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Resumo

A contribuição dos eventos extremos, chamados bursts, relacionados com estru-
turas coerentes que se propagam na turbulência, parece ser parte da explicação
para o transporte anômalo que acontece em plasmas confinados. Porém, ainda não
existe um modelo adequado no quadro da teoria neoclássica de transporte, para
explicar adequadamente a contribuição destes eventos extremos. Assim, a carac-
terização do transporte de partículas e energia, devido a esses eventos extremos, e a
sua estrutura interna, são questões relevantes no estudo do plasma de fusão. Para
isso, medições locais da temperatura dos elétrons são necessárias, pois o transporte
de partículas e energia sofre correções devido à temperatura. Por terem boa res-
olução espacial e serem relativamente fáceis de construir, as sondas eletrostáticas
são comumente utilizadas em tokamaks para medir a temperatura local na região
da borda de plasmas confinados magneticamente. Os métodos de varredura de
tensão e a configuração de sonda tripla estão dentre os métodos mais usados para
medir a temperatura local na borda do plasma com sondas eletrostáticas. Neste
trabalho, é apresentada uma comparação entre as medições de temperatura usando
esses dois métodos no tokamak TCABR. Para esse fim, foram utilizadas descargas
de plasma em condições padrão, onde a corrente de plasma e a densidade são man-
tidas praticamente estáveis e há baixa atividade MHD, isto é, a fase estacionária da
descarga, com os parâmetros macroscópicos de equilíbrio aproximadamente con-
stantes. As medições da temperatura pelos dois métodos têm boa correspondência
na região da sombra do limitador, mas existem discrepâncias quando as medidas
são feitas dentro da coluna de plasma. Verificou-se que esta discrepância se deve
ao efeito de expansão da região de transição entre o plasma e a superfície da sonda,
conhecida como bainha de plasma. Portanto, foram modificadas as equações do
método da sonda tripla a fim de considerar, de maneira adequada, este efeito. Esta
modificação conduz a medições de temperatura compatíveis entre os dois métodos.
Também se estudou as estruturas coerentes que se propagam na turbulência da
borda (bursts), que são detectados como picos no sinal de corrente de saturação
iônica. Para esse fim, foi usada a técnica da análise condicional. Os resultados
obtidos parecem ser compatíveis com estruturas que apresentam uma inclinação
no plano radial-poloidal. Esta inclinação implica que o método comumente usado
para medir a velocidade de propagação das estruturas, baseado no atraso entre a
detecção do pico entre dois pinos próximos, pode levar a resultados completamente
errados. Os resultados para a evolução média da temperatura durante os bursts
são incompatíveis entre os dois métodos. De fato, os resultados fornecidos pelo
método de sonda tripla aparentam estar fisicamente errados, uma vez que indicam
um alto gradiente de temperatura dentro dos bursts. Constatou-se que este prob-
lema é devido aos altos gradientes de potencial dentro dos bursts que inviabilizam
a hipótese de potencial uniforme na região entre os pinos da sonda tripla.
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Abstract

The contribution of the extreme events related to propagating structures in the
turbulence, the so-called bursts, seems to be part of the explanation to anomalous
transport in confined plasma. But, up to now, there is not an adequate model
in the frame of neoclassical transport theory to properly account the contribution
of these extreme events. Therefore, the characterization of the particle and en-
ergy transport due to the extreme events and the burst internal structure are an
important issue in fusion plasma research. However, local electron temperature
measurements are necessary to investigate those topics, because particles and en-
ergy transport have temperature corrections. Due to their good spatial resolution
and relatively easy construction, electrostatic probes are often used to measure
temperature in the plasma edge of tokamak. The triple probe configuration and
voltage sweep technique are among the most common techniques used with elec-
trostatic probes to measure local temperature in the plasma edge. We present a
comparison between the temperature measurement using these two techniques in
the tokamak TCABR. For this purpose, it was used stationary standard plasma
discharges (it is, discharges with almost stable plasma current and density and
with low MHD activity). For temperature measurement, the two methods have
good correlation in the Scrape-Off-Layer region but there are discrepancies be-
tween their values inside the plasma column. We found that this discrepancy is
due to the sheath expansion effect. Therefore, the triple probe equations were
modified to properly consider this effect. The modification leads to compatible
average temperature measurements between the two methods. We also studied
coherent structures propagating in the edge turbulence (detected as bursts in the
saturation current) by using the conditional analysis technique. The results seem
to be compatibles with structures tilted in the radial-poloidal plane. This tilt im-
plies that the common method to measure the propagation velocity using the delay
time of detection between two probes, could produce wrong values. The results for
the average temporal behavior of temperature during the bursts are inconsistent
between the two methods. Indeed, the triple probe results seems to be physically
wrong, once it indicates a strong temperature gradient inside the bursts. We found
that this problem is due to the strong potential gradients inside the burst, break-
ing the assumption that the pins used in the triple probe configuration are in a
homogeneous plasma.
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Introduction

The tokamak is a device developed in the 50’s in Soviet Union with the objective

of creating a reactor to achieve controlled thermonuclear fusion of deuterium and

tritium. After decades of investigation, an international engineering project for

a prototype of nuclear reactor has been developed. This international project,

called ITER (International Thermonuclear Experimental Reactor), is led by USA,

EU, Russia, Japan, China, South Korea and India. ITER is being constructed in

France and will establish the bases for the use of thermonuclear fusion as a real

alternative for an energy source [1].The tokamak is a toroidal system that uses

a poloidal magnetic field generated by the plasma current and a applied strong

toroidal magnetic field to create magnetic surfaces to confine and compress the

plasma. However the anomalous transport of energy and particles in magnetic

confinement plasmas yields a characteristic confinement time one or two orders

of magnitude smaller than the theoretical predictions, via neoclassical transport

theory.

Experimental and theoretical developments have shown that the radial anoma-

lous transport has origin in plasma fluctuations of density, temperature and electric

and magnetic fields, that are produced by several instabilities[2]. The turbulent

radial flux has a mean velocity value that is related with the E×B drift velocity

where E is poloidal electric field and B the toroidal magnetic field. Besides the

small-scale turbulent fluctuations, there are also large-scale fluctuations, the so-

called bursts, which arecoherent structures that extend for meters along magnetic

field lines, but instead extend just a few centimeters in the perpendicular direction

[3]. The bursts propagate in the radial direction across the scrape-off-layer, leaving

the plasma column producing losses of energy and particles. Therefore the study
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of structure, propagation and the formation of these structures is important to

understand and control the losses in confinement devices as the tokamak.

There are several diagnostics to study turbulence, one of the most common

diagnostics used to measure turbulent fluctuations is the electrostatic probes, also

known as Langmuir probe. This diagnostic consists of a piece of metal that is

immersed in the plasma and is used in different configurations. Depending on the

used configuration, the electrostatic probes can provide spatial or time resolution

at the edge and near the edge regions outside the plasma column to measure

temperature, electric field (calculated in general as the difference of two plasma

potentials) and density [4]. There are two widely used techniques that involve

electrostatic probes to measure temperature: the potential sweep [5] and the triple

probe [6]. In the potential sweep method, a voltage source generates an oscillating

signal which is applied to bias a single electrostatic probe. The applied potential

and the generated current in each time are registered and with those data the

characteristic response curve in the voltage-current plane is constructed. Then,

this curve is fitted by using a known phenomenological function that depends

on the temperature, saturation current (proportional to density) and fluctuation

potential (related to plasma potential). In the triple probe configuration, a fixed

potential is applied between two pins and a third is left fluctuating. The potentials

in the pins are measured and a relation between them gives the temperature value.

In this work, results of the measurements with the triple probe and the potential

sweep techniques are presented. It is shown for the potential sweep method that

is needed to take into account the effect of the expansion of the sheath around the

electrostatic probe caused when a bias potential is applied to the probe. Therefore,

a correction for the triple probe technique based on the sheath expansion was

proposed and tested. The tests show that this correction is necessary to avoid the

overestimation of the temperature obtained by the usual triple probe technique.

It was also found that this overestimation is stronger inside the plasma column.

We also present the results of the application of the above mentioned techniques

to the study of coherent structures. We calculated the probability density function

(PDF), and using the conditional analysis [7] are calculated the mean profile of
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the temperature, fluctuating potential and saturation current, electron density

and plasma potential. It is shown for the triple probe technique, that due to the

spatial distribution of the array, each pin is placed in a different part of the internal

structure of coherent structures. This spatial distribution gives an inaccurate result

for the temperature because it breaks the hypothesis considered in the triple probe

method about the homogeneity of the plasma.

Firstly, the text presents an introduction to plasma and nuclear fusion in the

chapter 1. Chapter 2 presents a brief review of the more important facts about

the coherent structures and transport. Then, the theory of the electrostatic probe

and measurement techniques is presented Chapter 3. Chapter 4 shows the results

for the measurements with the triple probe and potential sweep technique, and a

comparison between them is presented. Chapter 5 presents the results obtained

from the study of coherent structures, and the use of the conditional analysis to

get detailed information about these structures. Chapter 6 presents a conclusion

from the obtained results and the perspectives to the future work. presented.
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Chapter 1

Plasma and Fusion

Although not be present in everyday life (with a few exceptions, such as in lightning

bolt, neon or fluorescent light, some PC screen), at least 99% of the universe is

plasma: the stars and nebulae have is component matter in the plasma state.

The fact that explain that uncommonness of plasma on earth surface is the Saha

equation [8]

(
ni
nn

)2
= 2.4× 1015T

3/2

nn
exp

(−Ui
kBT

)
(1.1)

where ni and nn are the volumetric number density of ionized and neutral atoms

in cm−3, T is the temperature of the gas in Kelvins, kB ≈ 8.617×10−5eV/K is the

Boltzmann constant and Ui is the ionization energy in ergs. Using the values of

normal conditions on the surface of the earth, that is T ≈ 300K, nn ≈ 3×1019 cm−3

and using the ionization energy of the nitrogen 14.5eV (78% of the atmospheric

composition) the result is that for each ionized atom there are 10122 neutral atoms.

Therefore, a very low percentage of particles in the air are ionized, then the plasma

phenomena are not appreciable under normal conditions on earth surface, on the

contrary, in the corona of the sun by each ionized atom there are 10−18 neutral

atoms.

The study of plasma physics encompasses from the stars creation and evolution

to materials science, but one of the main interests in plasma study is the application

of generation of energy by nuclear fusion, following the same nuclear process that

1



occurs in stars. The interest resides on the promise of low pollution produced in

the process and inexhaustible fuel.

1.1 Definition of plasma

Following Chen [8], the definition of plasma is:

“A plasma is a quasi-neutral gas of charged and neutral particles which exhibits

collective behaviour”

therefore, in this definition we have two important concepts, quasi-neutral and

collective behavior. In a neutral gas, the particles interact just via collisions, but

if the particles in a gas are charged, a new form of interaction appears. Charge

accumulations and current create electric and magnetic fields. Then the electro-

magnetic interactions made that behavior of the particles in one given position

depends on particles at long distance regions. Because of this collective behavior

new phenomena appears in plasma.

Due to free charges in the plasma, any charge accumulation tends to be shielded.

But the thermal energy causes an imperfect shield, forming a region with partial

shielding (the charge is only screened), till the region where the thermal energy

and electric potential energy equals. The radius of this region is known as Debye

length λD. This characteristic shielding makes the plasma quasi-neutral.

To calculate the approximated value of the Debye length let suppose the follow-

ing model. A transparent grid held at potential φ0, let the ratio between electrons

and ions mass be zero and that the ions are glued to an immobile background and

electrons have a Maxwellian distribution function

ne = n∞ exp
(

eφ

kBTe

)
(1.2)

where n∞ is the background plasma density.

To derive the electric potential we use the Poisson’s equation

∇2φ = d2φ

dx2 = −4πe(ni − ne) (1.3)
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where we have assume an one-dimensional variation of the potential. Using in the

Poisson’s equation, the maxwellian distribution for the electrons from equation

1.2 and using the fact that the thermal energy inside the non shielded region is

stronger than the electric potential we expand in Taylor’s series, then:

d2φ

dx2 = 4πen∞

 eφ

kBTe
+
(

1
2
eφ

kBTe

)2
 (1.4)

retaining only the linear term we have the following differential equation

d2φ

dx2 = 4πn∞e2

kBTe
φ (1.5)

This equation has a solution given by

φ = φ0 exp
(
−|x|
λD

)
(1.6)

where λD is the so-called Debye length

λD =
√
kBTe
4πne2 (1.7)

With the definition of Debye length it is possible to define the conditions to

apply the plasma physics equations. Because of quasi-neutrality condition the

characteristic length L of the system needs to be much greater than the Debye’s

length, then

L� λD (1.8)

The validity of the shielding as statistical concept requires a sufficient quantity

of particles for the screening purpose. Then defining the number of particles in a

“Debye’s sphere” as

ND = n
4
3πλ

3
D (1.9)

then we need the next condition
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ND � 1 (1.10)

Finally due to the free charges in the plasma, any disturbance of the electric

field induces a plasma response moving free charges neutralizing the field. In the

plasma, the charge distribution perturbation is produced by the phenomena of

thermal collisions. Then if ω is the frequency of a typical plasma oscilation and τ

the mean colission time with neutral atoms, an important condition which ensures

that the plasma behavior is mainly dominated by electromagnetic effects is:

ωτ � 1 (1.11)

if not, the electromagnetic effects are irrelevant since plasma dynamics will be

dominated by collisions as in the case of a neutral fluid. Then to be a plasma the

gas we have to fulfill the conditions of equations 1.8, 1.10 and eq 1.11.

1.2 Nuclear fusion

The nuclear fusion aims the production of energy from nuclear reactions. In this

kind of process an amount of matter becomes energy, the amount determined by

the Einstein equation. Therefore if we have

A+B → C +D (1.12)

and the process is of the form

(mA +mb)c2 > (mC +mD)c2 (1.13)

there will be a quantity of energy released.

In the case of the fusion reaction, the more interesting reaction for future use

in energy production is

D2 + T3 → He4(3.5MeV) + n(14.1MeV) (1.14)
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where the initial matters are deuterium (D2) and tritium (T 3), on the other hand

the products of the reaction are charged α particles (He4) confined by a magnetic

field and could be reused for heating the plasma, and a neutron of high energy

that can not be confined but can be trapped in a surrounding blanket of Li6/Li7

that is heated by the neutrons making possible obtain energy. In the process there

will breeding T3 for new fusions.

