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We present investigations of intermittent turbulence in the Texas Helimak, a simple

toroidal plasma device in which the turbulence properties are modified by apply-

ing a bias voltage. The analyzed turbulence presents high density bursts, detected

by Langmuir probes measuring ion saturation current fluctuations. The turbulent

time series is reproduced by a synthetic signal model that has bursts with the same

temporal profile and random amplitudes, plus a low amplitude fluctuating stochastic

background. Using this model, we identify two burst regimes, observed according to

the radial position and external bias: in the first regime, the bursts occur in random

instants, leading to a Poisson distribution of the time interval between bursts, while

in the second regime, the time interval between large bursts are correlated and mod-

eled by a Gamma distribution. Furthermore, we use the shape parameter k, that

measures the correlation between occurrence times of successive bursts, to character-

ize the burst regime in most of the low field side. We find that in the region described

by the second regime, the k values increases with positive applied bias.
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I. INTRODUCTION

The turbulence in the plasma edge of magnetically confined devices presents intermittent

high density peaks1–4. These peaks, also called bursts, are associated with coherent struc-

tures that are responsible for a important part of the particle and energy transport5, so they

have a strong consequence to the plasma confinement. The bursts present in the scrape-off

layer of fusion machines seem to have an universal feature in the plasmas, being also present

in other types of magnetically confined plasma machines6–9.

The bursts presence has been associated with many turbulence properties common to

several devices, suggesting universality of convective transport1. The convective nature of

such structures have been extensive studied on tokamaks10, and evidences suggest they have

similar behavior on helimaks8,9,11. The structures can be detected in the far SOL of tokamaks

using electrostatic probes, what means that a better understanding of these structures can

lead to the possibility of evaluate the plasma performance from SOL probe data.

Several models have been proposed to explain the intermittent turbulence in magnetic

confined devices. The turbulence driven energy is associated to universal instabilities12 and

recurrence properties are used to characterize the fluctuation13. Recently, a stochastic model

was proposed to describe the density time series in the tokamak SOL. In this model, the

signal consists of a series of intermittent structures with amplitudes following an exponential

probability density function that occur at random instants14. It was showed that this model

presents a parabolic relation between the signal skewness and kurtosis. This model was

compared to gas puff measurements on the Alcator C-Mod and it explains both the density

histogram and power spectrum15.

Besides these relevant results, the burst statistics have not yet been completed deter-

mined. As the plasma turbulence in Texas Helimak is similar to those in the tokamak

scrape-off layer, the study of the Helimak turbulence supports the effort to elucidate the

tokamak turbulence. This, allied with the possibility of measuring bursts at several posi-

tions in Texas Helimak and control its statistics by applying a electrostatic bias voltage,

opens a possibility to complement the mentioned previous results.

In this work, we study the turbulence in low-field side region of the Texas Helimak16

using the data from a set of Langmuir probes present in the machine. This turbulence

presents extreme events that consist of bursts with density much larger than the average.
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The number of extreme events and the turbulence level can be modified in this machine by

imposing an electrostatic bias voltage in the plasma8,11.

We use the model of bursts train turbulence14 to describe the intermittent turbulence.

We identify two different intermittent regimes that occur in different parts of the machine

low field side. One regime, found on the region closer to the density maximum and with

large radial density gradient, is similar to the regime found on scrape-off layer of tokamaks,

and it can be described as large uncorrelated and randomly occurring bursts plus small

density background with colored Gaussian distribution. A second regime was found further

in the low field side, in the region with small gradient, that cannot be described by a model

with uncorrelated bursts occurrence times. We found that the turbulence consists mostly of

large bursts with correlated occurring instants but uncorrelated amplitudes, and this instant

correlation is seen as a broad peak in the power spectrum.

In section II we introduce the Texas Helimak and present its main characteristics. In

section III we present the properties of the turbulent signal for two selected radial positions

of the Texas Helimak and apply the model for the two selected regions. In section IV, we

apply the model in a large interval of radial positions. A summary of the results focused

on the similarities and differences observed in the turbulence regimes of these regions is

presented in section V.

