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Molecular Dynamics Introduction

Molecular Dynamics: Definition

“...molecular dynamics simulation involves solving the classical many-body
problem in contexts relevant to the study of matter at the atomistic level...”1

“Computer simulation generates information at the microscopic level ... and
the conversion of this very detailed information into macroscopic terms ... is

the province of statistical mechanics.”2

1D. C. Rapaport, The Art of Molecular Dynamics Simulation.
2M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids.
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Molecular Dynamics Introduction

Interaction Potentials
The Lennard-Jones potential is defined by

u(rj,k ) =

4ε

[(
σ

rj,k

)12

−
(
σ

rj,k

)6
]
, for rj,k < rc ,

0, for rj,k ≥ rc ,

(1)

where rj,k = |~rj −~rk |, ε is the interaction magnitude, and σ defines a
length scale.

By removing the attractive part of the Lennard-Jones potential, we obtain
the soft-sphere potential:

u(rj,k ) =

4ε

[(
σ

rj,k

)12

−
(
σ

rj,k

)6
]

+ ε, for rj,k < rc ,

0, for rj,k ≥ rc ,

(2)

for rc = 2
1
6σ.
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Molecular Dynamics Introduction

Potential Sketch

Figure 1: Lennard-Jones (lower curve) and soft-sphere (upper
curve) potentials in dimensionless molecular dynamics units.1

1D. C. Rapaport, The Art of Molecular Dynamics Simulation.
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Molecular Dynamics Introduction

Perturbation

Consider two identical simulations of N two-dimensional particles. At a
chosen time tp, the following perturbation is applied on every particle in
one of the systems:

~v2,j (tp) = ~v1,j (tp) + ε~wj , (3)

where ~v1,j is the velocity of the j-th particle in the original system, ~v2,j is
the corresponding velocity in the perturbed system, ~wj is a random unit
vector, and ε is the perturbative parameter.
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Molecular Dynamics Introduction

Criteria for Chaos

Mean-square position deviation:

〈(~r1 −~r2)2〉 =
1
N

N∑
j=1

(~r1,j −~r2,j )
2, (4)

where ~r1,j is the position of the j-th particle in the original system and ~r2,j
is the corresponding position in the perturbed system.

Position correlation:

corr(~r1,~r2) =
〈(~r1 − 〈~r1〉)(~r2 − 〈~r2〉)〉

σ(~r1)σ(~r2)
, (5)

where σ(~rj ) =
√
〈(~rj − 〈~rj〉)2〉.
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Molecular Dynamics Comparative Simulations

Comparative Simulation
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Figure 2: Comparative simulation of two-dimensional soft-sphere particles for
ρ = 0.4, T = 1, N = 121, and ε = 10−6.
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Molecular Dynamics Comparative Simulations

Root-Mean-Square Position Deviation and Correlation
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Figure 3: Root-mean-square deviation (left panel) and correlation (right panel)
between particle positions and their perturbed versions. Simulation of soft-
sphere particles for d = 2, ρ = 0.4, T = 1, and N = 121.
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Molecular Dynamics Comparative Simulations

Saturation
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Figure 4: Root-mean-square deviation between particle positions and their per-
turbed versions. Simulation of soft-sphere particles for d = 2, ρ = 0.4, T = 1,
and N = 121.
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Molecular Dynamics Comparative Simulations

Saturation Value

According to figure 4, the saturation value of the root-mean-square
position deviation is

log
[√
〈(~r1 −~r2)2〉

]
≈ 1.947, (6)

for t = 250.

As a consequence of the derivation presented in the appendix, the
predicted value of saturation is

log
[√
〈(~r1 −~r2)2〉

]
= log

(√
d
12

L

)
≈ 1.960,

(7)

for d = 2 and L ≈ 17.39.
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Molecular Dynamics Comparative Simulations

Maxwell-Boltzmann Distribution
Velocity distribution of two-dimensional classical particles in thermal
equilibrium:

f (v) =
v
T

exp
(
− v2

2T

)
. (8)

The Boltzmann H-function is defined as

H =

∫
f̃ (~v) log

[
f̃ (~v)

]
ddv

∝
∫

f (v) log
[

f (v)

vd−1

]
dv .