The initial combustible for the reaction can be obtained from the ocean water.

In the ocean there are 6500 molecules of normal water for every molecule of deu-

terium. Because of that, it is usual in Plasma community to say that the deuterium

in one liter of water can be used to produce near of 1010 J of energy, compared

with 3×107 produced by one liter of fossil fuel like gasoline. But in order to obtain

this class of reaction for energy production, we need calculate the power balance

to know the conditions to achieve the fusion, that is, the energy produced and lost

in the plasma. First, we have the energy produced by thermonuclear process

PT = 1
4n

2 〈σv〉ET , ET ≈ 22.4MeV (1.15)

where n is the plasma density, 〈σν〉 is the average nuclear reaction rate with σ the

cross-section of the D-T reactions and v the relative speed of the nuclei, and ET
is the average energy released in the D-T reaction.

A second term is the power loss caused by Bremsstrahlung, i.e. deceleration of

the ions and electrons by collisions. The equation of this loss has the form

PB = αn2T̃ 1/2, α = 3.8× 10−29J1/2m3s−1 (1.16)

Finally, a third term takes into account the loss caused by heat transport

through the plasma which is described by

PL = 3nT̃
τE

(1.17)

where 3nT̃ is the kinetic energy of electrons and ions and τE is the confinement

time which is influenced by anomalous transport [9] .

Now, to calculate the transport is used the Lawson criterion [10] that involves
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the power balance as

PB + PL = η(PT + PB + PL) (1.18)

where η is the efficiency to convert the wall heath into usable energy: 1/3 for an

original Lawson criteria and η ≈ 0.135 in a more modern approach [11]. The left

terms represent the lost power and the right terms the power generated in the

plasma. Then using equations 1.15, 1.16 and 1.17 in the power balance equation,

we have the relation

nτE = 3T̃
η

1− ηf
(
T̃
)
− αT̃ 1/2

(1.19)

then, from this equation the parameters to achieve fusion are obtained. The values

of the parameters are presented in the Table 1.1.

Temperature T 108 K (10KeV)

Particle density n 1021m-3

Power density 10MWm-3

Time scale τ 100s

Table 1.1: Parameter approximated for obtain reliable energy from nuclear fusion
in plasma. The values are taking from reference [11].

1.3 Plasma confinement

As it can be seen in table 1.1, the nuclear fusion requires a high temperature and

a high density of the plasma for a relatively long time, this conditions can destroy

any known material. Therefore, the technical problem of the plasma confinement

arises. The solution considered in this work is the magnetic confinement, however,

there are other ways to contour the problem, for example inertial confinement [12].

Although exist several ways to reach the magnetic confinement as stellarator,

reverse field pinch or magnetic mirror, the more promising way to get fusion is
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the tokamak1. The theoretical concept of tokamak was formulated by I. E. Tamm

and A. D. Shafranov in 1950 and was implemented in the Kurchatov institute in

1951 [13]. Since this first experiment the technology of the tokamak has evolved it

performance several orders of magnitude, this development is expected to be en-

hanced in the ITER, achieving the required parameters for the first fusion ignition

as shown in figure 1.1. The ITER is an international effort to obtain sustainable

plasma confinement at the fusion parameters for energy production, this scientific

collaboration involved China, the European Union, India, Japan, Russia, South

Korea and the United States. The first plasma was scheduled to 2025 although

this date is reevaluated due to bureaucratic and technical issues.

Figure 1.1: Evolution of the tokamak performance to achieve the ignition condi-
tions [14].

The main idea of the tokamak is crudely speaking a combination two configura-

tions to obtain plasma confinement, the z-pinch and the θ-pinch, both cylindrical

devices, as shown in Figure 1.2. The z-pinch is made by creating a current in the

axial direction of the plasma column, then a magnetic field in the poloidal direc-

tion is generated (figure 1.2). Due to Lorentz force j×B = −jzBθer, a force in the

1The word tokamak is a transliteration of the Russian word токамак, an acronym of “торои-
дальная камера с магнитными катушками” (toroidal’naya kamera s magnitnymi katushkami)
- toroidal chamber with magnetic coils.

7



inward radial direction compresses the plasma. The problem is that equilibrium

is so fragile, the plasma blows up in the time scale of µs. Another configurations

for magnetic confinement is the θ-pinch shown in figure 1.2. In this case a current

in the poloidal direction is generated, then an axial magnetic field is produced.

Therefore, by Lorentz force a pressure in the inward radial direction is produced

as in θ-pinch. However this type of configuration has instabilities that blow up the

plasma in the time scale of µs. In addition to the instability of those confinement

approaches, due to the open endings there is an important particles loss.

Figure 1.2: z-pinch, θ-pinch and the mixture of the two ideas, the tokamak [11]

In the tokamak the two fields toroidal and poloidal are added to create a bend

total field on the toroidal surfaces, leading to a more stable configuration. To

obtain this magnetic configuration the device is constructed in the way shown in

figure 1.3. The toroidal magnetic field Btor is produced by an external array of

coils along the toroid. A toroidal plasma current generate the poloidal magnetic

field Bpol, becoming the plasma the secondary coil of a transformer taking advance

of the plasma conductivity. The toroidal component of the field is larger than

poloidal for stability issues.
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Figure 1.3: Practical implementation of the tokamak configuration. A transformer
is used to generate the plasma current that generates the poloidal magnetic field Bpol
and the poloidal coils produce the toroidal magnetic field Btor. [11]

Since the 80’s one important topic of research in magnetic confinement is the

plasma column edge physics, due to the turbulence and it influence on the trans-

port of energy and particles [15] [16]. This edge loses decrease the confinement time

much more than was expected by the first theoretical attempts to describe the the

transport. Those approached only consider collisional effects in cylindrical (clas-

sical theory) and toroidal (neoclassical theory) configurations, not the turbulence

which dominates the dynamics of the plasma edge.

1.4 The TCBAR tokamak

The Tokamak Chauffage Alfvén Brésilien or TCABR was designed and constructed

at Ecole Politechnique de Lausanne/Switzerland with the main objective of study

the plasma column heating using Alfvén waves. After several years of investigation,

the tokamak was transferred to Brazil. The basic parameters of the TCABR are

presented in the table 1.2
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Table 1.2: TCABR tokamak characteristics.

Parameter Symbol Value

Major radius R0 0.61m

Minor radius a 0.18m

Plasma current IP 120kA

Discharge time TD 120ms

Central electrons temperature Te 500eV

Central electrons density ne 6×1019m−3

Toroidal magnetic field Bφ 1.07 T

An interesting characteristic of the TCABR tokamak is that, due to the rel-

atively low energy flux in the edge region of the plasma column, it is possible to

study the turbulence with electrostatic probes without destroying the pins due to

the low density and temperature compared with another machines. The use of

electrostatic probes to study the turbulence in the column edge in the TCABR

tokamak has been done in previous works related to particle transport, [17], fluctu-

ations of plasma parameters [18, 19, 20], turbulence with MHD activity [21, 22, 23]

and vorticity measurements [24]. In our work is introduced the conditional analysis

as a the technique to characterize the turbulence in TCABR tokamak.
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Chapter 2

Transport and Coherent

structures

2.1 Turbulent transport

Transport of energy and particles in plasma, also simply called transport has been

investigated since the beginning of the research on fusion. An initial theoretical

attempt used only the cylindrical geometry and the diffusion phenomena to obtain

the particles and energy transport in confined plasmas, this is the so-called classical

transport [25]. However, the experimental measurements made, showed a discrep-

ancy between experimental and theoretical calculations for the radial transport

by roughly two orders of magnitude. The discrepancy led to develop the neo-

classical transport where the toroidal geometry is taken into consideration. This

new calculation enhanced the theoretical transport values, but it not yet explain

satisfactorily the measurements[26].

In 1976 Mazzucato showed experimentally that there are small scale turbulent

fluctuations in the electron density of the plasma [27]. After this discovery, the

anomalous transport, i.e. the transport that is not explained by neoclassical trans-

port theory, begun to be attributed to the microscopic plasma turbulence. This

plasma turbulence is introduced in terms of large fluctuations in plasma parameters

as potential, density, temperature, magnetic field, etc. The fact that fluctuations

are included in the calculations of plasma transport is a complete break with the
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neoclassical theory.

On the edge of the plasma, the fluctuations are broadband with range f v

10kHz − 100kHz, as shown for different confined plasmas in Figure 2.1.a. For

plasma density, the fluctuations amplitude is very large, δn/n v 5− 100%, which

typically increases with the radial position. Similar levels of amplitude fluctuations

are measured for the electron temperature and plasma potential. On the other

hand, for the magnetic field the amplitude of the fluctuations is smaller. As an

example, in Figure 2.1.b the amplitude of some fluctuations are shown for the

TEXTOR tokamak. The size scale, range v 0.1 − 10 cm in the perpendicular

direction to the magnetic field lines. However, in the direction parallel to the

magnetic field lines, the scale is of the order of meters, therefore the turbulent

structures are nearly 2D [28].

Figure 2.1: a) Frequency spectra for saturation current fluctuations in several
tokamaks [29]. b) Amplitude fluctuations in the electron temperature, density and
magnetic field in TEXTOR tokamak [2, 30].

From the theoretical point of view, for the turbulent fluctuations, the radial

transport of energy and particles are calculated as [31]:

Particle flux

Γfj = Γf,Ej + Γf,bj (2.1)

Γf,Ej =

〈
Ẽθñj

〉
Bφ

(2.2)

Γf,bj = −

〈
j̃‖j b̃r

〉
eBφ

= g1
b̃r
Bφ

(2.3)
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Energy flux

Qf
j = Qf,E

j +Qf,b
j (2.4)

Qf,E
j = 3

2kbn

〈
ẼθT̃j

〉
Bφ

+ 3
2kbTj

〈
Ẽθñj

〉
Bφ

(2.5)

Qf,b
j = g2j∇Tj

b̃r
Bphi

(2.6)

where Ẽ, ñ, T̃ , b̃, j̃ are respectively the fluctuating parts of the electric field,

density, temperature, magnetic field and current density. The subscripts r, θ, φ,

‖, ⊥ refer to directions radial, poloidal, toroidal, parallel and perpendicular to the

magnetic field, 〈...〉 denotes average and kB the Boltzmann’s constant. Typically

the value of the term g1(b̃r/Bφ) is small, therefore, the magnetic fluctuations are

negligible for the transport of particles. For electrons g2e(b̃r/Bφ) ≈ πRvthe(b̃r/Bφ)2

for collisionless plasma, where vthe is the thermal velocity and R the plasma column

major radius. In the collisional case g2e(b̃r/Bφ) ≈ χe‖(b̃r/Bφ)2 with χe‖ the classical

parallel electron thermal diffusivity.

The anomalous transport is of practical importance for plasma fusion tech-

nology because it implies that energy and particles reach the chamber walls at

higher rates that expected, as shown in reference [32]. Therefore, when the parti-

cles collide with the wall generates an impurities flux into the plasma and degrade

the wall material. In D-shaped tokamaks, these particles are expected to collide

mainly with the divertor.

2.2 Coherent structures

As the theoretical, experimental and simulation techniques enhanced, new aspects

of the anomalous transport were unveiled. One of the more important facts about

the nature of the anomalous transport is that it is not only diffusive but convective

too, as it was studied experimentally by Zweben in 1985 in Ref. [33]. In [34]

those convective structures are discussed in the framework of the Self-Organized

Critically (SOC) theory. The convective nature is also shown in different machines
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as tokamaks [35], stellarators [36] and Q machines[37].

One of the important accepted aspects of the anomalous transport is the exis-

tence of coherent structures that propagate in the edge and scrape-off-layer (SOL)
1 of the plasma. These filament structures are elongated in the direction parallel

to magnetic field lines as shown in Figure 2.2

Figure 2.2: a) Blob image taken with a fast camera in the spherical tokamak
QUEST [38]. b) Blob image using the gas puff image (GPI) diagnostic in the NSTX
[39]

As it is shown in Ref.[40], although, these structures correspond to only 20%

of the time, the particle transport due to these structures correspond up to 60% of

all the turbulent particle transport. The experimental existence of these coherent

structures also called burst or blobs, are reported in several tokamaks, stellarator

and other plasma devices as shown in the table II and III of Ref. [3].

Due to the presence of coherent structures, the turbulent density fluctuations

have an important and common feature: their probability density function (PDF)

for the local density measurements (related to the ion saturation current) is a non-

Gaussian one [41]. This characteristic PDF is present in several devices and seems

to be universal as show in Figure 2.3.a. The presence of the positive tail is the

most important feature, because this tail indicates that the structures have higher
1The SOL is the region where the magnetic field lines are linked either with the limiter (or

the divertor) and even with the chamber walls.
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density values than the surrounding plasma.

Figure 2.3: a) PDF for the saturation current normalized in terms of standard
deviations, in Tore Supra (solid line), Alcator C-Mode (thick solid line), MAST
(dashed-dotted line) and PISCES (dots) [41]. b) The autoconditional average in
Tore Supra (solid line), Alcator C-Mod (thick solid line), MAST (dashed–dotted
line), and PISCES (dots)[41].

Another known fact about the blobs is its characteristic shape. As is shown

in Figure 2.3.b, there is a rapid increase of the density, then a peak value and

after this peak, a slower density fall. The shape can be explained supposing a

blob shape-like structure with a dense center and a less dense tail in the direction

contrary to the propagation. For the electric potential, it has been measured a

dipole structure for the burst in different machines [3], [35]. The dipole structure

and the density peak are exemplified in Figure 2.4

Figure 2.4: Density contours in solid lines and equipotential contours in dashed
lines times [35].
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With respect to the propagation mechanism, is accepted that the propagation

velocity in the direction perpendicular to the magnetic field lines, depends on the

poloidal electric field and the toroidal magnetic field Vr = E×B/B2.

Figure 2.5: Profile for the relative amplitude for a burst in three different times[42].

More recent studies of the bursts, with a 2D probe array show an elongated

and tilted shape [42] as shown in Figure 2.5. Another interesting fact is that there

is not only radial but also poloidal velocity. Usually this poloidal velocity is not

considered in models or simulations.