II. THE TEXAS HELIMAK

The Texas Helimak16 is a basic plasma machine with toroidal vessel and open helical

magnetic field lines having a large toroidal component and very small vertical component.

It presents an one-dimensional magnetohydrodynamic equilibrium, depending basically only

on the radial position R. The machine presents magnetic curvature and shear and also flow

shear as in the tokamak plasma edge and SOL.

The Texas Helimak has a large array of Langmuir probes, located on 16 plates present

at the machine top and bottom and a data acquisition system that can collect data from 96

probes simultaneously at 500 ksamples/s for 10 seconds17. It is possible to impose a common

electrostatic potential (bias) on the plates colored in figure 1(a) to change the electrostatic

field radial profile and electrostatic modes. With this biasing, we investigate the influence of

the electric field profile on the turbulence and transport. The data used in this analysis are
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FIG. 1. (a) Texas Helimak vacuum chamber showing an example of the magnetic field lines and

the plates used as a support for the Langmuir probes. (b) Density profiles for two different biasing

potentials.

ion saturation current signals measured in a large number of radial positions in the whole

machine and in a rectangular grids of probes mounted on specific plates.

III. STATISTICAL DESCRIPTION OF TURBULENCE

As usual, for the turbulence analysis, we introduce the normalized ion saturation current

signal:

Φ(t) =
Is(t)− ⟨Is⟩

σI

(1)

where ⟨Is⟩ is the time average of the ion saturation current Is and σI is the standard

deviation. In low field side, the ion saturation fluctuation distribution presents an expo-

nential tail. The turbulence can be suppressed when a negative potential is applied on the

plate where the density maximum is located (plate 2 in Fig. 1(b)), what eliminates the

intermittency and reduces the turbulence level16.

On the other hand, the intermittent turbulence can be enhanced when a positive bias

is applied8. The biasing increases the number of bursts and their amplitudes. As we are

interested on studying the bursts dynamics, the positively biased case was used. Figure 2

shows two examples of ion saturation turbulent signal for two different positions of the

machine low-field side: a position with a large radial density gradient (R = 1.11m) and a

position where the density is almost constant (R = 1.25m), but still close to the gradient

(and electrostatic bias) region.

In both cases, the time series (Fig. 2(a)), presents many high density bursts, where the
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FIG. 2. Example of normalized ion saturation current time series (a), signal histogram (b) and

power spectrum (c) for the two considered positions (R = 1.11m and R = 1.25m).

signal achieves many standard deviations above average. The presence of bursts is reflected

on the signals histograms (Fig. 2(b)) as they have exponential tails for large density fluctua-

tion amplitudes. The density bursts are also reflected in the power spectrum (Fig. 2(c)), as

the power spectra present a low frequency plateau and power law decay for high frequency,

a similar situation as found in the scrape-off layer of tokamaks15. The plateau and tail are

associated with the interburst dynamics and individual burst temporal profile, respectively.

While the presence of bursts makes the turbulence in both positions similar, a more careful

investigation shows an interesting difference:the radial position of R = 1.25 m present a

broad peak in the power spectrum (Fig. 2(c)) for a frequency around 3 kHz.

For the bursts statistics, we defined a burst as a local maximum at least two standard

deviations above the signal average. With this threshold, one Texas Helimak shot have about

ten thousand bursts. Thresholds above two standard deviations have almost no effect on the
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FIG. 3. Histogram of bursts amplitude (a), times between bursts (b) and burst conditional average

(c)for the two considered positions (R = 1.11m and R = 1.25m), for a burst threshold of two

standard deviations above average.

conditional average burst profile, except for the expected relationship between the average

peak amplitude and the threshold value. The bursts amplitudes in both cases (Fig. 3(a))

follow exponential distributions, as observed in other magnetic confined plasma devices18,19.

