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Introduction

Introduction

e there are many problems in physical chemistry and biology
involving the communication among individuals mediated by
the diffusion of some chemical in the medium

e this chemical is both released and absorbed by the individuals,
often depending on dynamical processes occuring within them

e the release, diffusion and absorption creates an effective
coupling among individuals that affects their dynamics

e in this work we explore the consequences of this basic idea
into models of non-locally coupled nonlinear oscillators

e coupling problems typically involve more than one timescale
(difficulties in the computer simulations)
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Ovarian cycles

e surge of luteinizing hormone from
the anterior pituitary

e LH luteinizes several follicles in the
ovary causing each to rupture and

. . Ovarian Cycle
release its effective ~ P
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e at the site of rupture a corpus Primary Veslcular Owilation  Corpus Degenerating
follicle follicle luteum corpus luteum
luteum forms and secretes ‘ .
Follicular Ovulation Luteal
h: Day 14) h:
progesterone Days 1 psase 10( > 1)5 zoP e 25 28
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e just after ovulation a new set of phase | phase phase

(c) Ovarian cycle

follicles begins to mature and
releases estrogen (ovarian steroid)

e estrogen primes the system for
another surge of LH

e cycle period = 28 days for humans
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Synchronization of ovarian cycles

J. Schank and M. McClintock, J. Theor. Biol. 157, 317 (1992)

e McClintock effect: women that live
together synchronize their ovarian
cycles

e the synchronization of ovarian
cycles is mediated by airborne
chemosignals called pheromones

e two distinct chemicals: one
advances and another delays the
phase of the ovarian cycle

e pheromones diffuse in the
atmosphere: there must be a
common air supply

=] 5 = = E

acy



Introduction Coupling model Synchronization Recurrences Clock cells Chaotic maps Conclusions

Chemotaxis of Dictyostelium

e chemotaxis: motion of an organism in
response to a chemical stimulus

e Dictyostelium: amoeabae (“slime mold")

e in absence of food about 10° cells release
signal molecules of chemoattractant cyclic
adenosine monophosphate (cAMP) in the
environment

e they can find other cells and move to
create clusters (releasing every 6 min
during periods reaching 5 to 6 hours after
starvation)
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Suprachiasmatic nucleus

e region of the brain (hypothalamus) responsible
for controlling circadian rhythms

e receives input from specialized photosensitive
ganglion cells in the retina

e maintains control by synchronizing their own
near-24-hour rhythms and control circadian
phenomena in local tissues

e it contains around 20,000 neurons (clock cells)

e collective rhythm possible because of frequency
synchronization induced by coupling among
clock cells

e coupling is mediated by a neurotransmitter
(GABA) diffusing through intercell medium
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Coupling model
Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995)

y . Q

dX/dt = F(X.)

e N pointlike oscillator cells located at 7, (j =1,2,--- N) in a
d-dimensional Euclidean space
e each oscillator has an internal dynamics governed by the flux
F(X, t), where X = (xy, x2, . ..XM)T in a M-dim. phase space
e the time evolution of each oscillator is affected by the local
concentration of a chemical A(r, t)
dX;
EL = F(X)) + 8(A(7, 1)
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Coupling model in the adiabatic limit
the concentration satisfies a inhomogeneous diffusion equation
DA N
_ 2 >z
e5r = A+ DVPA+ ; h(0)6(F — Fe)

7. coefficient of chemical degradation, D: diffusion coefficient
€ = 0: diffusion timescale much faster than oscillator period
concentration fast-relaxes to a stationary value

A(R) = o7 — Fi)h(0)

k=1
o(r) is the Green function of the diffusion equation

(n— DV?)o(F; —7) = 8(7))

chemical coupling in the adiabatic limit

dX +Z 7 — )z (h(0k)) .-



Coupling model

Types of chemical coupling

e linear coupling: g(h(Xk)) = AXy

future coupling: g(h(Xx)) = AF(Xx)

e nonlinear coupling: g(h(Xx)) = AH(Xy)

Green function for isotropic systems (r = [r; —r|)

exp(—yr), ifd=1,
o(r) = C 1 Ko(rr), if d =2,
exp(—7r) TR
S ifd=3
e inverse coupling length: v = \/n/D,

e C is determined from the normalization condition
[do(r) =1
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Phase oscillators with chemical coupling

for phase oscillators X — 8 and F — w

nonlinear coupling (extended Kuramoto model)
H—wJ+KZ r; — i) sin (6, — 0;)

for d = 1 the Green function is o(x; — x;) = e/l with

= 4/n/D (inverse coupling length), and normalization
constant determined by [ dxo(x) =1

one-dimensional lattice with periodic boundary conditions
!
normalization factor k() = 2 Z?’Zl et