The measurement of those structures requires diagnostics with high spatial

and temporal resolution. The spatial resolution need is around the size of the

blob in the plane perpendicular to the magnetic file line, ∼2cm as shown in the

Figure 2.6. And besides, the time resolution is due to the apparent velocity of the

structures, as shown in Figure 2.6 this velocity has values around 1Km/s. Using

the order of size of the structure before mentioned we have times around 20µs.

Due to the above mentioned limits, not all diagnostics are suitable to perform

measurements of blobs. For this reason the more commonly used diagnostic are

the Langmuir probes and optic diagnostics as Gas Puff Image (GPI) and Beam

Emission Spectrography (BES).
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Figure 2.6: Apparent radial outward speed of the convective structures as a func-
tion of it size from data reported in different machines [3].

The mechanism that generates the blobs is yet an open question. A model

proposed in Ref.[43] is based on the drift wave plasma turbulence. In this model

is considered a Boltzmann distribution of electrons

ne(r, t) = n(r⊥) exp (eφ(r, t)/Te) (2.7)

where the electron temperature Te has been considered constant and n(r⊥) is

the density in the absence of electric potential. This model also use the continuity

equation for ions

∂ni
∂t

+∇ · (niV)i = 0 (2.8)

where the cold ion approximation is employed for the ion velocity

Vi = V0 − ρ2
s

d

dt
∇φ V0 = −DB (∇× b) (2.9)

where d/dt is the convective derivative, ρ2
s = TeM(c/eB)2, DB = cTe/eB, M

is the ion mass and B the strength of the magnetic field. Then, using 2.7 and 2.9

in 2.8 we obtain
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edeφ
dt
− ρ2

s∇ ·
(

eφ d
dt
∇φ

)
− Λeφêx ·

(
V0 − ρ2

s

d

dt
∇φ

)
(2.10)

Now, considering the case when |∂(...)/∂y >> ∂(...)/∂x|, which implies an

stream like solution, the last equation becomes

∂eφ
∂t
− ρ2

s

∂

∂y

(
eφ − ρ2

s

∂2φ

∂y∂t

)
+ UDW

∂eφ
∂y

= 0 (2.11)

where UDW ≡ ΛDB is the phase velocity of the linear drift waves when the

long wavelength approximation is used. Considering traveling wave solutions for

equation 2.11. This is, solutionts that satisfy ∂(...)/∂t = −UNLE∂(...)/∂y, we get

κ2
NLE

deφ

dy
+ d

dy

(
eφ
d2φ

dy2

)
= 0 (2.12)

where κ2
NLE = ρ−2

s (UDW/UNLE − 1)

It can be show that the equation 2.12 has an approximate solution of the form

[43]

expφmax ≈ 2
√
−α
π

ln Ĉ (2.13)

where φmax is the maximum potential value for which there is a solution, with

the constants Ĉ and α > 1. Using the fact that eφ ≈ n implies eφmax ≈ nblob and

considering
〈
eφmax

〉
= 1, then, the next relation for densities is obtained

nblob
< ne >

≈ 2
√
−α
π

ln Ĉ (2.14)

.

Using the values Ĉ = 0.1 and α = 3, the density of the blob is about 3 times

the density of the surrounding plasma. Besides, it can be shown that the mean

distance between two blobs is [43]

L2 ≈ 23/2

√
−α ln Ĉ
κNLE

(2.15)

and the effective size of the blob is
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δb ≈

[
23/2 ln

(
2
√
−(α/π) ln(Ĉ)

)]1/2

κNLE
(2.16)

then, the relation between the size of the blob and the mean distance between

two blobs can be calculated and has the next value:

L2

δb
≈ 5 (2.17)

.

The relations 2.14 and 2.17 imply an important characteristics of the blobs:

they are isolated structures with it density higher than the surrounding plasma.

Due to nonlinearity of the equations used to model the plasma turbulence, an

important part of the theoretical work is done in simulation, studying principally

the movement of the blobs across the SOL.

An accepted basic model of burst propagation was proposed in Ref.[44]. In

this model, the drift ∇B cause a polarization that generates a current along the

magnetic lines that ends in the divertor or limiter, those currents was measured in

Ref. [45]. The polarization creates an electrostatic potential φ and an electric field

E, perpendicular to B but constant along B , this electrostatic potential causes

an E×B velocity drift of the burst. This model is presented in Figure 2.7

Figure 2.7: Scheme for the model of propagation of blobs.

To find the electric potential φ, is used the equation for electric current
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∇j⊥ +∇j‖ = 0 (2.18)

with

j⊥ = c
B×∇P

B2 (2.19)

where the pressure is given by P = nT . Then, by using the blob plasma

continuity equation, the radial burst velocity due to E×B drift is obtained

Vb = Cs

(
ρi
δ

)
lb
R

nb
nt

(2.20)

where CS is the plasma sound speed, ρi the ion gyro-radius, δ the blob size

in the poloidal direction, lb the size of blob in the magnetic field direction, R the

major tokamak radius, nb the burst density and nt the density of the plasma.

Taking the life time due to the parallel plasma flow as τb ∼ lb/CS, the mean size

of the burst is obtained as

δ < δmax = R

[(
qρi
R

)2 nb
nt

]1/3

(2.21)

where q is the safety factor.

Due to difficulty involved in solve the equations caused by the nonlinearity,

several codes has been used to simulate the blobs. In references [46], [47] and [48],

the propagation of blobs in the SOL is simulated, but the blobs are seeded at the

begin of the simulation. In Ref. [49] a comparison is performed between several

codes. All the codes show basic features of blobs as density peak, dipole electric

fled.

An interesting simulation is presented in Ref.[50] where the aim is the produc-

tion of burst. As it is shown in the Figure 2.8 there is a density and temperature

peak as appears in the graphics for the density n and temperature T . In the

graphic for the potential φ for the burst there is a dipole structure.

The conditional analysis is used in the results obtained in Ref.[50], where an

electrostatic probe model is included in the simulation. This analysis is performed
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for the temperature of electrons and ions, the electric potential and the density.

The result of this analysis is presented in the Figure 2.9. There are clear peaks at

the moment of the burst, indicating that those structures are more dense and hot

that the surrounding plasma. This result implies a convective transport of energy

and particles driven by those coherent structures.

Figure 2.8: Result of the simulation of the burst for the density, electron and ion
temperature, electric potential, pressure of ions and electrons and vorticity [50]

Figure 2.9: Results of the conditional analysis performed for the signals of density,
potential, and temperature of ions and electrons [50].
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Chapter 3

Electrostatic probes and

temperature measuremet

This chapter presents the theoretical and experimental facts about the temper-

ature measurement, and the analysis techniques. Firstly, it is presented a basic

theory of electrostatic probes and its uses as a diagnostic for measurement of the

temperature, density and plasma potential. Then, in the final part of the chapter,

the conditional analysis technique is explained.

3.1 Electrostatic probe

Due to the high temperatures involved in fusion plasmas, even in the edge and

SOL regions, several methods have been developed to measure temperature. One

of the most used techniques is the so-called Langmuir probes or electrostatic probes,

used in plasma since the first decades of the XIX century. This technique consist

basically in measure the current and potential response of a metallic piece inside

the plasma.

3.1.1 Plasma sheath

When a piece of material is immersed in the plasma, a layer appears around that

piece. This phenomenon is produced by the difference of the ions and electrons

fluxes due to different mobilities, forcing the surface of the material to reach a
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negative potential with respect to plasma. This layer, known as plasma sheath

has an extension of the order of the Debye length λD. This plasma sheath is

used as a base for an experimental diagnostic tool so-called the electrostatic probe

or Langmuir probe. In this section we will calculate, in an approximated way,

following the Ref.[51], the potential on the material surface, the variation of the

density and potential into the sheath, and a theoretical expression that shows the

use of the plasma probe to measure the local density, potential and temperature

of the plasma.

Basic ideas of the model

The basic idea of the physic phenomenon is that, when plasma particles collide

with the material, the ions recombine or return to the plasma, meanwhile, the

electrons recombine or enter into the conduction band if the material surface is

a metal. Let us suppose that the particles have an isotropic distribution; in this

case it follows from statistical mechanics that the number of particles that hit the

surface by time is given by

Γα = nα < v >α

4 (3.1)

where α indicates the specie of particles that could be electrons or ions, nα
the density, v the particle’s velocity and the <> the average value. If we assume

that the distributions of the particles are of Maxwell-Boltzmann type , the mean

velocity is given by

< v >α=
( 8
π

)1/2 (kTα
mα

) 1
2

(3.2)

where mα and Tα are the mass and temperature of the α type particles, and k

the Boltzmann constant. So, we have that the particle flux is given by

Γα = nα

(
kTα

2πmα

) 1
2

(3.3)

An important fact appears in this equation; for the same temperature and
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density, the flux depend on the inverse of the mass. For this reason, the flux of

electrons is larger than the ions one. Therefore, there is a net accumulation of

negative charges on the metal surface, as a consequence, the negative potential

rise the flux of ions. This process stops at a potential when the two flux cancel,

reaching a dynamical equilibrium.

Electric potential on the metal surface

When the plasma sheath is created, we assume the following boundary conditions

for the potential

φ(x) =


φw if x = 0

0 if x =∞
(3.4)

where the reference potential is chosen as the potential inside the plasma. Using

again the results from statistical mechanics, we have that the densities of the ions

and electrons are 1

ne(r) = n0 exp
[
eφ(r)
kT

]

ni(r) = n0 exp
[
−eφ(r)
kT

] (3.5)

At dynamical equilibrium, there is no more accumulation of charge; then the

flux of ions and electrons have to balance

Γe(0) = Γi(0) (3.6)

Using the equations (3.1) and (3.5) and solving for the metal surface potential,

we obtain

φw = −
(
kT

4e

)
ln
(
mi

me

)
(3.7)

Rewriting the equation 3.7 as
1At this point is neglected the drift velocity of the particles towards the metal surface, this

drift will be taken into account with the hydrodynamic equations in the study of the inner
structure of the sheath.
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|eφw|
kT

= 1
4 ln

(
mi

me

)
(3.8)

it is seen that the thermal and potential energy are of the same order, for

example, in the case of Hydrogen plasma the potential energy is only twice the

thermal energy.

Inner structure of the plasma sheath

Continuing the study of the inner structure of the plasma sheath, we write the

conservation equations for particles and moment

dnαuα
dx

= nα
duα
dx

+ uα
nα
dx

= 0 (3.9)

mαuα
duα
dx

= −kBTα
nα

dnα
dx
− qα

dφ

dx
= 0 (3.10)

where u is the velocity,m the mass, q the electric charge, T the temperature and

kB the Boltzmann’s constant. In the particle conservation equation (3.9), we use

the fact that, when the sheath is generated, the system is in dynamical equilibrium

as in (3.6). In the case of the momentum conservation equation (3.10), the ideal

gas behavior is assumed, and are neglected collisions and magnetic fields. Now,

as the ions have a large mass compared with the electrons, we assume that their

thermal energy is low. For the electrons, because of its low mass, the kinetic energy

is low; then it is valid the assumption that

meu
2
e << kBT << miu

2
i (3.11)

Using this approximation in (3.9) and (3.10) we obtain

kBTe
ne

dne
dx
− edφ

dx
= 0 (3.12)

miui
dui
dx

+ e
dφ

dx
= 0 (3.13)
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Solving the equation 3.12 using the boundary conditions n = n0 when φ = 0,

we have

ne(x) = n0 exp
[
eφ(x)
kBT

]
(3.14)

To solve the equation for ions (3.13), we integrate; then

eφ(x) + 1
2miu

2
i (x) = C2 (3.15)

Now, from the conservation equation (3.9)

ni(x)ui(x) = C1 (3.16)

where C1 and C2 are constants. Imposing the boundary conditions in the

plasma x→∞ we must have φ(∞) = 0, ni(∞) = n0, and ui(∞) = u0i, then

ni(x) = n0

[
1− 2eφ(x)

miu2
0i

]−1/2

(3.17)

Now, we have a result that is different form (3.5). This variation implies a drift

velocity of ions. To obtain the electric potential into the sheath, results 3.14 and

3.17 , are used in the Poisson’s equation

∇2φ = e

ε0
(ne − ni) (3.18)

Then, the result is the nonlinear differential equation

d2φ

dx2 = n0e

ε0

exp
(
eφ

kBT

)
−
(

1− 2eφ(x)
miu2

0i

)−1/2
 (3.19)

To get an approximate solution for 3.19, we use the fact that, the potential

near the plasma side of the sheath goes to 0V; then, using eφ/kBT << 1 and

expanding in a Taylor’s series

exp
(
eφ

kBT

)
' 1 + eφ

kBT
(3.20)

For the same reason, it is possible to assume for ions that eφ/(miu
2
0i) << 1;
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then, using the Taylor expansion again

(
1− 2eφ(x)

miu2
0i

)−1/2

' 1 + 2eφ(x)
miu2

0i
(3.21)

Combining the results (3.20) and (3.21) we have a linear equation

d2φ

dx2 = φ

X2 (3.22)

where

X2 = λ2
D

(
1− 2eφ(x)

miu2
0i

)−1

(3.23)

Taking finally the boundary condition φ(∞) = 0, the result is

φ(x) = A exp(−x/X) (3.24)

This solution is valid near the plasma side of the sheath and the constant has

to be negative, because the thermal energy of ions is assumed less than the kinetic

energy, X ≈ λD and the size of the sheath is of the order of the Debye length.

Assuming the validity of the solution on the metal surface, the constant A becomes

φw. An important fact comes from (3.22) and (3.23): if the value of the parameter

X is imaginary, we have an oscillating solution, then there is no sheath. Therefore,

the solution requires that the so called Bohm criterion

kBT < miu
2
0i (3.25)

has to be satisfied for the creation of the plasma sheath.