The waiting times distributions (Fig. 3(b)) have different characteristics: for the R=1.11 m

position, we have Poisson process exponential, as identified in other machines; but at the

R=1.25 m position, the histrogram shows a maximum at 0.35 ms, clearly deviating from the

exponential profile.

In Figure 3(c), we present the conditional average for both cases. For times close to the

burst maximum both cases have a similar exponential increase and decay. In the signal

measured at R = 1.11 m, the bursts return fast to the average value, but in the signal

measured at R = 1.25 m, there is an oscillation before and after the main burst maximum.
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Even more, this oscillation frequency matches the peak frequency from the power spectrum,

suggesting that both are evidences of the same process.

The turbulence signal measured at R = 1.11 m present many features already found in

scrape-off layer of tokamaks, so it can be modeled in the same way with small adaptations.

But the signal measured at R = 1.25 m presents a striking difference: it shows a char-

acteristic time that appears in the power spectrum, burst awaiting times and conditional

average. A model must be able recover the characteristic time in these three measurements

simultaneously to be deemed adequate.

A. Random Arrival Time Burst Regime

When we apply the standard burst model (appendix A) to describe the turbulence in the

Texas Helimak, it is not possible to fit simultaneously the bulk of the signal histogram and

the exponential tail. This impossibility can be seen in Figure 4(a), where the histogram of

the simulation with only burst (continuous blue line) and the experimental data (red dotted

line) are shown, in which the exponential tail is well reproduced but the region of negative

Φ is not well described.

We addressed this issue by inserting a background noise component nb(t) in the signal

model:

n(t) =
∑
j

Ajg(t− tj) + nb(t) , (2)

to fit the bulk of the distribution and density average value. In this case, we considered

the nb as an Gaussian colored noise process (S ∝ f−1.3). This extra term make sense as we

are analyzing a position close to the density maximum, where local plasma generation and

diffusive transport can make significant contribution to the total plasma content. In figure 4,

we show in green dashed lines the histogram, power spectrum and burst conditional average

of the simulated signal, that matches fairly well the experimental data at R = 1.11m. The

green line obtained by applying Eq. 2 fits well the experimental data.

As the model describes well the experimental data, we applied it for some bias values,

so we can calculate the effect of increasing the bias on the turbulence properties. Figure 5

shows the effect of the bias on three turbulence model parameters, obtained from the fitting

procedure of the experimental data: the burst rate, the mean burst amplitude ⟨A⟩ and the
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FIG. 4. Signal histogram (a), power spectrum (b) and burst conditional average of the density

gradient region (red), compared with the model with only the bursts (blue line) and with bursts

plus background (green dashed),

background standard deviation σb. One important feature of this model is that the burst

detection using a threshold is only a reliable measure of burst count if the time between

bursts is much larger than the burst duration20. Therefore the fitted burst rate is a more

reliable estimate than the number of peaks above a threshold, as the increase in burst

numbers also increase signal average and standard deviation, a complex interaction that

lead to underestimating the burst rate by a factor that grows with the burst rate.

Earlier analysis of the burst rate in the region of the Texas Helimak8 considered in this

section, using threshold detection showed similar trend on the burst rate we observe with the

model fitting (Fig. 5(a)), but with a burst rate more than one order of magnitude smaller,

as the lower amplitude bursts were cut out. The model fitting shows an interesting feature:
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FIG. 5. Burst rate (a), amplitude (b), and background standard deviation (c) obtained from fitting

the time series model for positive bias values.

the burst amplitude (Fig. 5(b)) increases with the bias, while the background fluctuation

(Fig. 5(c)) is decreasing. So the biasing not only increases the number of bursts, increasing

the intermittent turbulence, but also reduces the background turbulence.

It is interesting to point out that, in this position, the intermittent turbulence (bursts)

is suppressed by applying a negative bias11. The suppression and the trend for positive

biases make us conclude that the bursts are actually mounted on a background Gaussian

turbulence that dominates when we suppress the bursts.