;= Ze“[sm e = 0)) +sin (040 — 6))]..
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Frequency synchronization

C. Batista et al., Physica A 470, 236 (2017)

erturbed frequencies i ino: .
e el e frequency without coupling: wj,

——
ooos|- y = 0.0030 randomly chosen according to a

:zz zero-mean gaussian PDF g(w)
Lt y—100(1)45 e frequency after coupling: Q; = éj
O?J“ | "m“““‘f‘” | } ‘ e small y: nearly global coupling =

complete synchronization

04— . |

L | L
y = 0.0050

0.2

e intermediate ~: partial
synchronization

-0.2
-04

Aot e large v: nearly local coupling = no
synchronization
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Partial frequency synchronization

synchronization degree

1001

e N;: length of ith sync plateau

e N,: number of plateaus

0 e average plateau size:
(N) = (1/Np) 323, N
02 e sync degree: P = (N)/N
KR 508 e completely sync state: P =1
e completely non-sync state: P ~ 0
- e critical v for increasing K
W errONSED ] e small K: no sync for any
e global coupling (v = 0): sync after
e - K. =2/mg(0) = 0.08
SYNCHRONIZED Ji e local coupling (large «y): no sync,
I even with large K




Synchronization

Phase synchronization
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e equality of phases (stronger than

frequency sync)

complex order parameter

z(t) = R(t) fso(t) — Z (1)

completely synchronized state:
R =1, — small v (global)

non-synchronized state: R~ 0, —
intermediate vy

partially synchronized state:
0<R<1, — large v (local)
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Transition to phase synchronization

00075

00025

000015 5001 0.00010 000100 0010
UN

R: time-averaged order parameter magnitude
synchronization transition for a critical . (fixed K)
7. decreases with increasing lattice size N
thermodynamical limit (N — o0): . = 0.00025

coupling parameter plane: deep blue: no phase sync, red:

complete phase sync

Conclusions
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lattice sites

Recurrences

Spatial recurrence matrix

one-dimensional spatial pattern
with N sites: {x} g

spatial recurrence: two sites i and j
have the same height, up to some
precision €

spatial recurrence matrix: R; =1
if |x;i — xj| <€, and 0 otherwise

Ri = (I — x| — )

spatial recurrence plot is a
graphical representations of the
spatial recurrence matrix with
elements Rj;.
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Spatial recurrence plot

Phases at time t = 15000 o Frequencmamme( 15000
y=0.023 =0.023 . i
“prampratinim || ] e spatial recurrence plot: graphical
m representations of the spatial

recurrence matrix with elements R;;

o
1

characterizes the existence of
spatially homogeneous
(synchronized) states in phase and
frequency
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characterizes the existence of
spatially inhomogeneous states
(chimeras)
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Recurrence quantification analysis

[ Frequencies \ ]

L
0,002

L
0.004

0.006

recurrence rate: fraction of recurrent
points: RR = 7z >, ; Ry
determinism: fraction of points
belonging to diagonal structures

P(£): probability distribution function
of diagonal lengths

N
DET = ZE:Q eP(Z)
Zi#i Rij

laminarity: fraction of points
belonging to horizontal structures
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Synchronization of biological clock cells

model for coupled circadian clock cells in the SCN

each clock cell with its own period 7; ~ 24h (Gaussian
distribution)

Van der Pol-Kronauer oscillator describing the clock cell
dynamics

12 [ x;
X, = — J F(X;, t) =
"/ 7T<yj>’ (J7)

yj+e (xj — %xf’) + B(t) — Cex
24\
—(;) xj+ B(t)y; — Gy
Cx,y are coupling parameters

photic stimulation: B(t) = C (1 — m(x)) [I(£)]*/3
spatial average: (x) = (1/N) N, x;
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Phase and frequency of clock cells

e oscillator dynamics displays a limit
S ‘ ‘ ‘ cycle encircling the origin

(xk0 =0, yko = 0)

y
T f% 7 e geometrical phase
0
X t)—
| Ox(t) = arctan <M>
| Xk(t) — Xk0

e oscillator frequency and period

- 2r . 0k(T) — 0(0)
Tk T—oo T
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Synchronization of clock cells under constant darkness