(9)

The H-function satisfies the following relation:〈
dH
dt

〉
≤ 0, (10)

with equality only applying when f (v) is the Maxwell-Boltzmann
distribution.

Viscondi, T. F. (NDF/PME/POLI/USP) Chaos 13/06/18 11 / 18



Molecular Dynamics Comparative Simulations

Maxwell-Boltzmann Distribution
Velocity distribution of two-dimensional classical particles in thermal
equilibrium:

f (v) =
v
T

exp
(
− v2

2T

)
. (8)

The Boltzmann H-function is defined as

H =

∫
f̃ (~v) log

[
f̃ (~v)

]
ddv

∝
∫

f (v) log
[

f (v)

vd−1

]
dv .

(9)

The H-function satisfies the following relation:〈
dH
dt

〉
≤ 0, (10)

with equality only applying when f (v) is the Maxwell-Boltzmann
distribution.

Viscondi, T. F. (NDF/PME/POLI/USP) Chaos 13/06/18 11 / 18



Molecular Dynamics Comparative Simulations

Maxwell-Boltzmann Distribution
Velocity distribution of two-dimensional classical particles in thermal
equilibrium:

f (v) =
v
T

exp
(
− v2

2T

)
. (8)

The Boltzmann H-function is defined as

H =

∫
f̃ (~v) log

[
f̃ (~v)

]
ddv

∝
∫

f (v) log
[

f (v)

vd−1

]
dv .

(9)

The H-function satisfies the following relation:〈
dH
dt

〉
≤ 0, (10)

with equality only applying when f (v) is the Maxwell-Boltzmann
distribution.

Viscondi, T. F. (NDF/PME/POLI/USP) Chaos 13/06/18 11 / 18



Molecular Dynamics Comparative Simulations

H-Function
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Figure 5: (Left panel) Boltzmann H-function. (Right panel) Root-mean-square
deviation of the velocity histogram with respect to the Maxwell-Boltzmann dis-
tribution. Simulation of soft-sphere particles for d = 2, ρ = 0.4, T = 1, and
N = 121.
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Molecular Dynamics Comparative Simulations

Thermalized Comparative Simulation
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Figure 6: Comparative simulation of thermalized two-dimensional soft-sphere
particles for ρ = 0.4, T = 1, N = 121, and ε = 10−6.
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Molecular Dynamics Comparative Simulations

Position Root-Mean-Square Deviation and Correlation
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Figure 7: Root-mean-square deviation (left panel) and correlation (right panel)
between particle positions and their perturbed versions. Simulation of thermal-
ized soft-sphere particles for d = 2, ρ = 0.4, T = 1, and N = 121.
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Molecular Dynamics Comparative Simulations

Behaviour Invariance
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Figure 8: Root-mean-square deviation between particle positions and their per-
turbed versions. Simulation of soft-sphere particles for ρ = 0.4, T = 1, and
N = 121.
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Appendix Saturation

Saturation Value of Mean-Square Position Deviation
As a first step, equation (4) is rewritten in terms of Cartesian coordinates:

〈(~r1 −~r2)2〉 =
d∑

j=1

〈(r1,j − r2,j )
2〉

=
d∑

j=1

〈(∆rj )
2〉,

(11)

where r1,j and r1,j are the j-th Cartesian coordinates of a particle in the
original and perturbed systems, respectively. Notice that d dimensions
are considered.

Assuming that ∆rj is a uniformly distributed random variable over the
interval [0,Lj/2], the following result is obtained:

〈(∆rj )
2〉 =

1
12

L2
j , (12)

where Lj is the length of a d-dimensional box in the j-th direction,
considering periodic boundary conditions.
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Appendix Saturation

Result

Upon substitution of the assumption (12) into equation (11):

〈(~r1 −~r2)2〉 =
1
12

d∑
j=1

L2
j . (13)

In the case of Lj = L, for all j , equation (13) is simplified:

〈(~r1 −~r2)2〉 =
d
12

L2. (14)
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