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Turbulence is one of the key problems of classical physics, and it has been the object of
intense research in the last decades in a large spectrum of problems involving fluids, plas-
mas, and waves. In order to review some advances in theoretical and experimental inves-
tigations on turbulence a mini-symposium on this subject was organized in the Dynamics
Days South America 2010 Conference. The main goal of this mini-symposium was to pres-
ent recent developments in both fundamental aspects and dynamical analysis of turbu-
lence in nonlinear waves and fusion plasmas. In this paper we present a summary of the
works presented at this mini-symposium. Among the questions to be addressed were
the onset and control of turbulence and spatio-temporal chaos.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In a oft-quoted remark, Richard Feynman called turbulence the most important unsolved problem of classical physics [1].
In fact a great deal of work and effort have been put over the past decades into obtaining a comprehensive description of the
onset and development of turbulence in fluids, plasmas and waves [2–4]. Fluid turbulence plays an important role in the
time evolution of many systems ranging from the planetary and stellar atmospheres to the boundary layers on airplanes
and cars. Plasma turbulence became increasingly important in magnetic fusion research, where turbulence at the plasma
edge is believed to play a key role for the transport of energy and particles [5].

These wide ranging applications turns difficult to obtain a precise definition of the physical meaning of turbulence. A
rough definition is that a turbulent flow is disordered in both space and time scales, but this is far from being a mathematical
definition. Moreover, there is a huge difference between one-, two- and three-dimensional turbulent flows, between fully-
developed turbulence (where a statistical analysis is acceptable) and weak turbulence (where coherent structures dominate
the flow). Instead of a precise definition of turbulence, we cite two common traits of turbulent systems [6]: (i) a turbulent
flow must be unpredictable, i.e. a small uncertainty at a given initial time will amplify so as to render impossible a precise
deterministic prediction of its evolution; (ii) it should be able to mix transported quantities much more rapidly than if
elementary processes (such as molecular diffusion in fluids) were involved.
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One of the paramount questions in turbulence research is the onset of turbulence, i.e. where is the transition from a lam-
inar flow to a turbulent flow, a question already posed in the work of Osborne Reynolds, as far back as in 1883 [7]. The mech-
anism underlying the onset of turbulence received attention of outstanding physicists and mathematicians like Heisenberg
[8], Landau [9] and Kolmogorov [10]. A fresh approach to this subject was given by Ruelle and Takens in a seminal paper on
the role low-dimensional chaos plays in the onset of turbulence [11]. The question of the onset of turbulence has been re-
cently studied by many authors [12–14].

Given the widespread interest in both the phenomenology and theoretical ideas in the description of turbulence in fluids,
plasmas and waves, we proposed a mini-symposium in the Dynamics Days South America 2010 Conference on this general
theme. We have received contributions on some aspects of experimental and computational research on turbulence in a vari-
ety of physically relevant systems. The goal of this paper is to summarize the works presented in this mini-symposium.

In the second section we present results of electrostatic turbulence in fusion plasmas experimentally obtained from dis-
charges in the Brazilian Tokamak TCABR. The experimental results are used for estimating parameters of a three-wave model
presenting mode conversion. A theoretical approach to the onset of wave turbulence is greated in Sections 3 and 4 to a sys-
tem of three nonlinearly interacting and resonant waves and a forced drift wave, respectively. In both cases, the onset of tur-
bulence is related to dynamical changes in a low-dimensional chaotic attractor of the system.

Besides the topics outlined above, the mini-symposium talk by Prof. Phil Morrison, entitled ‘‘The Hamiltonian and Action
Principle Formulations of Continua,’’ must be mentioned. Because the problem of turbulence is so difficult, many reduced
models have been constructed and studied. If one removes the dissipation and driving terms from such models, then it
was proffered in this talk that the resulting reduced model should be Hamiltonian. To this end a general discussion of Ham-
iltonian and action principle formulations of continua, e.g. fluid and plasma models, was given [15,16]. Two procedures were
discussed for constructing such formulations for reduced models: a procedure based on Hamilton’s principle of mechanics,
adapted for continua [17,18], and a procedure based on Poisson brackets that embody the appropriate symmetries sought in
a model and a choice of energy function. This amounts to a Lie algebra realization with an appropriate algebra of invariants in
terms of the observables of the model. Transformations between the formulations obtained by the two procedures were de-
scribed in general and the particular examples of ideal magnetohydrodynamics [19] and Braginskii’s fluid model with gyro-
viscosity [20,21] were discussed. Because the first procedure has been documented in the publications cited, it will not be
further described here. The second procedure will be published elsewhere.
2. Electrostatic turbulence in the TCABR tokamak

