Chaos in Many-Particle Systems

Thiago de Freitas Viscondi

Núcleo de Dinâmica e Fluidos
Departamento de Engenharia Mecânica
Escola Politécnica
Universidade de São Paulo

13/06/18

Molecular Dynamics: Definition

"...molecular dynamics simulation involves solving the classical many-body problem in contexts relevant to the study of matter at the atomistic level..."1

[^0]
Molecular Dynamics: Definition

"...molecular dynamics simulation involves solving the classical many-body problem in contexts relevant to the study of matter at the atomistic level....1
"Computer simulation generates information at the microscopic level ... and the conversion of this very detailed information into macroscopic terms ... is the province of statistical mechanics." ${ }^{2}$

[^1]
Interaction Potentials

- The Lennard-Jones potential is defined by

$$
u\left(r_{j, k}\right)=\left\{\begin{array}{l}
4 \varepsilon\left[\left(\frac{\sigma}{r_{j, k}}\right)^{12}-\left(\frac{\sigma}{r_{j, k}}\right)^{6}\right], \quad \text { for } r_{j, k}<r_{c} \tag{1}\\
0, \quad \text { for } r_{j, k} \geq r_{c}
\end{array}\right.
$$

where $r_{j, k}=\left|\vec{r}_{j}-\vec{r}_{k}\right|, \varepsilon$ is the interaction magnitude, and σ defines a length scale.

- By removing the attractive part of the Lennard-Jones potential, we obtain the soft-sphere potential:

Interaction Potentials

- The Lennard-Jones potential is defined by

$$
u\left(r_{j, k}\right)=\left\{\begin{array}{l}
4 \varepsilon\left[\left(\frac{\sigma}{r_{j, k}}\right)^{12}-\left(\frac{\sigma}{r_{j, k}}\right)^{6}\right], \quad \text { for } r_{j, k}<r_{c}, \tag{1}\\
0, \quad \text { for } r_{j, k} \geq r_{c}
\end{array}\right.
$$

where $r_{j, k}=\left|\vec{r}_{j}-\vec{r}_{k}\right|, \varepsilon$ is the interaction magnitude, and σ defines a length scale.

- By removing the attractive part of the Lennard-Jones potential, we obtain the soft-sphere potential:

$$
u\left(r_{j, k}\right)=\left\{\begin{array}{l}
4 \varepsilon\left[\left(\frac{\sigma}{r_{j, k}}\right)^{12}-\left(\frac{\sigma}{r_{j, k}}\right)^{6}\right]+\varepsilon, \quad \text { for } r_{j, k}<r_{c}, \tag{2}\\
0, \quad \text { for } r_{j, k} \geq r_{c}
\end{array}\right.
$$

for $r_{c}=2^{\frac{1}{6}} \sigma$.

Potential Sketch

Figure 1: Lennard-Jones (lower curve) and soft-sphere (upper curve) potentials in dimensionless molecular dynamics units. ${ }^{1}$
${ }^{1}$ D. C. Rapaport, The Art of Molecular Dynamics Simulation.

Perturbation

- Consider two identical simulations of N two-dimensional particles. At a chosen time t_{p}, the following perturbation is applied on every particle in one of the systems:

$$
\begin{equation*}
\vec{v}_{2, j}\left(t_{p}\right)=\vec{v}_{1, j}\left(t_{p}\right)+\varepsilon \vec{w}_{j}, \tag{3}
\end{equation*}
$$

where $\vec{v}_{1, j}$ is the velocity of the j-th particle in the original system, $\vec{v}_{2, j}$ is the corresponding velocity in the perturbed system, \vec{w}_{j} is a random unit vector, and ε is the perturbative parameter.

Criteria for Chaos

- Mean-square position deviation:

$$
\begin{equation*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle=\frac{1}{N} \sum_{j=1}^{N}\left(\vec{r}_{1, j}-\vec{r}_{2, j}\right)^{2}, \tag{4}
\end{equation*}
$$

where $\vec{r}_{1, j}$ is the position of the j-th particle in the original system and $\vec{r}_{2, j}$ is the corresponding position in the perturbed system.

Position correlation:

Criteria for Chaos

- Mean-square position deviation:

$$
\begin{equation*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle=\frac{1}{N} \sum_{j=1}^{N}\left(\vec{r}_{1, j}-\vec{r}_{2, j}\right)^{2}, \tag{4}
\end{equation*}
$$

where $\vec{r}_{1, j}$ is the position of the j-th particle in the original system and $\vec{r}_{2, j}$ is the corresponding position in the perturbed system.