3.1.2 Electrostatic probe characteristic curve

Now, let calculate the current measured as a function of the potential applied to

a tip, when it is introduced into the plasma. This current will be the addition of

electrons and ions currents, then
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Ip = Ii + Ie (3.26)

The current for each species can be calculated as

Iα = qαΓαAα (3.27)

where Γα is the flux given by 3.1 and Aα is the collection area. In the simple

model there will be used as assumptions that the average velocity, the collection

area and the ion density are constants. As for ions and electrons, the Maxwellian

distribution function is used, the flux Γ can be expressed in the form of equation

3.3. For ions density we take the value inside the plasma, n0, and for the electrons

we use the density given in equation 3.14. Using the notation V ′ ≡ φ(r = 0) for

the probe potential and the temperature in electron-volts (eV) units we get that

Ip = eAin0
〈v〉i
4 − eAe

〈v〉e
4 n0 exp

(
e
V − VP
kBTe

)
(3.28)

where Vp is the plasma potential, taken as the reference. If the potential of the

tip is negative, the second left term becomes negligible and we have a current due

almost only to the ions, then we define

Isi = eAin0
〈v〉i
4 (3.29)

On the contrary, for potentials higher than the plasma potential, the second

term becomes relevant and we define

Ise = eAe
〈v〉e

4 n0 (3.30)

Using the definitions 3.29 and 3.30 in 3.28 we get

Ip = Isi − Ise exp
(
e
V − Vp
kBTe

)
(3.31)

When the current through the probe is null, the potential of the probe is known

as floating potential Vf , then, using this fact and doing some algebra we arrive to
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the known relation

Vf = Vp − ln
(
Iis
Ies

)
Te (3.32)

for hydrogen plasma the value of ln(Isi/Ise) is approximately 3. Using the relation

3.32 in the equation 3.31, we finally get the probe current in the form

Ip = Isi

[
1− exp

(
e
V − Vf
kBT

)]
. (3.33)

where the subscript e was dropped in the temperature, this is the notation that

will be used in the rest of the text. We have to take into account that equation

3.33 is valid for potentials below the plasma potential, because in the used model

there is no electron saturation current.

An interesting result is the possibility of the density calculation. To do this

calculation, we use the definition 3.29 for the ion saturation current and the mean

velocity 3.2 for a Maxwell-Boltzmann distribution supposing that Ti = Te. Then,

we have that the density can be calculated as

n = Is
eAi

(2πmi

kBT

)1/2
. (3.34)

The behavior of the probe current as a function of the applied potential, when

it is immersed in the plasma, is sketched in the Figure 3.1. We can distinguish

three regions in the curve. The region I is for negative potential, when more

electrons are repelled from the pin surface, and the net flux is due to the ions. In

that condition, we have a measurement of the ion saturation current I is. This ion

current is much lower with respect to the electron current. In the region II, the

potential is less negative, the number of repelled electrons decreases and the net

current becomes a mix between electron and ion currents. When the dynamical

equilibrium is achieved, the ion current and electron current cancels, then, the

probe reach the floating potential, Vf . In regions I and II, the equation 3.33

describe the behavior of the probe. It was in this regime that the measurements of

our experiment were performed. At a certain potential which is called the plasma

potential, Vp, the plasma sheath around the probe disappears and collected ions
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and electrons are those that hits the probe surface. Above the plasma potential the

current of ions becomes null and the current is only of electrons. At this point the

probe has reached the electron saturation current Ies , this is region III. In tokamak

plasma due to the reached temperatures and densities, this region produces a high

currents that can harm the electronics used in the measurement circuits.

Figure 3.1: Theoretical characteristic curve of the probe [51] .

3.2 Potential sweep technique

For the potential sweep technique, we take the signal of the sweep potential applied

to the probe, VR, and the resultant current, IR, to get an entire image of the

behavior of the probe. The behavior is described by equation 3.33. The scheme of

the implementation of the technique is shown in Figure 3.2. The current signal is

measured on a shunt resistor of 10Ω, and the sweep potential on a voltage divider

due to high potentials in the pin. The potential and current signals measured, are

coupled to the coaxial cable impedance using a set of electronic amplifier. Those

coupled circuits are shown in the appendix A.

Then, the cycles of the potential sweep are recognized, and for each period, the

current is also selected. With those signals, the characteristic curve is constructed

and a computational method is used to fit the equation 3.33. Then, the values

of the parameters Is, Vf and kBT are obtained. One advantage of this method
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Figure 3.2: Basic system for measurement with the potential sweep technique. The
IR is measured in a shunt resistor of 10Ω. The sweep potential VR is measured in a
voltage divider. The amplifiers couple the signal with the coaxial cable impedance.
The reference for the potential measures is the tokamak vessel.

is that the values are well determined when a considerable amount of points is

obtained. But, an obvious disadvantage is the sweep frequency, that limits the

time rate of the measurements. As an example, for fluctuations in the plasma with

typical times lower than 10µs the sweep frequency has to be greater than 100kHz

to get at least one characteristic curve. Several practical difficulties related to

the implementation of a fast sweeping system at high frequencies ( 100kHz) are

exposed in references [52] and [53]. A variation of this technique is to put the

sweep potential between two pins, the so-called double probe, described in Ref.[54].

For this configuration the characteristic curve obtained is symmetric, therefore, it

has the advantage that high electron currents are not attained.

3.3 Triple probe technique

The triple probe technique was proposed by Chen et al [6] and has become a

widely used method for plasma temperature measurement [55, 56, 57, 58, 59]. As

the name implies, the technique uses three pins to make the measurement. The

configuration of those pins is shown in the Figure 3.3.

From the Figure 3.3, we can see that currents can be described as

I+ + I− = 0 (3.35)

and for the potentials, the configuration gives the equations
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Figure 3.3: Currents and potentials for the triple probe configuration.

V+ − V− = VBias (3.36)

Now, under the assumption used for the plasma to describe the probes behavior,

the currents for the probes can all be described using the equation 3.33

I+ = −Is+
[
1− exp

(
e
V+ − Vf+

kBT+

)]
(3.37)

I− = −Is−
[
1− exp

(
e
V− − Vf−
kBT−

)]
(3.38)

Then, knowing the current and potential in the probes we can calculate the

ratio between I+ and the current difference I+ − I−

I+

I+ + I−
=

−Is+
[
1− exp

(
e
V+ − Vf+

kBT+

)]

−Is+
[
1− exp

(
e
V+ − Vf+

kBT+

)]
+ Is−

[
1− exp

(
e
V− − Vf+

kBT−

)] (3.39)

We will now make the assumption that the plasma is homogeneous for the three

pin positions. Therefore

Te+ = Te2 = Te− = Te

Vf+ = Vf2 = Vf− = Vf

Is+ = Is2 = Is− = Is

(3.40)
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using this assumption in equation 3.39, the fact that I+ = I− and factoring the

exponential term of the numerator, we have

1
2 =

1− exp
(
−eV+ − Vf

kBT

)
1− exp

(
e
V− − V+

kBT

) (3.41)

as for the technique, the potential difference −VBias = V− − V+ is large than

kBT (in electronvolts) it is possible to ignore this exponential term, then

1
2 = 1− exp

(
−eV+ − Vf

kBT

)
(3.42)

Finally, solving for the temperature we arrive to the expression

kBT

e
= V+ − Vf

ln (2) . (3.43)

where the temperature is measured in eV units due to the factor kB/e. For the

practical triple probe implementation was used the circuit shown in the Figure

3.4. In this technique we measured the floating potential, Vf , and the positive bias

potential, V+. The floating potential is measured using a voltage divider, as in the

case of the potential sweep the relation is 1/56. For the measurement of the V+

the same configuration is used. For the current, the measurement is done using a

shunt resistor of 10Ω, in this case the measurement circuit must be isolated from

the system ground. For all the measurements, an operational amplifier is used to

couple the impedance of the coaxial cable.

As the triple probe technique uses three pins there is a spatial distribution, this

implies that a possible phase error delay occurs if the homogeneous hypothesis is

not fulfilled. Because of that, Tsui and coworkers, proposed a modification of the

triple probe technique [60], in which, another two pins are added symmetrically

with respect to the floating pin, in order to compensate this phase delay error.

The main difficult of this modified method is that five pins are needed to make

a single temperature measurement. Moreover, the five pin method only considers

large scale inhomogeneities, and is still unable to correct spatial inhomogeneities

lower or comparable with the whole configuration size.
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Figure 3.4: Basic system for measurement with the triple probe technique. The
reference for the potential measures is the tokamak vessel.

Another approach that has been used more recently is the so called ball pen

probe (BPP) [61]. In this approach the electron current that arrives to the probe

is diminished because the gyro-radius of electron is smaller than the gyro-radius

of the ions as sketched in Figure 3.5.

Figure 3.5: a) Basic construction of the ball pen probe. b) Behaviour of the
floating potential and ln

(
I+
s /I

−
s

)
for the BPP. Reproduced form [61].

The retraction of the pin can be increased up to the condition in which the

relation between the saturation currents in the equation is one. Therefore, we have

that for the BPP, the potential measured, Vbpp, is the plasma potential Vp. This

result is obtained with the help of the equation 3.32

As we can see from the Figure 3.5.b, if the value of h = 1mm is selected, the

ratio between saturation currents is one. To use this technique to measure the

plasma temperature it is also needed to measure the Vf with a standard electro-
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static probe, and use the fact that for the hydrogen ln
(
I−s
I+
s

)
≈ 3. Finally, the

temperature can be calculated from equation 3.32

kBT

e
= Vbpp − Vf

3 (3.44)

where the temperature is in eV units.

3.4 Probe arrays

In this work were used two arrays of electrostatic probes. One array use five pin

which are set in the configuration show in Figure 3.6. The probes are located at

different poloidal and toroidal positions. This array will be call the five pin probe.

Figure 3.6: Five pin probe array. θ is the poloidal angle and φ is the toroidal
angle.

The other array is shown in Figure 3.7. In this array the pins are at different

radial positions and was developed as a part of the work presented in Ref [17].

This array will be called rake probe

Figure 3.7: Rake probe array. φ is the poloidal angle and r is the radial coordinate.
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3.5 Conditional analysis

The conditional average is a mathematical tool used to recognize the average

characteristics of coherent structures in a turbulent background. The technique

was introduced in the 80’s by Hussain [7]. The basic idea is to decompose an

instantaneous variable f(x, t) at position x and instant t as [62]

f(x, t) = F (x) + fc(x, t) + fr(x, t) (3.45)

where F (x) is the time average of f(x, t) and fc(x, t) = 〈f(x, t)〉 −F (x) is the

phase average. This phase average, is the ensemble average of any property at

particular phase of the structure and it is defined as

〈f(x, t)〉 = lim
N→∞

1
N

N∑
i=1

f(x, t+ ti) (3.46)

where t is the time chose as the reference phase. The term ti denotes the random

time when occurs the coherent structures with the selected phase. Finally, fr is

the part corresponding to randomized background, or structures with spatial and

temporal correlations smaller that the selected structure. Now, as show in the

Figure 3.8 we select the reference signal, φref (x, t), in the reference probe and

the signal, φmov(x, t), in the movable probe. In the reference signal is searched

the condition Φc, when the condition is met, the time τ = 0 is defined. Around

this the reference time an interval is taken, going from −τmax to τmax. After the

complete scan of the reference signal, there will be N occurrences of the condition

Φc and an ensemble of N waveforms is obtained. This set is averaged to obtain

the conditional average for the condition Φc. As the pins are separated a distance

δx the conditional average is calculated as

φ(x + δx) =

= 〈φmov(x + δx, t+ τ)|φref (x, t) = Φc〉

= 1
N

N∑
i=1

[φmov(x + δx, t+ τ)|φref (x, t) = Φc]

(3.47)

This conditional average then has the property to extract the coherent com-
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ponent of the signal and average out the turbulent component of the ambient.

Therefore, this method is widely used in the study of coherent structures in tur-

bulent systems [42, 63, 64? ].

Figure 3.8: Diagram showing the outline of the conditional analysis. Reproduced
from Ref.[62].

38



Chapter 4

Temperature measurements

In this chapter, we present the results obtained from local temperature measure-

ments made by Langmuir probes with voltage sweep method and triple probe

method. The two techniques are improved to include a parameter which take into

account the correction due to expansion of the sheath region with applied volt-

age, that gives rise to non saturation of the ion current. Next, we present the

comparison between the techniques of triple probe, and voltage sweep. To acquire

the experimental data we used discharges with low MHD 1 activity and almost

stationary conditions (it is, almost constant density and plasma current). The sig-

nals of a typical TCABR plasma discharge considered in this work are presented

in Figure 4.1, in this case due to a fail in the interferometer, the bolometer is used

to indicate the constant behavior of the plasma density.

The measured signals to use the triple probe technique were, the floating po-

tential, Vf , and the potential of the pin positively biased, V +. For the potential

sweep technique we generate the characteristic curve of the probe by sweeping the

probe potential, VR, and measuring it simultaneously with the probe current, IR.

The sweep frequency was around 1.5 kHz. It is interesting to note in the Figure

4.2 that a little increase of positive potential in the sweep signal VR causes a rapid

increase in the current IR measured in the pin. Finally, the saturation current Is
is measured by applying a constant biasing in the probe and measuring the probe

1In our work low MHD activity refers to the absence of high amplitude oscillations in the
Mirnov coil signals in the plateau region of density.
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Figure 4.1: Plasma current, the reference Mirnov coil and bolometer for the dis-
charge #33942 as an example of the analysis conditions. The light blue boxes
represent the interval of time used for the analysis

current. The potential applied was around -140V. The Is signal is used in the

analysis of the extreme events. Those signals are shown in Figure 4.2.
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Figure 4.2: Signals used by the sweep potential and triple probe techniques for
the discharge #33946. Ion saturation current Is, sweep potential VR, current due
to the sweep potential IR, floating potential Vf and positive potential for the triple
probe technique V +.
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4.1 Potential sweep technique analysis

To collect the data for the potential sweep technique, we acquire the signal of the

ramp voltage, in this case a sinusoidal that goes approximately from -130V to 10V.

The maximum and minimum potential values are adjusted using a potentiometer

in the module of the biasing sweep system. The limits of the potential are selected

in such way that it is possible to see both, the ion saturation side and the beginning

of the part when the electron and ion currents contribute to the probe current.

Those are the regions I and II that are shown in Figure 3.1. Also, the frequency

can be adjusted and in our measurements it was around 1.5kHz. Once we get the

data of the applied potential VR and the current IR for this potential the result is

a great amount of dispersed points as show in Figure 4.3.

Figure 4.3: Raw data (blue dots) for the IR as a function of VR and the mean
values for the current for a set of potentials (red squares). In the zoom panel the
points in the red light box are those used to get the mean value which is represented
by the red squares. The standard deviation of the mean is used as uncertainty but
it is too low to appear as an error bar. The data correspond to discharge #33956
at r = 20.00cm.