Tokamaks are toroidal systems of magnetic confinement of plasmas, and are promising candidates to be the core of a fu-
ture nuclear fusion reactor [22]. The usefulness of the tokamak as a fusion reactor relies, however, on its capability to main-
tain a sufficiently hot plasma during a time interval large enough to yield energy conversion. One of the factors conspiring
against this ultimate goal is the loss of energy and particles through transport processes not yet fully understood, notwith-
standing controlled. Electrostatic turbulence is the main cause of the anomalous particle and energy transport at the toka-
mak plasma edge [23]. Many experimental results suggest that electrostatic turbulence can be driven by Mirnov oscillations
[24,25]. In particular, this influence has been observed in the Brazilian tokamak TCABR (Tokamak Chauffage Alfvén Brésilien),
where the turbulent spectrum of the floating potential at the plasma edge has been observed to be affected by a magnetic
mode created by an ergodic magnetic limiter [26–28].

In the TCABR the magnetic and electrostatic frequency spectra present a peculiar partial superposition, thus enhancing
coupling, normally small, between these two kinds of fluctuations. Moreover, in some TCABR regimes the MHD activity in-
creases at different instants of time during the discharge, and reaches high amplitudes with a narrow wave-number spec-
trum and a well-defined peak on the Mirnov frequency (�13 kHz) [29–31,31]. During this high MHD activity the
electrostatic turbulence synchronizes with the MHD activity at the Mirnov frequency and its broadband wave-number spec-
tra is greatly modified [31].

The hydrogen circular plasma of the TCABR tokamak has major radius R = 61 cm and minor radius a = 18 cm, with a max-
imum plasma current of 100 kA, with duration 100 ms, and toroidal magnetic field B0 = 1.1 T. At the plasma edge the electron
plasma density is ne � 3 � 1018 m�3, and the electron temperature is Te � 10 eV [29]. The floating potential has been mea-
sured in the plasma edge and scrape-off layer regions (0.9 < r/a < 1.2) by a set of movable Langmuir probes. Magnetic fluc-
tuations were measured by Mirnov coils located at r/a = 1.08.

In order to illustrate the coupling between magnetic and electrostatic oscillations we show in Fig. 1(a) the spectrogram of
floating potential fluctuations, where the oscillation frequencies (in kHz) are plotted against the discharge duration, the cor-
responding power spectral densities S// being plotted in a color scale. In Fig. 1(b) we depict the corresponding spectrogram
for Mirnov oscillations, where the periods of magnetic activity are associated with peaks of the power spectral density SBB. It
is clearly seen a spontaneous increase of electrostatic activity following an increase in the magnetic activity, starting just
before 40 ms with a dominant frequency of �13 kHz which extends up to 60 ms, with at least two overtones corresponding
to higher harmonics of the dominant frequency. This clearly indicates a coupling between electrostatic and magnetic fluc-
tuations and, moreover, a frequency synchronization between them.

In Fig. 1(c) and (d) we show the time series of the floating potential (normalized by its standard deviation) for two time
intervals where the MHD activity is low and high, respectively. Comparing these series with the corresponding data for the
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Fig. 1. Spectral fluctuation data obtained in the TCABR tokamak (shot 18362) with an electrostatic probe located at r = 17.0 cm. (a) Spectrogram of
electrostatic potential fluctuations; (b) Spectrogram of Mirnov oscillations; (c) and (d) are normalized floating potential fluctuations at different time
intervals; (e) and (f) are the corresponding normalized Mirnov oscillations.
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magnetic (Mirnov) fluctuations, depicted in Fig. 1(e) and (f), respectively, we observe that, after the intense MHD activity sets
in, the Mirnov oscillations are almost sinusoidal, with a well defined frequency of �13 kHz, the corresponding potential fluc-
tuations having a strong harmonic content at that frequency. The strong distortion in the latter signal corresponds to the
overtones observed in the spectrogram of Fig. 1(a).