B. Renewal Process Burst Regime

Three important features in the signal measured at R = 1.25 m make it different from the

signal considered in the previous section on a first look: a peak on the power spectrum, an
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oscillation found at the conditional average and a peak in the burst waiting time histogram.

These three features also have matching frequencies. This fact alone is enough to question

the random burst arrival time hypothesis.

While the power spectrum peak may arise from a purely background oscillation (as oppo-

sition of a burst characteristic waiting time), if the bursts are independent of the background,

they would happen at random phases of the background oscillation. The conditional analysis

would average out the oscillation, except for a secondary effect of bursts being more likely to

be detected at the oscillation crest. The same argument holds for the measured waiting time

histogram, and the deviation from a exponential waiting time would be too small. So the

burst conditional average and waiting time histogram indicate that the process responsible

for the power spectrum peak is related to the bursts dynamics.

A simple way to insert a characteristic time in the bursts waiting times is to describe the

burst appearance as a renewal process21,22. This way, the waiting time distribution between

two consecutive bursts becomes an arbitrary function ρ(τ), that is the same for all bursts

and only depends on the waiting time interval τ . When the distribution ρ is an exponential

function, we recover the Poisson process.

If we consider that the bursts have amplitudes with average A0, variance σ
2
A and that an

individual amplitude is independent of waiting times and previous amplitudes, we can write

the power spectrum as:

S(ω) = |G(ω)|2A
2
0

τ0

(
σ2
A

A2
0

+
1− |ρ̂(ω)|2

|1− ρ̂(ω)|2

)
, (3)

where S(ω) is the power spectrum, and ρ̂ is the one-sided Fourier transform of the waiting

time distribution ρ. An estimation of ρ directly from the experimental power spectrum is

an ill-posed problem. We consider that the waiting times distribution follows a family of

functions with a small number of parameters. We adopt a gamma distribution:

ρ(τ ; k, s) =
τ k−1e−

τ
s

Γ(k)sk
, (4)

where k and s are the shape and scale parameters. We choose this distribution because

it has interesting features: the shape parameter k is equal to (τ̄ /σ)2 and when it is k = 1,

we recover the Poisson process; the parameter s is responsible for the scale, as τ̄ = ks; it is

infinitely divisible and a rather common distribution for time intervals modeling.
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We estimate the burst characteristic shape by fitting the burst conditional average. We

eliminate the oscillation by separating the below zero intervals in the Φ time series, shuf-

fling them and reinserting at the new order, creating a new time series. Then, we fit the

conditional average of the new series.

The last ingredient for fitting is the amplitude standard-deviation over its average. For

that, we defined a really low threshold (a fraction of the standard deviation above the signal

average), a small burst detection dead time (below the shape characteristic time τ0) and

estimated its distribution from the amplitudes histogram.
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FIG. 6. Power spectrum (a), waiting times histogram (b) and detected bursts conditional average

for a simulation with bursts and background.

After that, we did a non-linear least-squares fitting of equation 3, using the Fourier

transforms of the burst shape and waiting times distribution obtained analytically. Figure 6

shows the experimental and bursts-only fitted results. The qualitative features of the power

spectrum (Fig. 6(a)) and the burst conditional average (Fig. 6(c)) are recovered, but we got
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a burst waiting time distribution that has a broader top and a shorter tail. The tanoil decay

of the detected waiting time distribution is very sensitive to the series average and standard

deviation, because its expected value and the burst count are directly related.

Figure 7 shows the histograms of Φ for the time series and the bursts-only simulation.

As we found for the previous case (Fig. 4), the bursts-only time series fails to recover

the experimental fluctuation distribution. In the data considered here, the experimental

histogram is similar to a gamma function that arises from the original burst train model14,15.

But the burst rate is defined by the characteristic frequency observed from the conditional

average, power spectrum and burst waiting time.
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FIG. 7. Histograms of the simulation with only the correlated bursts, with bursts and background

and of the experimental data.