As it can be seen in Figure 4.3, the raw signal of the current as a function of

the potential (shown as blue dots) have a great dispersion. For this reason, to

get the points to fit the function given by equation 3.33, a set of nvoltage values

is selected. For each voltage in an interval around of typically 1V the current
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values are used to create an ensemble. Then, the mean value of the ensemble

is calculated and together with the voltage value, form a pair of values (Vi, Ii).

The set of all pairs (Vi, Ii) is used to fit the function 3.33, which describes the

probe behavior. The set of data (Vi, Ii) are shown as red squares in the Figure

4.3. As an example, the red box is the region around a voltage value, in this case

-64.5±0.5V. The blue dots in the red box are the ensemble of current values, this

ensemble has a mean value of -10mA. The standard deviation of the mean value

is also calculated for each set of currents, and this standard deviation is used as

the uncertainty for the fit; for a great amount of points, this uncertainty is low

and for this reason the uncertainty bar can not be seen in the Figure 4.3. Once

the set of points is calculated, it is used the Levenberg-Marquardt technique to

fit the function for the characteristic curve of the equation 3.33. The Levenberg-

Marquardt method is used to fit because the nonlinear relation of the parameters

and the data for the used function. The Levenberg-Marquardt is technique is

explained in the Appendix B. The data, uncertainties and the fitted functions for

different radial positions are show in the Figure 4.4. As it can be seen, when the

potential is very negative there is a systematic error because the curve does not fit

the behavior. The discrepancy is explained as the model used supposes that the

saturation current for the ions is constant, which is not true in this case.

It is known that the non saturation of the ion current is caused by the increase

of the thickness of the plasma sheath, when the potential applied increases for

negative values. As shown in [4], the length of the plasma sheath around the

probe tip as a number of Deby lengths λD can be obtained from the Poisson

equation

∇2V = − e

ε0
(ni − ne) (4.1)

In the basic model the electron density is assumed negligible. For the ions the

thermal energy is assumed small, then, the velocity is given by

vi =
(−2eV

mi

)1/2
(4.2)

Now, using the fact that the density current that cross the plasma sheath is
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Figure 4.4: Examples of fits of the probe characteristic curve given by the equation
3.33 for four different radial positions. The zoom is shown for the negative potential,
the region when the potential is so netive that the model expects a current saturation.

Ji = Anivi = AΓi (4.3)

the density can be expressed as

ni = Γi
(

mi

−2eV

)1/2
(4.4)

where was used the equations 4.2. Using the last expression in 4.1 and a slab

approximation we get

d2V

dx2 = − e

ε0
Γi
(

mi

−2eV

)1/2
(4.5)

Solving this equation for the probe surface x = 0 with V (0) = V0 to the end of

the plasma sheath x = xs with2 V (xs) = −Te/2 (with Te in eV) we get

xs
λD

= 2
3

[
2

exp (−1)

]1/4 [(−V0

T

)1/2
− 1√

2

]1/2 [(−V0

T

)1/2
+
√

2
]

(4.6)

2This temperature is valid near the plasma column edge
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where the reference potential is the plasma potential. This function is plotted

for different temperatures in Figure 4.5.
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Figure 4.5: Length of the sheath of the ion collection as a function of the tip
surface potential for different temperature values.

Taking into account that the plasma potential is given by Vp ≈ Vf + 3Te, then

all the measured potentials are negatives with respect to the plasma potential.

For negative potentials, less than approximately -30V, the behavior of the plasma

sheath size becomes approximately linear. Then

xs ≈ −aV0 (4.7)

With this result and the fact that, for a cylindrical tip with radius rt the

increase in the area when the radius increases xs is given by

A = A0

(
1 + xs

rt

)
≈ A0

(
1− a

rt
V0

)
(4.8)

We get that the increase in the area of the ion collection, can be modeled

with the addition of a linear factor. This factor reflects the behavior of the not

saturation of the ion current when the bias potential is negative. To take in
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account this behavior, the characteristic equation of the electrostatic probe given

in equation 3.33 is modified adding a linear term:

I = −Is
[
1− α (V − Vf )− exp

(
V − Vf
Te

)]
(4.9)

where the parameter α express the non saturation in the ion current due to the

sheath expansion. Using the same data used for the function without correction,

but in this case using the corrected model, we get the fit shown in Figure 4.6. It

can be seen that the additional term improves the fit for very negative potentials,

this change is observed at all radial positions.
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Figure 4.6: Fit for the corrected characteristic function given by equation 4.9 for
four different radial positions. A zoom is shown for the region where the potential
is negative.

However, it must be noticed that when the parameter α is added, the modulus

of the correlation coefficients between α and Is, and between α and T , reach values

near to one as it can be seen in the Figure 4.7.a. Therefore, the introduction of

this correction term introduces a high statistical correlation between the saturation

current and the temperature.
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Figure 4.7: a) The correlations for the fit using the α parameter as a free parameter.
b) The fit using the quadratic model for α at four different radial positions. A zoom
is shown for the functions when the potential is very negative.

Due to the high correlation caused by the α parameter, we decided to use a

model to obtain it and then be used as a fixed parameter when the fit is performed.

To do that, a linear function were fitted to the values of α as a function of the

radial positions, the fit is shown in the Figure 4.7.b. The resultant function fit

was:

α = [3.94 + 0.43(r − 18)]× 10−3 (4.10)

where r is the radial position of the probe in cm, with respect to the geometric

center of the plasma column.

Now, the data obtained by the electrostatic probes is fitted using the corrected

expression 4.9 . But, in this case the α parameter is calculated with the aid

of equation 4.10 and given as a constant in the fitting function. This procedure

reduces the number of free parameter to three. The fit for different radial positions

using the parameter calculated from the linear model is shown in Figure 4.8.
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Figure 4.8: Fit for the characteristic function using the linear model of α for four
different radial positions. A zoom is shown for the region where the potential is
negative.

Another model tested was to use the α parameter as a constant value for all

radial positions. The utility of this model will be seen in the chapter 5, when we

will deal with a reduced number of points to perform the fit. In this case, as the α

parameter is fixed there will be just three free parameters allowing us to perform

the fit with a reduced number of points. To test this model, the value of α was

used equal to the mean of the values calculated in the case when the α parameter

was a free parameter. This calculation gives the value α = 0.0046mA/V. The

results of this fit are shown in Figure 4.9. Using the fixed value of the parameter

to fit the function seems to be a better fit for radial positions near the plasma

edge.

To have a comparison between different procedures to fit the probe function,

the reduced χ2 was calculated for several discharges and plotted as function of

the radial position. The result is shown in the Figure 4.10. It can be seen that

the χ2
red increases with the radial position, although in the function without the

correction of the plasma sheath expansion, exist in all cases a low performance of
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Figure 4.9: Fit for the characteristic function using the mean value of α =
0.0046mA/V for four different radial positions. A zoom is shown for the region
where the potential is negative.

the fit. Another interesting point is that there is no important difference in the

χ2
red when α is a free parameter, calculated by the linear model, or a pre-calculated

constant. For this reason, the calculation performed in the next analysis used the

pre-calculated value for the α parameter.

Although the fit does not reach the desired value of χ2
red = 1, it is necessary

take into account that the plasma conditions fluctuate during the analyzed time.

Furthermore, the model used is phenomenological and intended for constant con-

ditions and a large number of points with larger uncertainties. These aspects are

fulfilled in the subsequent analysis where the work is focused. An important point

is the fact that for the pre-calculated value of α the value of χ2
red ranges 2 − 4,

then, the uncertainties of the fitted parameters can be underestimated. To take

into account this fact the uncertainties of the fitted parameters can be corrected

by:

σcorreted = σ
√
χ2
red (4.11)
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where σ is the uncertainty obtained from the fit.

4.2 Triple probe techique analysis

To test the triple probe technique, it was used the five pin probe in the configura-

tion shown in Figure 4.11, in which it was used two triple probe arrays. In order to

estimate the radial profile, the radial position of the probe was changed between

the discharges.

Figure 4.11: Pin configuration used to study the triple probe technique. The
shadowed triangles show the spatial distribution of the two triple probe arrays using
a common floating potential pin Vf . Besides, for each array the pins with the
potentials positive V + and negative V − of the bias source. The poloidal θ and
toroidal φ directions are shown.

It was discussed in the section 4.1 that the sheath expansion is an important

correction in the characteristic function of the probe. Therefore, as the electro-

static probe model is used to obtain the temperature formula for the triple probe

technique, the inclusion of the expansion sheath will give a more accurate calcu-
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lation of the temperature. This is a topic discussed in the references [65, 66, 67].

To estimate the temperature with the sheath expansion correction, the equation

3.39 is used. But in this case with the characteristic function given by equation

4.9 , where it was included the α parameter.

1
2 =

−1 + α
(
V + − Vf

)
+ exp

(
e
V + − Vf
kT

)

−1 + α
(
V + − Vf

)
+ exp

(
e
V + − Vf
kT

)
+ 1− α

(
V − − Vf

)
− exp

(
e
V − − Vf
kT

)
(4.12)

Doing some algebra we get

1
2 =

1 + α
(
V + − Vf

)
exp

(
−eV

+ − Vf
kT

)
− exp

(
−eV

+ − Vf
kT

)

α
(
V + − V −

)
exp

(
−eV

+ − Vf
kT

)
+ 1−

���
���

���
�:0

exp
(
e
V − − V +

kT

) (4.13)

where the canceled term is due to the fact that the applied potential with the

source VBias, given by

VBias = V − − V + (4.14)

is of the order of −6kT/e, then we have

exp
(
−eV

+ − Vf
kT

)
= 1

2 + α

(
V +

2 + V −

2 − 2Vf
)

exp
(
−eV

+ − Vf
kT

)
(4.15)

.

Now, solving for the temperature we get the next expression

kT

e
= V + − Vf

ln
(
2− α

(
V + + V − − 2Vf

)) (4.16)

Using the equation 4.14 to get V − in terms of V + and the applied potential, we

can rewrite the expression 4.16 in the form:
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kT

e
= V + − Vf

ln
(
2− α

(
VBias + 2(V + − Vf )

)) (4.17)

From the result 4.17 it can be seen that we have an additional term that depends

on α. Is important note that the last expression do not needs the measurement of

the signal V −, but the value of the bias potential to perform the calculation.

4

6

8

10

12

14

16

18

r=18.0cm #33904r=18.0cm #33904r=18.0cm #33904

4

5

6

7

8

9

10

r=18.5cm #33906r=18.5cm #33906r=18.5cm #33906

3

4

5

6

7

8

9

r=19.0cm #33908r=19.0cm #33908r=19.0cm #33908

60 70 80 90
2

3

4

5

6

7

8

r=19.25cm #33905r=19.25cm #33905r=19.25cm #33905

60 70 80 90
2

3

4

5

6

7

8

r=19.5cm #33903r=19.5cm #33903r=19.5cm #33903

60 70 80 90
2

3

4

5

6

7

r=20.0cm #33911r=20.0cm #33911r=20.0cm #33911

Te
m

pe
ra

tu
re

(e
V

)

time (ms)

Figure 4.12: Temperature fluctuation measured with the triple probe arrays as a
function of time for different radial positions. In green and blue the temperature
for the probes 1 and 2 respectively. In light colors the measure for the method
without shield expansion correction given by equation 3.43 and in dark colors for
the corrected method given by equation 4.17.

To compare the temperature value with and without correction, it was calcu-

lated using the normal expression 3.43 and the corrected one given by the equation

4.17. The results are shown in Figure 4.12. For the two arrays, it was used a mov-

ing average of 250 points before and 250 points after each point, which implies a

total time of 250µs around the point because the acquisition rate is 2MS/s. It can

be seen that the temperature decreases with the increase of the radial position of

the probe, as expected. The correction makes the temperature values lower with

respect to the non corrected ones. An important point is the difference in the

51



values when the probe is in the plasma column edge (r ∼18cm). This difference

could be due to a little discrepancy in the gain of the amplification circuits or the

shape of the pins in the Langmuir probe wich could change the plasma sheath size.

4.3 Comparation of temperature measurements

To compare the temperature measurement methods, it was used the five pin probe

in the configuration shown in Figure 4.13. The technique of sweep potential and

the technique of triple probe were implemented at the same radial position, in the

equatorial region of the plasma column. For the triple probe, it was used a moving

average of 250 points before and 250 points after, this implies a total time of 250µs

around.

Figure 4.13: Pin configuration for comparison between triple probe and sweep
potential techniques. The shadowed triangle shows the spatial distribution of the
triple probe array, with the measures of floating potential Vf , the positive potential
V + and the negative potential V − of the source. The VR pin is where the sweep
potential is set and the Isat is the pin where saturation current is measured. Also,
the directions poloidal θ and toroidal φ are shown.

In the case of the sweep potential it was used a senoidal signal with frequency

around 1.5kHz. For the calculation of each point it were used four complete cycles,

this is, four rising ramps and four falling ramps. The result for the temperature as

a function of time is shown in Figure 4.14, where, for two points the experimental

data and the characteristic curve fit are presented.
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Figure 4.14: Temperature as a function of time using the potential sweep tech-
nique. Two points are selected to show the characteristic curve obtained around
those times. The fitted functions are shown as red lines

The temperature was calculated using the triple probe technique and voltage

sweep technique, for a set of discharges where the probe was put at different radial

positions. The results of the measurements of the temperature as a function of time

for some discharges are presented in Figure 4.15. The temperature was calculated

for the triple probe with and without the correction due to the α parameter. It

is interesting how the correction has an important effect inside the plasma, as it

can be seen for the radial position 17.75 cm. Another relevant item is that, in

the sweep potential, the standard deviations of the measurements increases as the

probe gets inside the plasma.