A standard way to detect and quantify mode coupling is the use of bicoherence, which is well-suited to deal with non-
linear wave couplings through triplets, using higher-order statistics [32–34]. The bispectrum is the Fourier transform of the
third-order cumulant-generating function. Let /(f) be the Fourier transform of the time signal at the mode frequency f. The
bicoherence is defined as [34]
b2ðf1; f2Þ ¼
jh/ðf1Þ/ðf2Þ/�ðf3Þij2

hj/ðf1Þ/ðf2Þj2ihj/ðf3Þj2i
; ð1Þ
such that f3 = f1 + f2, and measures of the amount of nonlinear coupling between the modes /(fi) in a wave triplet with fre-
quencies f1, f2, and f3 satisfying the resonance condition f3 = f1 + f2. If the three modes are phase-coupled, there follows that
b2(f1, f2) is nearly the unity; whereas it is almost zero if the modes are barely or no coupled at all. In Fig. 2(a) and (b) we plot
the summed bicoherence for the floating potential without and with magnetic (Mirnov) oscillations S///ðf Þ ¼

P0b2ðf1; f2Þ,
where the primed sum means that the summation is performed over all frequencies such that f = f1, f2, or f1 + f2. It is clearly
seen that the second case indeed represents a mode coupling between fluctuations involving the 13 kHz mode.

Since the bicoherence results indicate a coupling between electrostatic and magnetic oscillations as a nonlinear triplet
interaction, we modelled this situation by using a three-wave model with quadratic nonlinearities [30]
d/1

dt
þ ix1/1 ¼ K1

2;3/
�
2/
�
3 þ c1/1; ð2Þ

d/2

dt
þ ix2/2 ¼ K2

3;1/
�
3/
�
1 þ c2/2; ð3Þ

d/3

dt
þ ix3/3 ¼ K3

1;2/
�
1/
�
2 þ c3/3; ð4Þ
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Fig. 2. (a) and (b): summed bicoherence for the floating potential fluctuations measured in TCABR, corresponding to the time series depicted in Fig. 1(c) and
(d), respectively. (c) and (d): summed bicoherence for a theoretical model of three-wave coupling.
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where /j ¼ /kj
and xj ¼ xkj

are the amplitudes and frequencies of three modes retained in a pseudo-spectral decomposition
of the Hasegawa–Mima equation, satisfying the following resonant conditions k1 + k2 + k3 = 0 and xk1 þxk2 þxk3 � 0. We
model the effect of the Mirnov oscillations by a driving term exp (±iXt), where X is the dominant Mirnov oscillations fre-
quency, added to the three-mode Eqs. (2)–(4). We also included an incoherent noise in order to mimic the stochastic content
present in the electrostatic oscillations measured in TCABR [30].

In the numerical simulations using Eqs. (2)–(4) with driving and noise, we used parameter values compatible with the
edge region of the tokamak TCABR. The electron temperature was taken to be Te = 10 eV; and the density gradient is
jrn0j/no = 5 m�1, from which we estimated the ion cyclotron frequency to be 1.05 � 108 Hz and the length scale is thus
qs � 10�3 m. We estimated the coupling coefficients in Eqs. (2)–(4) as K1

2;3 ¼ �1:15� 10�2;K2
3;1 ¼ 5:30� 10�3, and

K3
1;2 ¼ 6:00� 10�4. Moreover, the time-periodic driving term representing the influence of magnetic oscillations has a nor-

malized frequency X = 9.0 � 10�4. In Fig. 2(c) and (d) we show the summed bicoherence of the variable standing for the elec-
trostatic potential in our theoretical model, without and with magnetic coupling, and the results are both qualitatively and
quantitatively similar to the experimental ones.
3. Onset of turbulence in a three-wave model

