shows α × β parameter space for
three different values of Vr. Small increments of this reset parameter
add more firing pattern regions. For Vr = −57.5 only adaptive spik-
ing is seen (red region). For Vr = −52.5, two regions are seen, the
red region (adaptive) and the blue region (initial bursting). Consid-
ering Vr = −47.5, four firing patterns appear, red region (adaptive
spiking), blue region (initial bursting), yellow region (regular burst-
ing), and black region (irregular bursting). The variation of the
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FIG. 8. α × β parameter space for different combinations of reset parameters.
(a) We fix the reset parameter b = 40 pA and vary Vr and (b) we fix Vr = −45mV
and vary b.

reset potential influences the initial, regular, and irregular bursting
appearance in (α, β) space parameter. The panel (b) shows (α, β)
parameter spaces for three values of b for Vr = −45 mV. b incre-
ment has the opposite effect of Vr increase, higher values of b reduce
the amount of firing patterns seen in the parameter space. For
b = 20 pA, four different firing pattern regions are shown, red
region is the adaptive spiking, blue region initial bursting, yel-
low region regular bursting, and black region irregular bursting.
For b = 60 and b = 100 pA, only three firing patterns are gener-
ated. However, the irregular bursting pattern regions reduce for
b > 20 pA.

These results, combined with the ones presented in Fig. 6, rein-
force that different firing patterns are not only produced by Vr and
b but also by the non-integer order of the extended operator. Both
orders influence the model dynamics, the fractal order β greatly
affects the adaptability of the neuron. However, the potential mem-
brane fractal order α has greater influences on the firing pattern
transition of bursting to spiking.

IV. DISCUSSION AND CONCLUSION

In this work, we proposed and studied the adaptive expo-
nential integrate-and-fire (Adex) model with fractal extension. We
noticed that the fractal order Adex is capable of reproducing neu-
ronal activity as the Adex standard model. However, differently
from the standard one, the fractal order presents quantitative dif-
ferences in the adaptability, firing frequency, and variability of the
inter-spike intervals. When the same fractal order is considered in
both variable evolution related to the membrane potential (V) and
adaptation current (w), the reduction of the fractal order in the
membrane potential derivative reduces the tonic spike firing pattern
in the studied parameters space. The reduction of the fractal order
works to make the spike firing difficult, i.e., when α is reduced the
firing frequency becomes lower. Moreover, our results also suggest

that the mean inter-spike intervals follow an exponential law as a α

function.
In addition, when the fractal order is considered independently

in V and w, we observed that the reduction of the fractal order in
the adaptation current generated a larger effect than in the poten-
tial variable, increasing the adaptability in the firing patterns. In our
simulations, the reduction in the fractal order in an independent way
produces similar magnitude changes in the coefficient of variation
and mean firing frequency. In particular, we highlight the transition
from tonic spike to adaptive spiking due to the reduction of the frac-
tal order. We also concluded that, depending on the combination of
fractal order in the variables, the model can exhibit other patterns,
however, as the main result, the tonic spike is reduced or absent as a
consequence of order reduction.

Equations (15) and (17) are very similar, their only differ-
ence is the independent term 0.088 in Eq. (15). Their slope is the
same, which shows that the transition of the patterns in both cases
occurs at the same rate of variation of the fractal orders. Considering
α = 0.7, the transition of initial to regular bursting in Fig. 7(a)
occurs at β = 0.809. The independent term in Eq. (15) plays a cru-
cial role in the value in which this transition happens. The other
boundaries are not as similar as Eqs. (15) and (17), their slopes and
independent terms vary. These boundary equations limit the val-
ues of (α, β) in which regular and irregular bursting are observable.
Therefore, it is possible to select a combination of (α, β) to describe
the desired firing pattern. In future works, we plan to study a way of
generalization of the bursting boundaries for any reset parameters
to expand the applicability of these equations.

When fractal derivatives are considered, their orders influence
the firing pattern similarly to the reset parameters in the standard
model. Two sets of parameters are necessary to achieve different
firing patterns, the reset parameters (Vr, b) and the fractal orders
(α, β). (Vr, b) change the firing pattern parameter space of α × β

and vice versa. However, the parameters act differently in each
parameter space. (α, β) increase the mean interspike interval and
suppress the emergence of tonic spiking, and the reset parameter
b reduces the amount of firing pattern shown in α × β parameter
space.

The AdEx model has the advantage of using few parameters to
reproduce experimental data. In particular, it is possible to obtain six
different types of firing patterns by varying just two parameters (Vr

and b). The parameter b is related to adaptation and can be varied to
better represent the temporal evolution of ISIs of a neuron. On the
other hand, the parameter Vr estimates the value of the membrane
potential after an action potential. This parameter can be measured
directly from voltage traces and cannot be arbitrarily changed. It is
observed that cells with the same value of Vr can exhibit different
adaptation levels, firing patterns, and frequencies.16 For this reason,
it is necessary to include new parameters to accommodate this fir-
ing diversity. We show how the Adex model with fractal extension
enables a better representation of the adaptability, variability, and
frequency of firing patterns, in this way expanding the applicabil-
ity of the Adex model. In future works, we plan to use the fractal
orders as a means of fitting experimental data of single neurons to
neuronal networks, expanding the model and its applicability for
more general situations and also to better understand some brain
disorders.
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With respect to the order of fractal derivatives, our study also
encountered some limitations. The meaningful solutions in terms of
biological plausibility are found in the range α ∈ (0.7, 1]. Although
our results are revealing regarding the potential effect of fractal order
in single neurons, more investigation into the effect of fractal order
on the dynamics of neuronal networks is necessary. In conclusion,
our study provides clear evidence of the influence of the fractal order
in the firing patterns and frequency of the Adex neuron model.
Our results expand the applicability of the Adex model, supporting
future investigations considering the fractal order neuron models.
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