Using the results obtained for several discharges where the 5 pin probe is set at

different radial positions, the characteristic profile for the tokamak border is ob-

tained. As expected due to the position of the last closed surface of magnetic field,

for positions inside 18cm, the temperature has increases faster. It is interesting to

note that the correction that was used in the triple probe technique, decreases the

temperature values in the plasma. Those corrected results are more compatible

with the potential sweep technique. Moreover, the overestimation of the temper-

ature with the non corrected triple probe technique can be as high as 50%. The

overestimation of the temperature value could be a relevant error when the Er×B
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Figure 4.15: Comparison of the temperature calculated for some discharges at
different radial positions. In blue the calculation using the triple probe. In red the
calculation using the triple probe, but with the sheath expansion correction. In
green dots the temperature calculated with the sweep potential technique.

velocity in the poloidal direction is calculated. Because in this case the correction

in the plasma potential at different radial positions due to the temperature, will be

overestimated by the presence of larger gradient near the plasma border ∼ 18cm.
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Figure 4.16: The temperature as a function of the radial position for the complete
set of the discharges. The measures for the potential sweep, triple probe and its
correction due to the α parameter are presented.
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4.4 Comparison for Vf and Is

The potential sweep technique not only gives the local electronic temperature, T ,

but also the floating potential, Vf , and the ion saturation current, Is. Those mea-

surements also were obtained by the pin at Vf : a pin with no external polarization.

Also, the direct measurement of the saturation current is obtained by the pin that

is measuring Is: a pin biased at a fixed potential of −120V . Therefore, those

values can be compared to see if the fit for the potential sweep is in agree with

another measurement techniques.

To compare the direct measurement of the saturation current and the mea-

surement done by the potential sweep, we have to take into account that in the

four parameter function, the Is constant is not the saturation current measured

directly whit a biased pin. When the pin is biased with a negative potential V the

equation 4.9 is

I = −Is [1− α (V − Vf )] (4.18)

as the exponential part becomes negligible. Then, for the potential sweep

technique we really calculate the value of I given by the equation 4.18, using the

value of the bias potential applied to the pin in the direct measurement.

In the Figure 4.17 are shown the measurements for Vf and Is as a function of

time for different radial positions. As it can be seen, floating potential measure-

ments are compatible between the potential sweep and the direct measurement.

Both have a similar behavior of increase or decrease at the same time, this is clear

from the radial position 17.75 cm.

The mean values of Vf and Is were calculated for each time interval of 50 ms

to 100 ms. When there were more than one discharge for one radial position, the

mean value of measurements were calculated. The result are the radial profiles of

the saturation current and floating potential that are shown in Figure 4.18. In the

case of Vf , the values given by the potential sweep technique are systematically a

little bit more negative than the values measured directly by the floating pin. In

spite of that, the two methods recovers the same behavior, showing an increase
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Figure 4.17: Is and Vf as function of time for three different radial positions with
direct measurements (light blue line) and with potential sweep technique (green
dots).

toward positive potentials in the radial positions inside the plasma column.
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Figure 4.18: Is and Vf as a function of the radial position of direct measurement
(blue dots) and potential sweep (green dots). Those values are calculated as the
mean for the time interval 50 ms to 100 ms.

For the ion saturation current, it can be seen that the technique of potential

sweep gives values compatibles with the direct measurement, but the two sets

have the same tendency to increase the density inside the plasma column. The

obtained profile agrees with the expectation because the saturation current has a

proportional relation to the density, and for the tokamak there is a rapid increase
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of the density in the plasma edge due to confinement. This confinement produces

a pronounced gradient of the density inside the plasma column.
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Chapter 5

Extreme events analysis

The existence of coherent structures has been reported in several devices of plasma

confinement [33]. Those structures are detected as extreme events in the measured

signals of the saturation current, which is proportional to the plasma density.

Therefore, the term extreme event will be used for the peaks in the saturation

current signal and the term coherent structure will be used for the structures that

propagates in the plasma and are assumed as the cause of the peaks.

Those coherent structures has been related with the turbulent transport of par-

ticles as shown in the Ref. [40]. It is generally accepted that coherent structures

are created in the plasma column and then propagates in the radial direction.

Those structures propagate with a drift velocity of E×B, where E is the electrid

field inside the coherent structure. This drift velocity causes that coherent struc-

tures leave the plasma column, propagate across the SOL and finally arrive the

vessel wall. This propagation of coherent structures can explain an important part

of the anomalous transport. The fact that the drift velocity is compatible with the

E×B indicates that an internal dipole is present in the coherent structure. The

existence of a coherent structure with higher density that the surrounding plasma

and moving in the outside radial direction indicates a particle transport. This

topic has been the focus of several works which are reviewed in ref. [3]. However,

if the structures comes from the plasma column they will have a higher temper-

ature and this can contribute to the energy transport. The study of this topic

has been barely done and more information about this and other characteristic of
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coherent structures is needed.

Therefore, in this chapter are presented the analysis of coherent structures in

the TCABR edge and SOL using the Langmuir probes. First, are presented the

statistical behavior that is characteristic of this phenomena and a brief study of the

extreme events shape. Then, the conditional analysis is used to obtain information

about temperature, floating potential and saturation current when those structures

cross the electrostatic probes. To find the temperature the conditional analysis is

applied to the signals acquired using the triple probe and the potential sweep

techniques. To perform the studies presented in this chapter the main diagnostic

was the five pin probe, that allows a detailed turbulence characterization for a

poloidal-toroidal plane. A radial rake probe was also used to determine the radial

extension of the extreme events.

5.1 Procedure to select the extreme events

The signal of the ion saturation current Is, which is related to the density as

shown in the section 3.1.2, has a series of pronounced spikes as it can be seen in

the Figure 5.1. Those signals has been normalized by the standard deviation σ

and subtracting the mean value:

Inorms = Is− < Is >

σ
(5.1)
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Figure 5.1: Signal for the saturation current with a zoom in the lower graphic. The
blue squares indicate the spikes selected as extreme events. The red line shows the
level of 2.5 standard deviations above the mean value that was chosen as a criterion
to identify the extreme events.

In the same figure a piece of 50µs of the signal is plotted, where the shape of

the spikes becomes more clear. This show that those spikes have a quick rising

and then a more slow dropping of the IS value. To select the spikes that are

considered extreme events, we chose those which the amplitude is at least 2.5

standard deviations above the mean. This trigger value is shown as a red line in

the zoom of the Is.

5.2 PDF, skewness and kurtossis of the signals

A characteristic feature of the extreme events is that the probability density func-

tion (PDF) for the Is is a non Gaussian one. To estimate those PDFs the data were

normalized in terms of their mean and standard deviations. Then, the histograms

were calculated with 200 bins and the counts were normalized by the maximum

count of each histogram. In the case where we had two discharges with the probe

in the same radial position, the plotted curve is the mean of the two discharges.

The PDFs for the saturation current and the floating potential are shown in Figure

5.2. We can see the well known fact that the saturation current, which is related

to the density, has a clear deviation from the Gaussian PDF. This deviation is
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only slightly less pronounced for radial positions toward the center of the plasma

column. Meanwhile, for the floating potential the shape of the PDF is similar to

the Gaussian PDF for all radial positions.
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σ (V) σ (mA)

Figure 5.2: PDF for normalized Is and Vf for different radial positions. The
number of events is normalized for the max count. The magenta dashed line is the
the Gaussian PDF with standard deviation σ = 1 and mean zero.

To characterize the PDF shape, the third and fourth moments known as skew-

ness and kurtosis are calculated for the data sets. The result is shown in Figure 5.3

for different radial positions. For the Vf , the skewness and kurtosis values are ap-

proximated with those of the Gaussian distribution, skewness=3 and kurtosis=0.

For the Is the values of the two statistical moments increase as increases the radial

position. Those behaviors are related to the increase in the positive tail due to the

presence of events with amplitudes several times the standard deviation, above the

mean value. From this observations, we can conclude that the extreme events are

more important for radial positions far from the plasma column.
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Figure 5.3: Skewness and kurtosis for the saturation current for several discharges
at different radial positions.

5.3 Time and amplitude characteristics of the

extreme events

As it can be seen in the zoom in Figure 5.1, there are peaks with amplitude several

standard deviations above the mean, the so-called extreme events. Those extreme

events are related to the detection of coherent structures discussed in the chapter 2,

for this reason the term extreme events will be used to refer at those signal peaks.

Then the extreme events are assumed to be caused by the pass of a coherent

structure across the probe. We can see in the zoom in the Figure 5.1, that the

extreme events seem to have a common shape, a quick rise and a relatively slow fall.

To obtain a mean shape of those events, we used the conditional average method

[7] that consists in the following procedure: get all the maxima of the extreme

events and around this maxima are collected a given number of points. For our

study we use 70 points, that represent 35µs around the detection time. When we

use all the events in the saturation current signal we get a set of different shapes,

as shown in Figure 5.4. Finally, the mean value of all the events is calculated and

the extreme events mean profile is obtained. This is shown as a black line in the

Figure 5.4. This conditional average method is widely used in the study of extreme

events in plasma turbulence, see for example ref. [41]. As a result of this method

we get a more clear behavior of the extreme events: A symmetric shape for radial
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positions near the plasma column edge as can be seen for r = 17.75, and more

asymmetric shape for radial positions in the SOL, where a slowly fall is presented

and becomes more clear as the radial position increases. Another interesting fact

is that the peaks are lower as the radial position increases, indicating a decrease

in the density.
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Figure 5.4: Plot of some individual events and in thick black line the correspondent
mean profile using all the events in the discharge. The calculations are shown for
three radial positions. The three graphics are at the same scale.

To characterize some aspects of the extreme events shape in a phenomenological

way, the next model is proposed:

I =


A exp

(
∆t
τr

)
+B if ∆t < 0

A exp
(
−
[
∆t
τf

]γ)
+B if ∆t ≥ 0

(5.2)

where the parameter B represents the background amplitude, A the amplitude

of the peaks, τr the rise time constant, τf the fall time constant and γ a shape

parameter that is used to better adjust the shape of the fall, that is usually slightly

different than a simple exponential. In Figure 5.5 is shown the fit of this model

for the extreme events mean shape at different radial positions .

In the upper graphics of Figure 5.5 the results are presented using the raw data of

the saturation current. In this case, the extreme events amplitude increases for the
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Figure 5.5: Fit of the phenomenological model of equation 5.2 and experimental
data for different radial positions. In the upper graphics the result of the conditional
average with the raw data and in the lower graphics the result when the saturation
current is normalized in terms of the standard deviation

positions near the plasma column, and decreases for positions far from the plasma

column. This effect is due to the lower densities outside the plasma column. It

is consistent with the widely accepted model that coherent structures comes from

the internal part of the plasma column in the case of tokamak or at least from

regions with a higher densities for. This model implies that coherent structures

can transport particles from internal regions of the plasma column, explaining

part of the measurements of anomalous transport. When the function 5.2 is fitted

to the extreme event mean shape at several radial positions, we get the results

plotted in Figure 5.5. In the lower graphics of Figure 5.5, are presented the results

with the saturation current normalized in terms of the standard deviation. When

the data is normalized, it can be seen that for radial position near the plasma

column, the ratio of the amplitude of the peak in term of standard deviation is

less, compared with the amplitude of the peaks as the radial position increases.

This behavior indicates that the extreme events are more relevant with respect to

the background as the radial position increases. This indicates that in general the

coherent structures are more dense that the surrounding plasma at radial positions
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far from the plasma column. The fitted parameters are shown for several radial

positions in the Figure 5.6. In this case the fit has been performed with the raw

data of the saturation current.

The background amplitude, B, in Figure 5.6 is proportional to the plasma

density without the perturbations and the background level decreases as we go

outside the plasma. The extreme event shows a diminution of the density when the

coherent structures is detected away from the plasma column. The parameters of

extreme events amplitude A, and background B, are calculated without normalize

the data. In the part b) of the figure are plotted the parameters that involve

the time behavior. The parameters related to the characteristic rise and fall time

scales τr and τr, show the fact that the extreme event becomes more asymmetric as

the radial position increases: the extreme events rises quickly indicating a sharper

frontal edge of the coherent structure, then, the extreme event has an slow fall

indicating a density tail. This behavior can be explained if the structure that

crosses the probe has a drop shape consistent with the calculations shown in Ref.

[35] and reproduced in the chapter about transport in Figure 2.4. Taking into

account that, if the parameter γ is 1 the function is a common exponential, we

can see from Figure 5.6.c that the extreme events fall is exponential near the

plasma edge and then the fall deviates from the exponential as the radial position

increases. This implies an increase in the asymmetry of the coherent structure

shape, indicating a mode dense frontal region and a lower dense tail.

Another interesting information, is how many extreme events occur in the

selected time interval for different radial positions. As it was commented before,

to select a peak as an extreme event a trigger value is fixed and if the amplitude

of the event is above this value, the event is selected. Therefore, is calculated the

number of event as a function of the trigger value κ, which represent the number

of the standard deviations. The result is plotted as blue dots in Figure 5.7 for a

signal at r = 18.25cm. To fit the obtained results, the exponential function

Nb = A exp
(
κ

B

)
(5.3)

is used to for the data and the parameter A is taken as the number of extreme
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events for the time interval. An example of the fitted function is plotted in Figure

5.7 as a red line.
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Figure 5.7: The number of selected extreme events in 50ms, Nb as a function of
the trigger value in amount of standard deviations above the mean, and the fit for
the exponential function given by equation 5.3.

The Is measured with the five pin probe, is used to calculate the number of

events as a function of the radial position using the previous method. Also, the

data from a rake probe used in the work of ref. [17] with 8 pins distributed radially

and configured in IS mode, is used to calculate the number of events as a function

of the radial positions. The results are show in the Figure 5.8. The two data
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sets seems to have a compatible behavior. It is important to note that the 5 pin

probe and the rake probe have different orientations: the 5 pin probe is place in

the poloidal-toroidal plane with it pins oriented in the radial (horizontal) direction,

while, the rake probe is placed the radial-toroidal plane with its pins in the poloidal

(vertical) direction. Therefore, the pins in the five pin probe measure the mean

in the radial direction along the 4mm of the pin length. While, the rake probe

measure the mean in the poloidal direction along the 4mm of the pin length. It is

interesting that the quantity of extreme events diminish near the plasma column

and becomes an almost stable number for positions larger than approximately 19

cm. This behavior could be due to the return of the structures in the plasma

for distances near the border that gives different lifetimes, as is shown from the

Li-BES (Lithium Beam Emission Spectroscopy) analysis in the ASDEX tokamak

[68].
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Figure 5.8: The number of extreme events Nb as a function of the radial position.

5.4 Conditional analysis for the extreme events

The conditional analysis is performed for several discharges. In those discharges

the five pin probe is set in diverse configurations to perform measurements in the

poloidal-toroidal plane to see the dependence of the extreme events characteristics

in the poloidal direction. Besides, a rake probe is used to perform some measure-
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ments in the radial-toroidal plane to see the extreme event characteristics in the

radial direction. In the toroidal direction, the characteristic length of the structures

related with the extreme events are of the order of meters as shown in Ref. [38].