One of the paradigm models in wave turbulence is the resonant nonlinear three-wave interaction model, where the com-
plex amplitudes Aa, a = 1, 2, 3, describe three dispersive monochromatic waves propagating along the x-direction [36,40–43].
Their wave numbers and frequencies satisfy matching conditions for the triplet: k3 = k1 + k2 and Xk3 ¼ Xk1 �Xk2 � d, where
d is a small frequency mismatch. Each wave has a constant group velocity vga ¼ dXka=dka, given by its linear dispersion rela-
tion, and we assume that vg2 > vg1 > vg3. This describes a scenario where A1(x, t) is the parent wave amplitude, A2(x, t) and
A3(x, t) being the faster and slower daughter waves, respectively [35]. For example, in non-magnetized plasmas A1 can be
a transverse electromagnetic wave, A2 an ion-acoustic wave, and A3 is a Langmuir wave (anti-Stokes mode) [36].

If the nonlinearities present in the wave interactions are sufficiently weak, only quadratic terms in the wave amplitudes
need to be considered. The resulting model is thus [37]
@A1

@t
þ vg1

@A1

@x
¼ A2A3 þ m1A1 þ D

@2A1

@x2 ; ð5Þ

@A2

@t
þ vg2

@A2

@x
¼ �A1A�3 þ m2A2; ð6Þ

@A3

@t
þ vg3

@A3

@x
¼ idA3 � A1A�2 þ m3A3; ð7Þ
where D is a diffusion coefficient, and we add growth and decay rates by the coefficients m1 > 0 and m2,3 < 0, which represent
energy injection (through wave 1) and dissipation (through waves 2 and 3), respectively.
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In the following we will choose parameters as vg1 = 0.0, vg2 = 1.0, vg3 = �1.0, d = 0.1, and D = 1.0, and the rates ma, a = 1, 2, 3,
are the parameters to be varied. We integrate Eqs. (5)–(7) using a pseudo-spectral method using a fixed number N of modes
in Fourier space (for a one-dimensional box of length L with periodic boundary conditions) [38]
Fig. 3.
m2,3 = �
Aaðx; tÞ ¼
XN=2

n¼�ðN=2Þþ1

jaa;nðtÞj exp i½ja;nxþ /a;nðtÞ�
� �

; ða ¼ 1;2;3Þ; ð8Þ
where aa,n(t) is the time-dependent Fourier coefficient corresponding to the mode number ja,n = 2pn/L, and whose evolution
is governed by a system of 6N coupled ordinary differential equations, since the mode amplitudes themselves are complex
variables. We used a box length L = 2p/j1,1 = 2p/0.89. The initial conditions are chosen as F1,0(0) = 0.500 + i0.000, and
F2,±1(0) = 0.001 + i0.001, where Fa,n(t) = aa,n(t) exp (i/a,n(t)), all the other modes being set to zero.

A representative set of results is depicted in Fig. 3, where spatio-temporal plots are drawn for different dynamical regimes
observed, and in the third axis we plotted the real daughter wave amplitude jA2j using a color code. In Fig. 3(a) the show a flat
profile in real space evolving periodically in time characterizing a spatially homogeneous state with non-chaotic dynamics.
The modes with ja,0 – 0 and ja,i = 0, (i – 0), correspond to such a spatially homogeneous state. It turns out that the spatially
homogeneous states lie on a 3-dimensional invariant subspaceM of the full phase space of the system. This homogeneous
manifold is invariant in the sense that, once an initial condition is placed there, the ensuing trajectory remains inM for all
further times under the dynamics generated by the ja,0 modes. Accordingly, the spatially inhomogeneous modes ja,n are
related to directions transversal toM. When the dissipation is increased, the dynamics of the homogeneous state becomes
chaotic ([Fig. 3(b)]) and, for a further increase spatial modes eventually become excited ([Fig. 3(c)]). As a consequence the
wave energy is distributed along temporal and spatial modes, provoking inhomogeneous spatial patterns.