- Position correlation:

$$
\begin{equation*}
\operatorname{corr}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{\left\langle\left(\vec{r}_{1}-\left\langle\vec{r}_{1}\right\rangle\right)\left(\vec{r}_{2}-\left\langle\vec{r}_{2}\right\rangle\right)\right\rangle}{\sigma\left(\vec{r}_{1}\right) \sigma\left(\vec{r}_{2}\right)}, \tag{5}
\end{equation*}
$$

where $\sigma\left(\vec{r}_{j}\right)=\sqrt{\left\langle\left\langle\vec{r}_{j}-\left\langle\vec{r}_{j}\right\rangle\right)^{2}\right\rangle}$.

Comparative Simulation

Figure 2: Comparative simulation of two-dimensional soft-sphere particles for $\rho=0.4, T=1, N=121$, and $\varepsilon=10^{-6}$.

Root-Mean-Square Position Deviation and Correlation

Figure 3: Root-mean-square deviation (left panel) and correlation (right panel) between particle positions and their perturbed versions. Simulation of softsphere particles for $d=2, \rho=0.4, T=1$, and $N=121$.

Saturation

Figure 4: Root-mean-square deviation between particle positions and their perturbed versions. Simulation of soft-sphere particles for $d=2, \rho=0.4, T=1$, and $N=121$.

Saturation Value

- According to figure 4 , the saturation value of the root-mean-square position deviation is

$$
\begin{equation*}
\log \left[\sqrt{\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle}\right] \approx 1.947, \tag{6}
\end{equation*}
$$

for $t=250$.
As a consequence of the derivation presented in the appendix, the predicted value of saturation is

for $d=2$ and $L \approx 17.39$.

Saturation Value

- According to figure 4 , the saturation value of the root-mean-square position deviation is

$$
\begin{equation*}
\log \left[\sqrt{\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle}\right] \approx 1.947 \tag{6}
\end{equation*}
$$

for $t=250$.

- As a consequence of the derivation presented in the appendix, the predicted value of saturation is

$$
\begin{align*}
\log \left[\sqrt{\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle}\right] & =\log \left(\sqrt{\frac{d}{12}} L\right) \tag{7}\\
& \approx 1.960
\end{align*}
$$

for $d=2$ and $L \approx 17.39$.

Saturation Value

- According to figure 4 , the saturation value of the root-mean-square position deviation is

$$
\begin{equation*}
\log \left[\sqrt{\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle}\right] \approx 1.947 \tag{6}
\end{equation*}
$$

for $t=250$.

- As a consequence of the derivation presented in the appendix, the predicted value of saturation is

$$
\begin{align*}
\log \left[\sqrt{\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle}\right] & =\log \left(\sqrt{\frac{d}{12}} L\right) \tag{7}\\
& \approx 1.960
\end{align*}
$$

for $d=2$ and $L \approx 17.39$.

Maxwell-Boltzmann Distribution

- Velocity distribution of two-dimensional classical particles in thermal equilibrium:

$$
\begin{equation*}
f(v)=\frac{v}{T} \exp \left(-\frac{v^{2}}{2 T}\right) \tag{8}
\end{equation*}
$$

- The Boltzmann H-function is defined as

The H-function satisfies the following relation:

with equality only applying when $f(v)$ is the Maxwell-Boltzmann

Maxwell-Boltzmann Distribution

- Velocity distribution of two-dimensional classical particles in thermal equilibrium:

$$
\begin{equation*}
f(v)=\frac{v}{T} \exp \left(-\frac{v^{2}}{2 T}\right) \tag{8}
\end{equation*}
$$

- The Boltzmann H-function is defined as

$$
\begin{align*}
H & =\int \tilde{f}(\vec{v}) \log [\tilde{f}(\vec{v})] \mathrm{d}^{d} v \\
& \propto \int f(v) \log \left[\frac{f(v)}{v^{d-1}}\right] \mathrm{d} v . \tag{9}
\end{align*}
$$

- The H-function satisfies the following relation:
with equality only applying when $f(v)$ is the Maxwell-Boltzmann

Maxwell-Boltzmann Distribution

- Velocity distribution of two-dimensional classical particles in thermal equilibrium:

$$
\begin{equation*}
f(v)=\frac{v}{T} \exp \left(-\frac{v^{2}}{2 T}\right) \tag{8}
\end{equation*}
$$

- The Boltzmann H-function is defined as

$$
\begin{align*}
H & =\int \tilde{f}(\vec{v}) \log [\tilde{f}(\vec{v})] \mathrm{d}^{d} v \\
& \propto \int f(v) \log \left[\frac{f(v)}{v^{d-1}}\right] \mathrm{d} v . \tag{9}
\end{align*}
$$

- The H-function satisfies the following relation:

$$
\begin{equation*}
\left\langle\frac{\mathrm{d} H}{\mathrm{~d} t}\right\rangle \leq 0 \tag{10}
\end{equation*}
$$

with equality only applying when $f(v)$ is the Maxwell-Boltzmann distribution.