Therefore, in the toroidal direction, due to the size of the probes and the kind of

measurements done, there are no relevant information obtained. The conditional

analysis is performed on the signals in the time interval between 50 ms and 100

ms. This interval corresponds to the region where the macroscopic parameters of

the plasma column such as the plasma current and density are almost constants.

The Nb extreme events detected in the Is signal are used as reference to analyze

the saturation current, floating potential, electron density, plasma potential and

the electron temperature. Meanwhile, in the temperature measurement are used

the triple probe and the potential sweep techniques.

5.4.1 Coherent structures poloidal propagation

The first configuration used is shown in Figure 5.9. In this case all five pins are

set to measure Is to see the behavior of coherent structures in the plane perpen-

dicular to the radial direction. This allows the study of the coherent structures

propagation in the poloidal direction.

Figure 5.9: Five pin probe configuration using all pins to measure saturation
current.
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Figure 5.10: Conditional analysis the five saturation currents when the reference
is taken in the signals I1

s and I3
s . The measurement is perform with the probe at

the radial position 19.5 cm

To perform the conditional analysis, the events in each of the saturation cur-

rents can be used as the reference. In the Figure 5.10 are presented the results

when the origins of the reference events are selected in pins 1 and 3, this is, the

signals I1
s of I3

s respectively. An interesting observation is that the maximum of

the peaks show a delay with respect to the reference pin, in this case up to 1µs.

With this delay time and the distance of 1cm between the probes we get an appar-

ent projection velocity in the poloidal direction of the order of 10 km/s consistent

in order of magnitude with the measures reported in [41]. One important remark

is that this calculation does not mean the poloidal velocity. As shown in [42]

the coherent structure has an elongated and tilt structure with a combination of

poloidal and radial velocities. Therefore, from this measurement we can obtain

and erroneous value of the magnitude and direction for the structure velocity. This

topic will be discussed more deeply in the next section.
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Figure 5.11: Conditional analysis for pins 1, 2, and 3 in the 5-pin probe. In each
row a different pin is used for reference. The probe is placed at 19.5 cm

In the Figure 5.11 is presented the conditional analysis for the pins 1, 2, and

3 aligned in the poloidal direction. In each row a different pin is taken as the

reference for the conditional analysis. The results of the analysis for pins 1, 2 and

3 is in the columns 1, 2 and 3 respectively. An important point is the symmetry of

the coherent structure in the poloidal direction, as can be seen when the the middle

pin (pin 2) is taken as reference. When the reference is taken in the extreme pins (1

and 3) we can see again this symmetry in the poloidal direction. The fact that the

amplitude decreases as the pin of measure is more distant in the poloidal direction

from the reference indicates that the poloidal size of the coherent structure is of the

order of two times the poloidal size of the probe. Then, as the distance between

the more distant pins 1 and 3 is ∼ 1 cm, the structure size is about 2 cm.

5.4.2 Coherent structures radial propagation

Using the rake probe in the configuration shown in Figure 5.12, using pins in

saturation current configuration at different radial position, the measure of the

coherent structures propagation projection in the radial direction is possible.
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Figure 5.12: Rake probe configuration using all pins in the line A to measure
saturation current.
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Figure 5.13: Conditional analysis as a function of time and the radial position
for the saturation current using the rake probe to analyze coherent structures in
the radial direction. The analysis is shown taking as reference 3 pins in different
radial positions: 17.5 cm, 19.0 cm and 20.0 cm. The reference pin is marked with a
magenta plus symbol. The value of the saturation current show in a color scale is
normalized in term of the standard deviation.

In Figure 5.13 are shown the results of the conditional analysis for the eight pins

of the rake. In each graph a pin at different radial positions is taken as reference.

In this case the results are shown for reference in 17.5 cm, 19.0 cm and 20.0 cm.

It can be seen that the extreme events decay more quickly for positions near the

plasma edge, producing a more concentrated peak. This result is compatible with

the obtained for the 5-pin probe at different radial positions, as can be seen in
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Figure 5.5. Since the results are normalized in term of standard deviations, it can

be seen how the extreme events are more intense with respect to the background

for radial positions far from the plasma edge. It is, the maximum value at 17.75

cm is about 3 standard deviations. Instead, at 20 cm the maximum amplitude is

around 4 standard deviations. From the result when the reference is set at 20.0

cm, we can inferred the structure apparent size in the radial direction. Therefore,

this structure seems to have a size of about 2 cm, similar to the value obtained for

the poloidal direction.

It is interesting to note that, if the reference for the conditional analysis is taken

at 20.0 cm coherent structures are detected first in the inward radial positions. This

is, the coherent structure begin to appears in the probe at 19.5 cm when time is

-1.5 µs, indicating a radial propagation in the outward direction. On the other

side, when the reference is taken at 17.5 cm coherent structures begin to appears

at 18 cm when time is -2 µs. Therefore, the conditional analysis indicates that the

structure is propagating radially inward. When the the reference is taken at 19 cm

the movement seems to be radially outward. This behavior can be explained if the

structure is tilt in the radial direction. To see this, in the Figure 5.14 is presented

the model for an structure tilt with an angle β, propagating with velocity Vb and

detected by the pins P1 and P2 separated a distance d. Suppose the structure be

detected by the two pins with a delay ∆t, then, the apparent velocity Va has a

magnitude which is calculated as

Va = d

∆t (5.4)

On the other hand, the real distance def traveled by coherent structures is related

to the distance d by

d = def
cosα (5.5)

Then, the apparent velocity using the result of equation 5.5 in 5.4 is

Va = def
∆t cosα = Vb

cosα (5.6)
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Therefore, the calculation of the velocity using just the delay between the

detection of coherent structures in two pins, is incomplete if the tilt angle θ is

unknown. Even more, if the angle α > π/2 the velocity can be calculated with the

direction reversed. This effect can explain the results in the TCABR tokamak as

show in Figure 5.13.

Figure 5.14: Model used to explain the error in the measurements for the velocity
using the delay time when the structure is tilt an angle θ.

The model of the tilt structure is used in the data obtained in the HELIMAK

machine where this is tilt is shown and it is discussed in the Ref. [69]. In the

Figure 5.15, is shown the difference between the real velocity calculated using the

2D data obtained by a grid of probes and the velocity calculated using the delay

time between the detection in two pins. The results are presented for the radial

and poloidal directions.

Figure 5.15: Radial and poloidal Velocities of coherent structures calculated using
a 2D data, compared with the velocity calculated using the delay between the peak
detection in two pins. The data was obtained in the HELIMAK [70].
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5.4.3 Coherent structures temperature from triple probe

and potential sweep methods

The conditional analysis is used in the signals obtained with the the five pins

probe in the configuration shown in Figure 5.16. From this conditional analysis is

obtained information about the electron temperature, saturation current, floating

potential, plasma potential and electron density. The times of reference for the

conditional analysis are the times when extreme events are detected in the pin Is.

The temperature was calculated using the triple probe and the potential sweep

techniques and a comparison is done.

Figure 5.16: Pin configuration for comparison between triple probe and sweep
potential techniques. The shadowed triangle shows the spatial distribution of the
triple probe array with the pins to measure the floating potential Vf , the positinve
potential V + and the negative potential V − of the bias source. The VR pin is
where the sweep potential is set and the Isat is the pin where saturation current is
measured. Also, the directions poloidal θ and toroidal φ are shown.

The extreme events in the ion saturation current and the reference time in the

signals used to calculate the temperature with the triple probe technique are show

in Figure 5.17. Inn the raw signals can not be observed any special behavior at the

times when the extreme events are detected. Therefore, the conditional analysis

is used to obtain information about the temperature.

For the triple probe technique the conditional analysis is calculated in the

following way: around each maximum of each extreme event, we collect Mb points

backward and forward. In the case of our analysis Mb was chosen as 40 points,

that gives a time ∆t of ±20µs. Taking the data around each extreme event for

the signals Vf and V +, the temperature profile was calculated for each extreme

event. With the set of Nb temperature profiles, the mean one was calculated,

producing a mean extreme event temperature profile and the results are shown in
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Figure 5.17: Signals as function of time for a short time interval of 0.1 ms. For
the Is, the extreme events peaks in red squares are shown. The red line correspond
to the threshold at INorms = 2.5 (2.5 standard deviations above the mean value) and
the light blue boxes the instant of occurrence of the extreme events in other signals.
The temperature was calculated using the expression taking into account the sheath
expansion.

Figure 5.18. For the triple probe technique, we have a temperature fall before

the extreme event peak and an abrupt rise at the exact moment of the extreme

event. The temperature fall is more accentuated for radial positions near the

plasma edge. This behavior is not present in the measurement of the potential

sweep as we will see. This effect could be due to the fact that the triple probe

measure is performed by three pins at different spatial positions. Therefore, the

measurement is perturbed by the internal structure of the coherent structure.

This kind of signal was also obtained in ref. [71], where measurements of the

coherent structure temperature were presented using the triple probe technique

and erroneously analyzed as a real temperature fall in the coherent structure.

To see this effect clearly, the five pin probe was set in the configuration shown

in Figure 5.19. In this configuration three floating potentials and two saturation

currents were used to study the spatial structure of the floating potential when

coherent structures are detected.
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Figure 5.18: Conditional mean for the temperature measured with triple probe
technique for different radial positions. The conditional average method was used
for these calculations.

Figure 5.19: Configuration of the LP5p to analyze the spatial structure of the
coherent structure via conditional analysis.

The conditional analysis was used taking as a reference the signal of I1
s , the

result is shown in the Figure 5.20. We can see that when there is a peak in the

pin of I2
s , the shape of the fluctuation potential measured in the other pins are

different between them, an indication of an internal potential structure of the

coherent structure. This potential structure has a poloidal size of the same order

of the 5-pin probe size, thereby the measurements with triple probe take different

parts of this internal dipole. This fact destroys the assumption that the three pins

are in an almost uniform plasma region, which is one of the main hypothesis used

to deduce the equation for the triple probe technique.

For the potential sweep technique, again the signal in the saturation current

pin is used as the reference for the other signals. In Figure 5.21 are presented the

signals for the saturation current, in this case the maximum of the extreme events

are marked as red dots. Also, are presented the signal for the potential sweep Vr
and the sweep current Ir. It is interesting to note how the current increases quickly
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Figure 5.20: Conditional analysis of the Vf signals at different poloidal positions,
taking as reference the I1

s pin.

for potentials above the 0V, showing the exponential behavior of the current due

to the increase in the collection of electrons by the probe. On the contrary, the

currents are low when the potential is negative, as it was expected by the limited

mobility of the ions.

To apply the conditional analysis to the potential sweep technique, we take

the signal of IR and VR around the extreme events to get an array of Nb rows and

2Mb + 1 columns for each signal. Then, we used the n-th column of the arrays of

IR and VR to get a set of Nb. Those points are used to fit the probe characteristic

function given by equation 4.9. where the α parameter is the fixed value given by

the mean value as discussed in section 4.1 . From the fit of the function are obtain

the temperature, the floating potential and the saturation current. An example of

this fit is shown in Figure 5.22, where the upper figure presents the result of the fit

taking all the points in the complete interval from 50 ms to 100 ms. In the bottom

side if the figure there were used only the points obtained in the extreme events for

the conditional analysis at different times around the peak detection. The negative

values corresponding to times before the peak detection (which correspond to the

time zero) and the positive values correspond to times after the detection of the

peak. It is interesting that, at the moment of the peak the saturation current

increases to it maximum value, it will produce a peak in the saturation current fit
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Figure 5.21: Signals as function of time for a short time interval of 1 ms. For
the Is, the extreme events peaks are marked with red squares. The red line is the
σ = 2.5 and the light blue boxes the instant of occurrence of the extreme event in
other signals.

parameter in the reference time 0µs. It is important to note that the uncertainties

of the points increases due to the diminution of the number of points used in the

fit, in this case Nb: one point for each detected extreme event. This issue is the

reason to select as the fit method, the one in which the shield expansion factor

(the α parameter) is fixed. Because it reduces the number of parameters to fit.

Furthermore, as was show in the section 4.1 this method to fit the function gives

results compatibles with the obtained when all four parameters are free. However,

with lower uncertainties in the fitted parameters.

−10 0 10
2

4

6

8

10

r = 18.50 cm

−10 0 10

r = 19.00 cm

−10 0 10

r = 19.50 cm

−10 0 10

r = 20.00 cm

∆t (µs)

#33947∪33955

∆t (µs)

#33949

∆t (µs)

#33948

∆t (µs)

#33956

T
(e

V
)

Figure 5.23: The conditional mean for the temperature measured using the po-
tential sweep technique and in light colors the temperature calculated before using
the triple probe technique. The conditional mean is presented for different radial
positions.
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Figure 5.22: Experimental data and fitted function for the characteristic curve of
the electrostatic probe using the potential sweep technique. The probe is at 19.75
cm, this is 1.75 cm outside the plasma column. In the upper panel is presented the
data for all the time interval, that goes from 50 ms to 100 ms. In the bottom panels
the data correspond only to the extreme event, in this case the data for all extreme
events at -5 µs, and -1.5 µs before the extreme event peak, at the moment of the
extreme event peak (0 µs), at 5 µs, and 2.5 µs after the extreme event peak.

Finally, the result of the conditional analysis is a set of 2Mb + 1 values of the

parameters. This is, we get the mean profile for the temperature, saturation cur-

rent and floating potential. The temperature profiles obtained using triple probe

and potential sweep are shown in Figure 5.23. The most important fact is that

there is a pronounced peak of temperature when we have the maximum of the

extreme event intensity, indicating that coherent structures have a temperature

above the surrounding medium. This temperature peak decreases as the radial

position increases, indicating a cooling of the coherent structure as it goes away

from the plasma column. When we compare the triple probe and potential sweep

techniques it is found that the maximum of the temperature peak is compatible be-

tween the two techniques. However, the negative peak in the temperature observed

with the triple probe is not present in the case of the potential sweep, indicating

a problem with the triple probe technique measurement that is related with the

spatial distributions of the used pins. It is interesting that the temperature peak

at, least in the θ−r plane is synchronous with the density peak. Similar result was

also obtained in the simulations presented in Ref. [50], where conditional analysis
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was performed in the data obtained using numerical simulations. The existence

of this temperature peak indicates an energy transport caused by the propagation

of the coherent structure associated with the extreme event, as it moves from the

plasma column to the SOL and even to the chamber wall.