In order to characterize quantitatively the loss of transversal stability of the homogeneous manifold and the ensuing exci-
tation of spatial modes we resort to the Kuramoto complex order parameter [39]
zaðtÞ ¼ RaðtÞ expðiUaðtÞÞ �
1
N

XN=2

n¼�ðN=2Þþ1

expðiua;nðtÞÞ; ð9Þ
where Ra(t) and Ua(t), a = 1, 2, 3, are the amplitude and angle, respectively, of a centroid phase vector for a one-dimensional
lattice of Fourier modes with periodic boundary conditions. The phase angle is computed as
ua;nðtÞ ¼ arctan
Im½Aa;nðtÞ�
Re½Aa;nðtÞ�

� �
: ð10Þ
We compute the order parameter magnitude average Ra ¼ limT!1
1
T

R T
n¼0 RaðtÞdt, such that a spatially homogeneous state is

characterized by Ra ¼ 1, since there occurs a coherent superposition of the phase vectors with the same amplitude at each
time for all discrete positions in the reciprocal lattice. The lower is the value of Ra, the less the spatial coherence of the sys-
tem state. Accordingly the breakdown of the totally coherent state is a criterion for the appearance of spatial modes, what
follows the loss of transversal stability of the homogeneous manifold.

It is necessary that the dynamics in the homogeneous manifold be chaotic in order to provide a pump mechanism to feed
energy to the spatial modes. This can be seen in Fig. 4(a), where we plot the bifurcation diagram for jA1(1, t)j and in Fig. 4(b)
the average order parameter for the parent wave R1 as a function of the decay rate of the daughter waves m2,3. Within the
numerical accuracy the spatially homogeneous state is transversely stable for values of the decay rate higher than
mCR � �1.96, which is the value for which R1 ceases to be equal to the unity. The (purely temporal) dynamics in the homo-
geneous manifold can be either periodic or chaotic, as shown by Fig. 4(a): it starts as a period-1 orbit for small values of jm2,3j
Space–time plots of the real wave amplitude jA2j (also indicated by a color scale) when (a) m1 = 0.1, m2,3 = �1.0; (b) m1 = 0.1, m2,3 = �1.6; (c) m1 = 0.5,
4.0.
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Fig. 4. (a) Bifurcation diagram for jA1(1, t)j as a function of the decay rate jm2,3j. We denote by dashed lines three particular parameter values which
correspond to the cases from Fig. 3(a), (b) and (c). (b) Time-averaged order parameter for parent wave versus decay rate for T = 2105, after 104 transient
iterations.
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and undergoes a period-doubling cascade to chaotic bands which disappear due to a crisis and are followed by a period-3
window. The loss of transversal stability of the homogeneous manifold occurs just after a three-band chaotic attractor suffers
an internal crisis and merge into a single large chaotic orbit at mCR.
4. Onset of turbulence in a forced drift-wave model

As a representative example of a spatially extended dynamical system with two solution branches we consider the
damped and forced drift wave equation [44,45]
/t þ a/txx þ c/x þ f //x þ c/ ¼ �� sinðKx�XtÞ; ð11Þ
For magnetically confined fusion plasmas /(x, t) is the non-dimensional electric potential of a drift wave propagating along
the poloidal direction of a toroidal plasma, where the constants a, c, and f stand for plasma and wave parameters, and we
introduced a phenomenological linear damping term with coefficient c [46]. The effect of other possibly relevant modes
is represented by a time-periodic driving with amplitude �, wave number K and frequency X.

Eq. (11), for certain parameters values, displays a transition from pure temporal chaos without spatial mode excitation to
spatio-temporal chaos. This transition has been described in Refs. [47,45] as resulting from an interior crisis, whereby a cha-
otic attractor collides with a high-dimensional chaotic saddle. However, the intermittent behavior that follows from an inte-
rior crisis turns to be different from that observed in the numerical simulations. We found that the solutions wander in an
intermittent fashion between two non-overlapping states of distinct wave energies, whereas an interior crisis would yield an
intermittent alternation between overlapping states: one of which is the pre-critical attractor ‘‘ghost’’, and the other is the
post-critical attractor made available by the crisis. Since these states are non-overlapping, we propose that the observed
behavior is due not to an interior crisis but rather due to two-state on–off intermittency.

