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Abstract

The long-term solar cycle variability and Grand solar minima remain open questions from a theoretical point of
view. Recently, a growing basis of evidence points out to the role of the magnetic Rossby waves in the solar cycle.
Here we present a simple deterministic model, based on a low-order spectral representation of the barotropic quasi-
geostrophic-magnetohydrodynamic equations for the Solar tachocline. This model supports the idea of the long-
term behavior of the solar activity as a result of nonlinear interaction of magnetic Rossby modes. Solutions show
that Rossby waves undergo irregular switches between periods of high activity and periods of suppressed activity,
resembling the Maunder minimum. Low-energy states in the model are associated with the synchronization of the
dynamical phases of the waves. These irregular transitions in the amplitudes of the waves are reminiscent of the
observed time series of the solar activity. This suggests that Maunder-like states arise from chaotic transitions
between regimes with different degrees of organization in the system.

Unified Astronomy Thesaurus concepts: Solar cycle (1487); Maunder minimum (1015); Sunspot cycle (1650);
Magnetohydrodynamics (1964); Chaos (222); Alfven waves (23); Solar magnetic fields (1503)

1. Introduction

In addition to the main approximately 11 yr cycle, observa-
tional records have shown that the solar magnetic activity
exhibits several modulations on longer timescales of the order
of hundreds and thousands of years (Usoskin 2017). A
particular phenomenon of great interest in the realm of long-
term solar cycle variability is that of Grand solar minima,
usually defined as periods in which the solar magnetic activity
is strongly suppressed. Among the Grand minimum periods,
the most recent and prominent one is the so-called Maunder
Minimum (Usoskin et al. 2015) that occurred between the years
of 1645 and 1715 when the sunspots were barely visible.
Although the Maunder minimum was the only Grand minimum
period directly observed, studies based on the reconstruction of
the Solar activity of the past Holoscene period through the
analysis of cosmogenic isotopes such as C14 and Be10 indicate
that there may have been other similar periods in the past. For
example, Usoskin et al. (2007) has estimated that one-sixth of
Solar activity is spent in such states of low activity.

Apart from the intrinsic scientific interest in the Grand
minimum periods, the coincidence between the Maunder
minimum and the so-called “little ice age” (a period of extreme
cold climate in Europe in the 1600s and 1700s) suggests a
possible modulation of Earth’s climate by the solar cycle
variability (see, for instance, Crowley 2000; Mauquoy et al.
2002; and Owens et al. 2017), which increases the necessity to
understand the mechanisms behind the occurrence of a Grand
minimum event and consequently to properly model it
numerically and ultimately satisfactorily predict its occurrence.

From a theoretical point of view, the mechanisms that have
been proposed for the occurrence of Grand minima and
the long-term solar cycle modulations are based on either
mean-field dynamo models forced by stochastic fluctuations
(Ossendrijver 2000) or on-off intermittency behavior in chaotic
processes (Platt et al. 1993), although none of these models

seem to have firm derivations based on the magnetohydro-
dynamic (MHD) equations.
On the other hand, the study of the nonlinear MHD Rossby

wave interactions in the context of the Solar cycle was
introduced in Raphaldini & Raupp (2015), which included
evidence for the cyclic modal energy exchange obeying the
same timescale of the main ∼11 yr cycle of solar magnetic
activity, as well as evidence for the equator-ward propagation
in a realistic differential rotation profile in accordance with the
observed butterfly diagram. In a more general context of
nonlinear wave interaction and wave turbulence, it is usual to
consider the so-called “random phase hypothesis” (Zakharov
et al. 2012; Nazarenko 2011). This hypothesis has led to a
paradigm that the dynamical phases were unimportant to the
energy transfers throughout the modal space in a turbulent
system. Conversely, there has been a recent growing basis of
research pointing out the importance of the wave dynamical
phases in the energy transfers among the modal structures in
turbulent regimes. Chian et al. (2010) showed in a model of
regularized long-wave equation that amplitude-phase synchro-
nization can lead the dynamical system to switching between
regular and irregular behaviors, which are measured by a
spectral entropy. Their methodology was extended to other
turbulent contexts, including MHD effects in Keplerian disks
(Miranda et al. 2015). Another important mechanism asso-
ciated with the dynamics of the wave phases was discovered
recently by Bustamante et al. (2014): the so-called “precession
resonance mechanism.” This mechanism is related to the fact
that the oscillation due to the linear phase mismatch in a wave
triad can resonate with the nonlinear amplitude oscillation of an
adjacent triad, leading to strong transfers of energy throughout
the whole modal space. This theory was also extended to
include dissipation in the context of Burger equation (Murray
& Bustamante 2018), in which bursts of strong energy transfer
interchanged with periods of weak interaction were found to
be associated with synchronized/unsynchronized regimes in
the dynamical phases. Raphaldini et al. (2019) studied the
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precession resonance mechanism in the context of MHD
Rossby waves in the solar tachocline. They analyzed the
reduced dynamics of two interacting wave triads coupled by a
single mode and demonstrated that, in the conservative
dynamics, the aforementioned precession resonance mech-
anism maximizes the efficiency of energy transfer between
the two connecting triplets, which in turn yields long-term
modulations of the main approximately 11 yr cycle associated
with the intra-triad energy exchanges. In addition, their
numerical results show that the inclusion of forcing and
dissipation yields solutions that are reminiscent of the time
series of the solar magnetic activity, interchanging between
Grand minimum-like periods and periods of strong activity.