In the Figure 5.24 is shown maximum coherent structure temperature value

for different radial positions, obtained using the triple probe and potential sweep

methods. Besides, the mean value of the background is presented. To calculate

the background value, the temperature values were selected for times outside the

extreme event mean time, this is, time values before -10µs and after 10µs. It can be

seen that measurements are compatible using the two methods. Therefore, despite

of the distortion in the mean profile in the triple probe measurement, the values of

the background and maximum and maximum temperature are compatibles for the

two methods. It is interesting to note that the difference between the temperature

if the peak and the surrounding media seems to decrease as the radial position

increases.

18.5 19.0 19.5 20.0

4

6

8

10

12
T max sweep

e

T bgrsweep
e

T max triple
e

T bgr triple
e

T
(e

V
)

Radial position (cm)

Figure 5.24: Maximum temperature values for the coherent structure (red) and
background plasma temperature (blue) at different radial positions. The solid lines
indicates the use of the triple probe technique and the dotted lines the use of the
triple probe technique.

5.4.4 Saturation current and floating potential analysis for

coherent structures

From the conditional analysis applied to the potential sweep we can also obtain

the mean profile in time for the Vf and Is. Furthermore, applying the conditional
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analysis to the signals of Is and Vf obtained in the pins shown in Figure 5.16,

we can obtain a mean profile in a direct way to compares with the results of the

potential sweep. The resulting profiles of this analysis and the profiles obtained via

potential sweep for the Is signals are shown in Figure 5.25. As it can be seen, the

results obtained using the potential sweep technique and the results of the direct

measurement of the saturation current are compatible. The increase in the mean

time of the extreme events that was observed in the results presented in Section

5.3 is also obtained.
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Figure 5.25: The conditional mean for the saturation current using the data
from potential sweep technique and direct measurement in light color. The con-
ditional mean was calculated for different radial positions but the distance between
the probes did not change.

In Figure 5.26 it is presented the results for the mean profile of the VF using

conditional analysis, obtained by the direct measurement and by the potential

sweep technique. As the pins are in different positions with respect to the reference

probe, that corresponds to different parts of the coherent structure, the obtained

mean profiles have different shapes as it was shown in Figure 5.20. The pin that

was used for the potential sweep, detect a sharper peak of potential, instead,

the pin at floating potential detect an abrupt change in the polarity. There is a

decrease in the value of the potential peak as the radial positions are far from

the plasma column edge, decreasing from 6V in the innermost position to 1V at

the outermost position. Another interesting aspect is that the mean life of the

coherent structure is around 15µs and this time interval is almost the same for

the perturbations observed in the temperature, saturation current and fluctuating

potential.
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Figure 5.26: The conditional mean for the floating potential using the data from
the potential sweep technique with uncertainties and direct measurement in light
colors. The conditional mean was calculated for different radial positions.

5.4.5 Plasma potential and density of coherent structures

As we can calculate the conditional analysis for the saturation current, floating

potential and temperature, it is possible calculate the conditional analysis of the

density n and plasma potential Vp for coherent structures. To perform those cal-

culations we used the equations presented in the section 3.1.2. The expressions

are repeated here: equation 3.32 for the plasma potential

Vf = Vp − ln
(
Iis
Ies

)
Te (3.32)

and equation 3.34 for the density

n = Is
eAi

(2πmi

kTe

)1/2
(3.34)

with ln(Isi/Ise) ≈ 3. The result of these calculations are shown in Figure 5.27.

As expected, there is a density peak at the moment of the coherent structure

detection. Those peaks are more sharper for radial positions near the plasma

border, but it is not possible conclude if this is an effect of the coherent structure

size or the coherent structure velocity: if the velocity is higher but the size is

the same, the measured effect in the probe position will be a sharper peak in

time. For the plasma potential there is only a peak when the coherent structure

is measured, this is different from the fluctuation potential shape, indicating the

importance of the temperature contribution to the potential measurement. In both
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measurements, the uncertainties are mainly dominated by the uncertainties of the

temperature calculation.
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Figure 5.27: The conditional mean for the density and plasma potential. The
conditional mean was calculated for different radial positions.
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Chapter 6

Conclusions and perspectives

As shown in the previous chapters, almost all the necessary tools to study the effect

of temperature fluctuations on the turbulence properties in the plasma edge region

of TCABR were developed and results in stationary standard plasma conditions

were obtained. As part of the project, were constructed a set of amplifier circuits,

with the output designed to couple the impedance of coaxial cable used to connect

the measurement circuit (localized as close as possible to the probes) up to the

ADCs (localized ∼5m far from the probes). Also, were developed codes to analyze

data from the triple probe technique and the sweep potential technique. The

codes to perform the conditional analysis used to characterize the bursts were also

developed in the work.

The inclusion of the sheath expansion effect introduced by the α parameter

enhances the quality of the data fit for the sweep potential technique. However, it

was shown that when α is a free parameter, there is an increase in the correlation

between the ion saturation current Is and the electron temperature Te. Therefore,

to avoid this issue, the mean value of α was adopted to perform the fit. A good

correspondence between the average of Is and the fluctuating potential Vf , mea-

sured with the sweep potential technique and by direct measurements is obtained.

These measured values for Is and Vf and Te are in agreement with the expected

values for the plasma column edge region. Due to the improvement on the probe

characteristic curve fit, considering the sheath expansion effect, the equation to

obtain the fluctuating temperature from the tripe probe method was also revised
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and a new equation including this effect was derived. The recalculated equation

gives a temperature estimations whose average value is compatible with those ob-

tained by the potential sweep technique. We found that uncorrected triple probe

calculation overestimates the temperature, this overestimation inside the plasma

column can be up to 50%.

For the extreme events in TCABR we observed as it was expected, that the

ion saturation current has non-Gaussian PDFs, related to the presence of coher-

ent structures. However, the PDF for the Vf is more similar to the Gaussian

distribution.

Furthermore, extreme events were studied using the conditional analysis to

select peaks in the ion saturation current measurements. From this analysis was

found that the order of the size for coherent structures in TCABR is around 2 cm

in radial and poloidal directions. The use of conditional analysis shows that the

fluctuating potential is modified by coherent structures. It is interesting to note

that although coherent structures affect the fluctuating potential, the PDF is a

Gaussian distribution.

Data of the ion saturation current from a rake probe were used to measure the

characteristics of coherent structures in the radial direction. Those data indicate

that coherent structures, associated with extreme events, are tilted in the poloidal

direction. This result is compatible with the obtained in HELIMAK, where a 2D

grid of probes is used. The tilt of structures implies that the simple and widely

used method to estimate the coherent structure velocity: measuring the delay

time of events detection and dividing the distance between probes in this time, is

erroneous. In order to obtain real velocities values it is needed to know the tilt

angle. The analysis of the coherent structures temperature shows a discrepancy

between the triple probe and potential sweep techniques. We propose that this

discrepancy is due to the spatial configuration of the triple probe, as the three pins

are placed at different parts of the internal structure of the coherent structure.

Using the temperature results obtained from the potential sweep technique, it

was possible to calculate the plasma potential and density using the temperature

correction.
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After the measurement methods be tested, there are aspects that have to be

improved. One aspect that has to be improved is the isolated circuit for current

measurements in the triple probe configuration, because the noise level is still high.

This circuit allows the measurement of the ion saturation current using the triple

probe configuration. Another subject of interest, is test geometrical configura-

tions that could reduce the distortion in the measures of the local temperature

measurements by the triple probe method due to the spatial structure of coherent

structures.

Further studies can now be done in order to better characterize the coherent

structures effects in TCABR plasmas. The new measurements could have the aim

to calculate transport of particles and energy due to those structures with the

corrections due to the electron temperature. Another possibility is to focus on the

study of the changes in the coherent structures behavior when the bias electrode is

applied. The main motivation for these studies is that previous works have shown

that the electrode improves the confinement conditions in TCABR. Another inter-

esting scenario to perform temperature measurements is when the MHD activity is

present. In this condition, the effect of the edge plasma modulation by the MHD

activity on effect on the propagation and structure of coherent structures could be

performed. All the analysis proposed for these further works will use the hardware

and software tools developed in this doctoral work.
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Appendix A

Measurement circuits for the

probes

It was improved and constructed a set of circuits with the aim to measure in

several configurations of triple probe and potential sweep. The improvement of

the circuits has the objective to reduce the effect of the transmission lines between

the measurement place and the digitizer device. There are basically three kinds of

circuits.

• Potential meter: This circuit can be used to measure the fluctuating po-

tential Vf , the sweep potential VR and the positive bias potential for the

triple probe technique V+. The circuit has three stages as shown in fig-

ure A.1. The first part is a voltage divider with gain 1/60. Then we have a

pre-amplification part with high impedance input. Finally a second amplifier

stage with low impedance output to couple with the coaxial cable impedance.

The circuit is besides a low-pass filter with cut frequency ∼ 700kHz.
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Figure A.1: Potential measurement circuit with the three stages.

• Current meter: This circuit is shown in the figure A.1. The circuit has as

objective the measurement of the ion saturation current Is and the current

of the potential sweep. The circuit has three stages. First, we have a shunt

resistor where the current produces a voltage, following the Ohm’s law this

voltage is V = IR. The second stage is a high impedance input operational

amplifier. The third stage is a low impedance output is implemented to

couple with the coaxial cable impedance.The second and third stages act as

a low-pass filter with cut frequency about 700kHz.

Figure A.2: Current measurement circuit with the three stages.

The frequency response of the circuits used to get the experimental data are

shown in figure A.3. It is important to note that for frequencies below 250kHz the
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gain and phase shift are very similar to the different circuits.

10
3

10
4

10
5

10
6

−40

−35

−30

−25

−20

−15

−10

−5

0

5
Gain

Frequency(Hz)

d
B

10
3

10
4

10
5

10
6

20

40

60

80

100

120

140

160

180
Phase

Frequency(Hz)

D
e
g

re
e
s

Figure A.3: Mean response in frequency for phase and gain for the complet set of
12 measurement circuits.

• Isolated meter of current: This circuit is still in development, because

the results have been not satisfactory in the performed measurements. The

circuit has two stages isolated electrically, a necessary condition to measure

the current in the triple probe technique. In the figure A.4 the part a)

corresponds to the input circuit and the b) part the output circuit. The

input part (remarked with the square) begins with the shunt resistor as the

case of the non-isolated current meter. The potential in the shunt resistor

is measured using an operational amplifier in the differential configuration.

The signal is amplified and then applied to an IL388 optocoupler that will

isolate the input and output circuits leaving the input fluctuating. In the

b) part of the figure the output circuit is shown. This circuit performs an
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amplification and a DC level correction. Finally the output is amplified and

the circuit is coupled to the coaxial cable impedance.

Figure A.4: Circuit for the measurement of the isolated current in the triple pin
probe configuration. The circuits of a) and b) are electrically isolated by the IL388
optocoupler.
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Appendix B

Gauss-Marquart

The Gauss-Marquardt (or Levenberg-Marquart) method [72] is a widely used

method for fitting when the parameters have a nonlinear functional dependence,

as is the case for the probe current-voltage relation. To explain the algorithm we

will follow [73]. Suppose we have for certain values of xi a set of experimental data

of yi with uncertainties σi. From the measurement {(xi, yi, σi), i = 1, ..., N} we

need to adjust the function g that depends of {aν , ν = 1, ..., µ} parameters. Now,

to get the best values for the parameters ai is needed to minimize the function

Q = [y− g(a)]t V−1 [y− g(a)] (B.1)

where y is a vector with the N measurements of y and g(a) is the vector

with the fitted function gi = g(xi; a) where a is the vector with the µ parameters.

V−1 is the inverse of the variance-covariance matrix of the data where the diagonal

elements are the variances σ2
i and the terms out of the diagonal are the covariances

of the measurements. As g(xi; a) is not linear, the equations

∂Q

∂aν

∣∣∣∣∣
â

= 0

do not form a linear system. Therefore, one way to solve this problem is to

expand the function g(xi; a) in a Taylor series around .a vector of values a′ that

is supposed near to the value of â. Then, expanding till first order
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g(xi; â) ≈ g(xi; a′) +
µ∑
ν=1

∂g(xi; a)
∂aν

∣∣∣∣∣
a′

(aν − a′ν) (B.2)

now defining

∆gi = g(xi; â)− g(xi; a′) (B.3)

Xiν = ∂g(xi; a)
∂aν

∣∣∣∣∣
â′

(B.4)

∆aν = âν − a′ν (B.5)

we can express B.2 in the form

∆gi = (X∆a)i (B.6)

supposing that the result to first order is approximated, then the equation B.1

can be approximated by

Qa = [y− g(a′)−X∆a]t V−1 [y− g(a′)−X∆a] (B.7)

defining

y′ = y− g(a′) (B.8)

we have finally

Qa = [y′ −X∆a]t V−1 [y′ −X∆a] (B.9)

Now, an analytic minimization of the equation B.9 is possible because

∂Qa

∂aν

∣∣∣∣∣
∆̂a

= 0

is a linear system of equations and can be solved as
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∆̂a =
(
Mλ

)−1
XtV−1y′ (B.10)

where the Mλ is defined as

Mλ
νη = (1 + λδην)(XtV−1X)ην . (B.11)

The value of λ is selected to be small, of the order of 10−3. With the value of

∆̂a calculated, we improve our approximation of the a′ values using the relation

a′′ = a′ + ∆̂a (B.12)

Now with this a′′ it is possible to calculate Q(a′′). The next step is to calculate

the difference

∆Q = Q(a′′)−Q(a′) (B.13)

if ∆Q is positive the λ parameter increases typically 10 times. With the new

value of λ, are recalculated the values of the equations B.11, B.10 and B.13 until the

value of ∆Q becomes negative. When this happens the λ parameter decreases typ-

ically 10 times. By doing it iteratively few times, at the end, we obtain the vector

of parameters â ≈ an with n the number of iterations until the convergence pa-

rameter is reached. When the algorithm has been finished the variance-covariance

matrix for the parameters has to be calculated in the next way

V(â) ≈
(
XtV−1X

)−1

where X is given by equation B.4.
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