Since the x-coordinate is either an angle or can be a bounded variable, we suppose a Fourier expansion
/ðx; tÞ ¼
XN

n¼0

junðtÞjeijnx; ð12Þ
where /k(t) are time-dependent amplitudes and jn � 2pn/L in a box of length L = 2p and periodic boundary conditions.
Notice that the mode j0 = 0 is purely temporal, whereas ja = a = 1,2,3, . . .stand for the spatial modes. On substituting
(12) into (11), one obtains a system of N coupled ordinary differential equations, solved using a 12rd order Adams
predictor–corrector scheme. In the numerical simulations to be reported in this letter we used N = 128 modes, unless
stated otherwise, and we kept fixed the following parameters [46]: a = �0.28711, c = 1.0, f = �6.0, c = 0.1, K = 1.0, and
X = 0.65, such that � will be our control parameter. The initial conditions for the system of N coupled mode equations
are u(0) = 0.01, u1(0) = u2(0) = r1R(0,1), un(0) = r2 R(0,1), for n P 3, where r1 = 0.001, r2 = 10�5, and R(0,1) is a
pseudo-random number chosen within the interval [0,1] with uniform probability. We stress that these initial conditions
are different from those used in Ref. [46], where a solitary-wave-solution of the unperturbed case (� = 0,c = 0) was
chosen.

The possible solutions of the initial and boundary value problem defined by Eq. (11) can be best characterized by com-
puting the wave energy, defined as
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EðtÞ ¼ 1
2p

Z 2p

0

1
2

/2ðx; tÞ � a/2
x ðx; tÞ

� �
dx; ð13Þ
which turns to be an integral of motion for the unperturbed case. For the parameter values explored in this work the wave
dynamics is chaotic, but even so the energy difference is bounded [48,47].

As the parameter � is increased from zero, we have a steady state energy difference DE = E(t) � E(0) with a few peaks, and
asymptoting to a value about 0.05, until a first bifurcation value �‘ = 0.19955 is achieved [49]. For �‘ < � < �h = 0.20100 we
have alternation of energy values between two values, the former �0.05 lower branch and a �0.25 higher branch. Finally,
for � > �h the energy fluctuates about the higher branch value, never to return to the lower branch. The lower and upper
branches of the wave energy are two energy states for which, when �‘ < � < �h, there is intermittent behavior. These two
states can be represented, in the Fourier mode space, by different energy hypersurfaces we call A and B. For � < �‘ the state
A is stable with respect to transversal displacements from the energy hypersurface, whereas B is transversely unstable and
not reached by typical initial conditions.

Since a few temporal modes are excited in the state A, it corresponds to temporal chaos combined with regular (periodic)
spatial patterns. This is illustrated by the space–time plot depicted in Fig. 5(a), obtained for � < �‘, which displays a chaotic
time evolution with regular spatial behavior akin to a travelling wave solution. However, as the state B becomes transversely
stable, a large number of spatial modes are excited. A rather extreme example, considering � > �h, is shown in Fig. 5(b), for
which we see aperiodic behavior in both spatial and temporal scales (spatio-temporal chaos). For a small interval of time (ca.
25 pseudo-periods) some travelling waves, which appear due to the inductor term, are continuously created and destroyed.

In order to provide a quantitative characterization of the dynamics in space and time we can resort to Lyapunov exponent
computation in Fourier space. In this case, each Fourier mode in the discrete transform (12) can be considered a degree of
freedom, and the corresponding Lyapunov exponent is computed for the set of N wave amplitude equations un(t), with
n = 0,1,2, . . .N. The exponent related to n = 0 corresponds to the temporal dynamics, whereas the n P 1 case stands for spa-
tial degrees of freedom and can be used to detect spatial mode excitation [37].