Recently, the interest in the magnetic Rossby waves in the
context of the solar variability has sparked due to observational
evidence for their existence (see, for instance, McIntosh et al.
2017; Löptien et al. 2018). This evidence of magnetic Rossby
waves has been based on observed slow oscillations that are
believed to be relevant in the tachocline region of the Sun and
have been associated with the MHD generalization of the
hydrodynamic Rossby waves that govern the dynamics of
geophysical fluids (Zaqarashvili et al. 2007). A large number of
articles have addressed different aspects of this oscillation type.
Dikpati et al. (2017) and Dikpati et al. (2018a) showed that the
interaction of Rossby waves with the differential rotation (zonal
flow) may produce either bursted or quiet seasons in the Sun.
Zaqarashvili (2018) explored the dynamics of these waves in
the equatorial region, among other faster types of modes. The
association between Rossby waves and solar magnetic fields
goes back (Gilman 1969). One important aspect of the Rossby
waves in the context of the Sun and other stars is that they can
play a role in the dynamo process via alpha effect. The alpha
effect is an essential component of the dynamo process
that converts toroidal magnetic fields into poloidal ones
(Brandenburg & Subramanian 2005). Indeed, Rossby waves
are associated with helical motions and, therefore, constitute a
good candidate to provide the alpha effect (see also Gilman &
Dikpati 2014).

In this Letter we have extended the study of Raphaldini
et al. (2019) in order to further investigate the mechanisms
associated with the periods of suppressed activity of the mode
amplitudes resembling the Grand minimum states of solar
magnetic activity that appeared in their forced-dissipative
reduced model of nonlinearly interacting MHD Rossby modes.
In this context, we have analyzed the sensitivity of the results to
the magnitude of the forcing, as well as the time evolution of
the fully nonlinear wave phases. We have demonstrated that the
synchronization/desynchronization of wave phases leads the
dynamics of the corresponding low-dimensional dynamical
system to switch between periods of high activity/strong
interactions and periods of suppressed activity/weak interac-
tions. Therefore, we suggest that the amplitude-phase synchro-
nization associated with the nonlinear dynamics of MHD
Rossby modes at the solar tachocline can be a possible
dynamical mechanism responsible for the emergence of Grand
minimum-like states of the solar magnetic activity. Conse-
quently, this Letter corroborates with the results of the previous
works of Raphaldini et al. (2019) and Raphaldini & Raupp
(2015), pointing out the importance of nonlinear MHD Rossby
modes at the solar tachocline for the observed magnetic activity
of the Sun.

2. Model Equations

The simplest model bearing the existence of magnetic
Rossby waves at the solar tachocline corresponds to the MHD
generalization of the barotropic non-divergent model
(Zaqarashvili et al. 2007), which in turn represents a simplified
version of the quasi-geostrophic MHD equations (Zeitlin 2013)
with the assumption of high equivalent depth. The MHD
generalization of the barotropic non-divergent model can be
expressed in terms of the conservation of absolute vorticity and
the induction equation in spherical coordinates as follows:
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In the equations above, ψ is the streamfunction, A is the
magnetic potential, = j A2 is the magnetic current, and
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where f and g represent two arbitrary functions, f is the
longitude, and a is the tachocline solar radius.
As mentioned in the previous section, we consider a highly