D=0

. e protocol I: the system is evolved in
- : constant darkness (/ = 0)

e top: (a) distribution of periods of
SCN cells with v =1 for
Dy = 1.91 x 107! (red circles) and
7.64 x 1071 (open circles)

[ e (b) time series for the x and y
“ variables of one typical SCN cell
(dashed and full thin lines,

respectively) and mean field (x)

(full thick line)

e bottom: D, increased to
7.64 x 1071 (open circles)
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Synchronization of clock cells under dark-bright cycles

e protocol Il: the system experiences
dark-bright cycles of duration
At = 12h and constant light
intensity Iy = 1000

e top: (a) time series for the x

= variables of three SCN cells

g’ A selected out of a lattice with 10201

' cells with v =1 for
Dy =7.64 x 1073

e (b) power spectra of the response
of the three cells depicted in (a)




Introduction Coupling model Synchronization Recurrences Clock cells Chaotic maps Conclusions

Transition to period synchronization of clock cells

e top: dependence of the period
dispersion (black), order parameter
magnitude (blue) and
synchronization degree (red) with
the coupling strength

e D: critical coupling strength for
onset of period synchronization

e bottom: critical coupling strength
vs. exponent -y considering the
behavior of the period variance

(black) and synchronization degree
(red).
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Chemical coupling of chaotic maps

if the local dynamics is governed by a one-dimensional map
x > f(x) we have (future coupling)

,(hzl—(l—s x,,)+ez (J)).

non-locally coupled map lattice in one spatial dimension
(where N/ = (N —1)/2 for N odd)

xﬁll = (1-e)f ( ) Ze e [ (X,S' s)) +f (ngi+s)>] )

normalization condition
N N

o(|F =) =1= k() =2 e,
k=1 s=1

periodic boundary conditions: x( HEN) _ (i)
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Lyapunov spectrum

Lyapunov exponents of a coupled map lattice: Ax = In /A,
where {A,}p_, are the eigenvalues of the matrix

A 1/2n
A= lim (TTT,,) ,
where we define the ordered product of the jacobian matrices

. o ()
Thn=Tp1Tp—2... T1 Ty, T,(,U) OXnt1
8x,(,1)

for the chemical coupling in one spatial dimension

90— (49) s oo ) 5

k()

where rjj = ming [i — j + ¢N|
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Lyapunov spectrum of Bernoulli maps

e f(x) = Bx, mod 1, strongly
chaotic for 8 > 1

1 Lyapunov spectrum

M =Inp+In|(1—¢)+ by

€
k()
1o periodic boundary conditions

— jacobian matrices are
0 0 50 w circulant

ad —~m 2mkm
bk:2z:e7 cos N ,

m=1

=g
~
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Stability of a completely synchronized state

x,(,l) = x,(,2) =...= x,(,N) = x;: defines a synchronization

manifold S in the phase space

Lyapunov spectrum of the completely synchronized state

(1—6)—|— Ze ™ cos (27;\/7”)‘

Ay: Lyapunov exponent of the uncoupled map

}i:)\u—l—m

the completely synchronized state is transversely stable if
A5 <0, such that . < e < ¢, where

() (15gy) e () (38)
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Synchronization of Ulam maps

e Ulam map
f(x) =4x(1 —x), x €]0,1),
strongly chaotic (Ay = In2)

e completely synchronized
state is transversely stable if
ec <e<eg,

1, 3
Ec = T, =
04 L L L L L L L 04 PR NI I IR 2A e 2A,
0 0.05 0.1 0.15 02 70 0002 0004 0006 0008 001
b1 , by
A=1- A —1-

r(y)’ K ()



Conclusions

Conclusions

oscillator coupling mediated by a diffusing substance reduces,
in the one-dimensional case, to an exponentially decaying
(non-local) coupling (in the adiabatic limit)

it allows to pass from a global (all-to-all) to a local (laplacian)
coupling by varying a single parameter

frequency and phase synchronization were analyzed in terms
of the coupling parameter plane (strength vs. range)

transition to frequency and phase synchronization in terms of
both K and ~y

recurrence quantification analysis used to characterize phase
and frequency spatial patterns

Lyapunov spectrum can be obtained and it is possible to study
the transversal stability of the completely synchronized state
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Thank you very much

\lz,

N
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