Accordingly, in Fig. 6 we plot the time evolution of the 30 first Lyapunov exponents out of N = 128 modes corresponding
to the wave amplitudes in Eq. (12). The black and red curves stand for longitudinal and maximal transversal exponent,
respectively. When a given exponent decays with time as a power-law, it is considered zero when time tends to infinity;
and, if this decay is faster than a power law, the exponent goes to negative values. In the case � = 0.195 < �‘, only the Lyapu-
nov exponent related to the time (n = 0) asymptotes to a nonzero value [Fig. 6(a)], confirming our claim that only temporal
chaos is observed. The exponents corresponding to spatial modes are shown to decay in a roughly power-law (n = 1) and
even faster rates (for n P 2). Hence those spatial modes, if excited at all, can have at most periodic behavior (and a possible
Fig. 5. Space–time plots for the wave amplitude for (a) � = 0.1990 < �‘; (b) � = 0.2100 > �h.
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Fig. 6. The 30 largest Lyapunov exponents corresponding to modes in Fourier space for (a) � = 0.195; (b) � = 0.205.
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quasiperiodic one). By way of contrast, for � > �h a large number of the exponents for n – 0 do not vanish, hence many spatial
modes become chaotic [Fig. 6(b)]. This spatial mode excitation involving so many Fourier modes suggests the existence of a
strongly turbulent state.

5. Conclusions

In this paper we collected works presented at the mini-symposium on turbulence in fluids and plasmas, a part of the
Dynamics Days South America 2010 Conference, held in São José dos Campos, Brazil. The main focus of this symposium
was to show recent experimental and theoretical advances in turbulence occurring in waves and plasmas. The symposium
was opened by the lecture of Prof. Morrison on how one can use Hamiltonian and action principle methods to obtain fluid
and plasma models for the study of turbulence.

The work presented by I. L. Caldas (Section 2) dealt with the data analysis of experimental observation of coupling in the
electrostatic turbulence observed in TCABR tokamak plasma discharges with high MHD activity. The coupling was identified
through bispectral analysis involving electrostatic fluctuations driven by the MHD fluctuations. This phenomenon was also
modelled by a chaotic dynamical system based on three coherent nonlinearly coupled drift modes with incoherent noise and
a time-periodic driving at the MHD frequency. The inclusion of incoherent noise was used to reproduce both the linear and
nonlinear spectral characteristics of turbulence data without high MHD activity. The external time-periodic driving term was
introduced to reproduce spectral features observed during high MHD activity. The results of this model, using bicoherence
analysis, agree with the experimental observations.

The paper presented by R. L. Viana (Section 3) proposed a scenario for explaining the onset of spatio-temporal chaos in
spatially extended systems by the nonlinear excitation of spatial modes powered by the chaotic dynamics in a low-dimen-
sional and spatially homogeneous attractor. In mathematical terms, there must be an invariant subspace (embedded in the
system phase space) containing a chaotic attractor with pure temporal chaos, i.e. no spatial modes. Energy is pumped from
this chaotic state to excite inhomogeneous spatial modes. The onset of wave turbulence, or spatio-temporal chaos, occurs
when some unstable periodic orbit, embedded in the spatially homogeneous chaotic attractor, loses transversal stability
(with respect to the homogeneous subspace). The energy formerly confined in the temporally chaotic dynamics of the homo-
geneous state is thus imparted to the spatial modes excited after the loss of transversal stability.

The contribution presented by S. R. Lopes (Section 4) revealed the existence of two-state on–off intermittent behavior in the
damped and forced drift wave equation. The two states with respect to which the system oscillates are stationary solutions cor-
responding to different wave energies. In the language of (Fourier mode) phase space these states are embedded in two invari-
ant manifolds that become transversely unstable in the regime where two-state on–off intermittency sets in. The distribution of
laminar duration sizes is compatible with the similar phenomenon occurring in time only in the presence of noise, as shown by
the corresponding scaling laws, which present two regimes: a power-law scaling for small plateaus and an exponential (fat) tails
for large plateaus. In spatially extended systems like this the noisy effect is provided by the spatial modes excited by the per-
turbation. We show that this intermittency is a precursor of the onset of strong turbulence in the system.
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