One way to work around these two apparently conflicting evidences, burst rate from

characteristic frequency versus from the signal histogram, is to consider the time series is

made from the sum of two burst time series: a large bursts that follow a renewal process, and

a random background bursts. The background bursts do not have a peak frequency, as they

are uncorrelated (with exponential amplitude distribution), and share the same shape as the

main ones. A background that is composed by small bursts may be seem as these bursts

are from an inner position (where they are completely uncorrelated) and were attenuated

by the parallel losses during their propagation.

The figures 6 and 7 also show the results of the correlated large bursts and uncorrelated

(background) bursts simulation. The power spectrum (Fig. 6(a)) is better represented by

the new simulation as the background presence increases the low frequency plateau. The

detected burst waiting times (Fig. 6(b)), is well recovered in this simulation, with a slightly
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faster decay, which indicates a higher burst count in the simulation. The burst conditional

average (Fig. 6(c)) is also well reproduced, what indicates that the oscillation is indeed an

effect of the burst waiting time probability distribution and not an individual burst feature.

The simulated histogram also recovers the experimental one nicely (Fig. 7), with small

differences close to the histograms maxima and at the high density tails. The differences at

the high density tail is probably related to the waiting time tails: in the simulation, large

density values (bursts) are more probable, what increases the number of bursts and this

makes the tail of detected waiting times distribution decrease faster.

IV. RADIAL AND BIAS DEPENDENCE

So far, we presented a detailed study of two different turbulence regimes that are well

described by a model that consists of a burst train plus a background. Now, we can extend

this analysis for a large radial region on the low field side, so we can get the whole picture

of the burst regime in this region. The most important features fo help understanding the

radial dependence of the burst train, and to look for connections on the burst process on

different regions are the presence of peaks on the power spectrum and the bursts waiting time

shape parameter k (responsible for the intensity of the subsequent burst times correlation).

While the first feature is straightforward, obtaining the second from the power spectrum is

very error prone when the background is not adequately estimated. We solved this issue

by estimating k directly from the waiting time histograms, as the large bursts are mostly

unaffected by the background.

Figure 8(a) shows how the power spectrum changes with the radial position. In the

density peak and most of the gradient region, the power spectrum presents no peak in the

kHz region, as observed in the R = 1.11 m probe data that was analyzed in section IIIA.

From R = 1.15 m on, a broad peak between f = 3.5 kHz and f = 1.5 kHz appears, with

the relative amplitude increasing as the radius increases and its frequency decreases. In

Fig. 6 we showed that, in R = 1.25 m, this peak can be understood as consequence of the

correlation between successive bursts arrival times and it was modeled by a renewal process

on the burst occurrence instants.

The radial dependency of the peak frequency, that is associated (at least on plate 3) to

the bursts waiting time process, suggests that bursts must be formed locally and do not come
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FIG. 8. Normalized signal power spectrum for the whole radial range (a), and radial dependence

of the shape parameter for the renewal process estimated from the burst waiting time distributions

(b).

from a much more internal position. This result is in agreement with the burst propagation

parameters for the Texas Helimak estimated in Ref.11, where the bursts propagation and

shape parameters indicate that they do not propagate further than few centimeters in the

radial direction.

In Figure 8(b) we show the shape parameter k obtained from the fitted waiting time

distributions (see appendix C); this parameter indicates how much the burst process deviates

from an uncorrelated random process, as k = 1 recovers a Poisson process and k ≫ 1

indicates a well defined time between subsequent bursts. This figure shows clearly the two

different regimes presented and the transition between them: the Poisson like regime of the

more internal region (R = 1.11 m) and renewal process regime (from R = 1.19 to 1.25 m).