H-Function

Figure 5: (Left panel) Boltzmann H-function. (Right panel) Root-mean-square deviation of the velocity histogram with respect to the Maxwell-Boltzmann distribution. Simulation of soft-sphere particles for $d=2, \rho=0.4, T=1$, and $N=121$.

Thermalized Comparative Simulation

Figure 6: Comparative simulation of thermalized two-dimensional soft-sphere particles for $\rho=0.4, T=1, N=121$, and $\varepsilon=10^{-6}$.

Position Root-Mean-Square Deviation and Correlation

Figure 7: Root-mean-square deviation (left panel) and correlation (right panel) between particle positions and their perturbed versions. Simulation of thermalized soft-sphere particles for $d=2, \rho=0.4, T=1$, and $N=121$.

Behaviour Invariance

Figure 8: Root-mean-square deviation between particle positions and their perturbed versions. Simulation of soft-sphere particles for $\rho=0.4, T=1$, and $N=121$.

References

- D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2004.

Saturation Value of Mean-Square Position Deviation

- As a first step, equation (4) is rewritten in terms of Cartesian coordinates:

$$
\begin{align*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle & =\sum_{j=1}^{d}\left\langle\left(r_{1, j}-r_{2, j}\right)^{2}\right\rangle \tag{11}\\
& =\sum_{j=1}^{d}\left\langle\left(\Delta r_{j}\right)^{2}\right\rangle,
\end{align*}
$$

where $r_{1, j}$ and $r_{1, j}$ are the j-th Cartesian coordinates of a particle in the original and perturbed systems, respectively. Notice that d dimensions are considered.

Assuming that Δr_{j} is a uniformly distributed random variable over the interval $\left[0, L_{j} / 2\right]$, the following result is obtained:

where L_{j} is the length of a d-dimensional box in the j-th direction, considering periodic boundary conditions.

Saturation Value of Mean-Square Position Deviation

- As a first step, equation (4) is rewritten in terms of Cartesian coordinates:

$$
\begin{align*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle & =\sum_{j=1}^{d}\left\langle\left(r_{1, j}-r_{2, j}\right)^{2}\right\rangle \tag{11}\\
& =\sum_{j=1}^{d}\left\langle\left(\Delta r_{j}\right)^{2}\right\rangle,
\end{align*}
$$

where $r_{1, j}$ and $r_{1, j}$ are the j-th Cartesian coordinates of a particle in the original and perturbed systems, respectively. Notice that d dimensions are considered.

Assuming that Δr_{j} is a uniformly distributed random variable over the interval $\left[0, L_{j} / 2\right]$, the following result is obtained:

where L_{j} is the length of a d-dimensional box in the j-th direction, considering periodic boundary conditions.

Saturation Value of Mean-Square Position Deviation

- As a first step, equation (4) is rewritten in terms of Cartesian coordinates:

$$
\begin{align*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle & =\sum_{j=1}^{d}\left\langle\left(r_{1, j}-r_{2, j}\right)^{2}\right\rangle \tag{11}\\
& =\sum_{j=1}^{d}\left\langle\left(\Delta r_{j}\right)^{2}\right\rangle
\end{align*}
$$

where $r_{1, j}$ and $r_{1, j}$ are the j-th Cartesian coordinates of a particle in the original and perturbed systems, respectively. Notice that d dimensions are considered.

- Assuming that Δr_{j} is a uniformly distributed random variable over the interval $\left[0, L_{j} / 2\right]$, the following result is obtained:

$$
\begin{equation*}
\left\langle\left(\Delta r_{j}\right)^{2}\right\rangle=\frac{1}{12} L_{j}^{2}, \tag{12}
\end{equation*}
$$

where L_{j} is the length of a d-dimensional box in the j-th direction, considering periodic boundary conditions.

Result

- Upon substitution of the assumption (12) into equation (11):

$$
\begin{equation*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle=\frac{1}{12} \sum_{j=1}^{d} L_{j}^{2} . \tag{13}
\end{equation*}
$$

- In the case of $L_{j}=L$, for all j, equation (13) is simplified:

Result

- Upon substitution of the assumption (12) into equation (11):

$$
\begin{equation*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle=\frac{1}{12} \sum_{j=1}^{d} L_{j}^{2} \tag{13}
\end{equation*}
$$

- In the case of $L_{j}=L$, for all j, equation (13) is simplified:

$$
\begin{equation*}
\left\langle\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right\rangle=\frac{d}{12} L^{2} . \tag{14}
\end{equation*}
$$

[^0]: ${ }^{1}$ D. C. Rapaport, The Art of Molecular Dynamics Simulation.
 ${ }^{2}$ M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids.

[^1]: ${ }^{1}$ D. C. Rapaport, The Art of Molecular Dynamics Simulation.
 ${ }^{2}$ M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids.