The far low field site presents a third scenario (R = 1.3 to 1.45 m), in which the occurrence

time correlation is weak and cannot be the only responsible for the peak in the spectrogram.
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Therefore, the 2 kHz peak observed in the signal measured at this region is mainly due to

the background oscillation.
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FIG. 9. Radial dependence of the burst waiting time shape parameter k for four different electro-

static bias values.

Figure 9 shows the electrostatic bias effect on bursts waiting time parameter k. The bias

has almost no effect far from the applied region (plate 4), in agreement with other turbulence

properties analyzed in a previous work11, where it was found that the burst propagation and

shape parameters are not changed by the bias in this region. Closer to the electrostatic bias

applied region (plate 3), it is already known that positive biasing increases the burst count8

and affects significantly the bursts shape and propagation properties11. The biasing effect on

the waiting time distribution is consistent with this picture, as we can see the appearance of

a preferred inter-burst time interval as the bias is increased, a time interval that is reflected

on the power spectrum as a peak around 3 kHz.

V. CONCLUSION

We investigated the bias enhanced intermittent turbulence in the Texas Helimak. This

turbulence presents high density bursts, much larger than the average density. We showed

that the intermittent turbulence has different regimes. We described two regimes by consid-

ering the turbulence as composed mainly by a sum of bursts with same temporal profile and

random amplitudes. We showed that the power spectrum power law decay is a consequence

of the temporal profile of the individual bursts.

We showed that, in a position close closer to the density maximum, the turbulent signal
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can be described by a sum of Gaussian background and randomly occurring bursts with

amplitudes following an exponential distribution. This regime is very similar to observed

in the SOL of tokamaks15, with the differences being only the existence of background

oscillation and a small correction on the burst profile. As this position is close to the density

maximum, the background can be understood as a consequence of diffusion or local plasma

generation. The model allowed us to better characterize the effect of biasing and conclude

that increasing the bias potential has a double effect: it decreases the background turbulence

and increases the burst rate and amplitude.

In the position at a larger radius, at the beginning of a region with relatively constant

density (R = 1.25 m), we found that bursts do not appear at random instants, as their

occurrence times depend on when the last burst appeared. We showed that turbulence

properties in this region are well described by a model in which the large bursts follow

a renewal process with random amplitudes. This model is enough to describe the power

spectrum, the maximum observed in the bursts waiting time distribution and the oscillation

in burst conditional average. We fitted the experimental signal histograms by adding a

background with small uncorrelated bursts.

After presenting these two turbulence regimes, we analyzed the burst regime in a large

interval of the low field side. We characterized the burst dynamics according to shape param-

eter k of the waiting time distribution by fitting the experimental waiting time histograms.

We found that the power spectrum frequency peaks appears in a region with large k values.

This region also presents a clear radial dependence of the peak frequency (and characteristic

waiting time), what indicates that the large and time-correlated bursts must be formed lo-

cally. We also analyzed the radial profile for many bias voltages and found that in the large

k region the burst correlation is driven by the electrostatic biasing, as the k values increases

with the bias value.

Further on the low field side, the frequency peak persists, but the parameter k values

indicates that the bursts waiting time correlations are not strong enough to generate it,

so the power spectrum peaks are probably a consequence of background oscillations. This

region is also far from the position where the bias is applied and are not affected by it, a result

that is consistent with previous works that analyzed the burst propagation parameters11.
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Appendix A: Bursty Time Series Model

It was proposed that many properties of tokamaks SOL can be described by suppos-

ing that the plasma there consists only of high density bursts with a characteristic shape,

occurring at random instants with amplitudes randomly sampled from an exponential dis-

tribution14,15,19. In this model, we can write the electron density time series as

ne(t) =
∑
j

Ajg(t− tj) , (A1)

where g(t) is the burst shape function, Aj and tj are the burst amplitudes and arrival

time. In this model, the power spectrum of the signal can be written simply as:

S(ω) = |G(ω)|2R(ω) , (A2)

where G(ω) = F [g(t)] is the Fourier transform of an individual burst shape and R(ω) is

the power spectrum of the (stochastic) process associated with arrival times tj and amplitude

Aj. When the bursts have independent amplitudes Aj and times tj, R(ω) = ⟨A2⟩/⟨τ⟩, where

⟨τ⟩ is the average time between two consecutive bursts. To estimate g(t), we considered that

the burst conditional average profile reflects the typical burst shape, multiplied by a constant.

Then we used non-linear least-squares to fit the shape function g(t):

g(t) = e−|t|/t0 + ae
− (t−tg)

2

2s2t (A3)

where t0 = λtd for t ≥ 0 and t0 = (1−λ)td for t < 0, td is the burst characteristic time, a is

the amplitude of a small Gaussian correction, tg and st are the Gaussian correction location

and width, respectively. This function is similar to the one employed in other works14,15.

The main difference here is the small Gaussian term used to fit the small bump just after

the burst, visible in the conditional average for R = 1.11m (Fig. 3(c)).
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Appendix B: Background Model for R = 1.25 m

If the background oscillations and the burst generation process are independent, the

power spectral density can be written as:

Snew(ω) = S(ω) + Sb(ω) , (B1)

where S(ω) is given from eq. A2 and Sb(ω) is the background power spectral density.

With the hypothesis of bursts as a background, the shape of high frequency power decay is

guaranteed. Given that the background bursts are uncorrelated, the power spectrum can be

expressed as:

Snew(ω) = |G(ω)|2
[
A2

0

τb

(
σ2
A

A2
0

+
1− |ρ̂|2

|1− ρ̂|2

)
+

A2
s

τw

]
(B2)

where τb is the average waiting time between bursts, As is the mean square amplitude

of a background event and τw is its average waiting time. We fit the power spectrum

expression using non-linear least-squares and iteratively adjusted A2
0, A

2
s and τw to match

the experimental data average and standard deviation.

Appendix C: Waiting Time Fits

The waiting time histograms obtained from threshold detected bursts is a direct way

to estimate the inter burst times. But as we have very different bursts amplitudes, it is

impossible to be sure that all bursts are detected, specially if we have a non burst-like

background oscillation. It is necessary to take the effect of undetected bursts on the waiting

time histograms. If we are detecting bursts using a threshold Θ, the probability of a burst

be detected α is

α(Θ) =

∫ ∞

Θ

ρ(A)dA , (C1)

where ρ(A) is the burst amplitude probability density distribution. When the subsequent

bursts amplitudes are independent, the detected waiting time p.d.f. p(τ) needs to take into

account the contribution of all possible number of missing bursts. The detected waiting time

p.d.f. can be calculated from the real waiting time p.d.f. ρ(τ) and the burst detection rate

α:
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p(τ) = α
∞∑
j=1

(1− α)j−1

∫ ∞

0

δ

(
τ −

j∑
i=1

ti

)
j∏

i=1

ρ(ti)dti . (C2)

While this expression is rather complex, the integral is a convolution of j random variables

with the same distribution ρ(t), so it can easily expressed in the Laplace or One-sided Fourier

domain:

P (ω) = α
∞∑
j=1

(1− α)j−1ρ̂(w)j =
αρ̂(ω)

1− (1− α)ρ̂(ω)
, (C3)

where P (w) is the Fourier Transform of the detected waiting time probability density

function and ρ̂(w) is the real waiting time p.d.f.. We can substitute the ρ(τ) from eq. 4:

P (ω) =
α

(1 + iωs)k − (1− α)
. (C4)

With this expression, obtain a family of detected waiting time distributions p(τ ;α, k, s)

by calculating the inverse Fourier Transform of P (ω). We estimated the waiting time distri-

bution parameters from the experimental histograms using non-linear least-squares method.

The p(τ) was estimated using a fast Fourier Transform with 214 points and subsequent in-

terpolation. Thus, from the analyzed waiting time distribution, we determined the radial

profiles of parameter k shown in Figs. 8 and 9.
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