truncated spectral representation of Equations (1) and (2)
in terms of the eigensolutions of their linearized version
around a background state at rest (no mean flow) and having a
global structure toroidal magnetic field q=B B cos , 00( ),
with B0 being set to yield an Alfvén wave speed of
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with the±sign indicating the two possible branches, namely
the fast hydrodynamic mode (−) and the slow magnetic mode
(+). Indeed, one notices that setting =B 00 (Ω=0) recovers
the dispersion relation of Rossby–Haurwitz (Alfvén) waves,
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which is compatible with the linear theory results of
Zaqarashvili et al. (2007) obtained directly from the shallow-
water MHD equations. Once a vorticity source3 and dissipation
are included in (1) and (2), plugging (4a) and (4b) into these
equations yields a low-dimensional dynamical system govern-
ing the time evolution of the mode amplitudes, viz.

L
= L L - Ldd

dt
C e d 6i t1

1,2,3 2 3 1 1a* ( )

L
= L L - Ldd

dt
C e d 7i t2

2,3,1 1 3 2 2a* ( )

L
= + LL + L L - Ld d- -d

dt
f C e C e d 8i t i t3
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In the equations above, the superscript “∗” indicates the complex
conjugate, d w w w= - -a 1 2 3 and d w w w= - -b 5 3 4 refer to
the linear frequency mismatches of Triads a (Modes 1, 2, and 3)
and b (Modes 3, 4, and 5), respectively; Cj l k, , are the nonlinear
coupling constants, fj refers to the projection of the vorticity
forcing onto each wave mode,4 and dj, j=1, 2, 3, 4, and 5, are
the damping coefficients. Details on the derivation of the
equations above, including the expressions of coefficients Cj k l, , ,
fj and dj, as well as the selection rules required for the nonlinear
coupling coefficients to be nonzero, can be found in Raphaldini
et al. (2019).

3. Results

A representative example of two wave triplets coupled by a
common wave mode, whose spectral amplitudes satisfy system
(6)–(10), is illustrated in Table 1. The linear frequency
mismatch of Triad a is associated with an oscillation period
of approximately a half of the main ∼11 yr period of the solar
cycle. Raphaldini et al. (2019) showed a numerical integration

of system (6)–(10) in the precession resonance regime, in
which the amplitude oscillation of Triad b, which is nearly
resonant, resonates with the linear frequency mismatch of Triad
a. The numerical results presented in Raphaldini et al. (2019)
for an arbitrary value of the forcing parameter f3 display a time
series of Mode 3 amplitude that is reminiscent with the time
series of the solar magnetic activity, showing periods of
suppressed activity that resemble the Grand minima. Here we
further analyze the numerical results of system (6)–(10) to
better understand the mechanism behind the occurrence of such
periods of low-amplitude fluctuations and, consequently, to
yield a theoretical description of the Grand minima of solar
magnetic activity based on the nonlinear dynamics of magnetic
Rossby waves at the solar tachocline.
Figure 1 shows the time evolution of the amplitude

=A t A Aj j j*∣ ( )∣ , j=1, 2, 3, of the spectral coefficients of
the modes of Triad a for two regimes, one with forcing and
dissipation, namely = ´ -f 2.08 103

17, and the second with-
out forcing and dissipation. As in Raphaldini et al. (2019), the
regime of the spectral amplitudes displayed in Figure 1
(precession resonance regime) maximizes the energy transfer
between the two triads. Thus, regardless of the forcing
parameter value, the mode amplitudes Aj∣ ∣, j=1, 2, 3, undergo
fluctuations with a main period of the order of 10 yr. This main
∼10 yr oscillation is associated with the energy exchanges
among the modes of the same triplet (Modes 1, 2, and 3, for
instance) and is compatible with the main frequency of the
solar cycle. This main ∼10 yr oscillation of the spectral
amplitudes is modulated by longer timescale fluctuations that
result from energy transfers between the two different triads.
This main amplitude fluctuation with an approximately 10 yr
period, alternating smaller and larger peaks on longer time-
scales ranging from several hundred to a few thousand years, is
in agreement with observational records of the solar activity.
For instance, Usoskin (2017) pointed out the following well-
defined long-term variability modes of the solar magnetic
activity: the Gleinsberg cycle with timescale of approximately
100 yr, the Suess de Vries cycle of approximately 200 yr, the
Millennial Eddy cycle at the timescale of 1000 yr, and the
Hallstatt cycle with an approximately 2400 yr period.
Conversely, depending on the value of the forcing

parameter, f3, system (6)–(10) can undergo recurrent periods
with very low energy. In fact, in the numerical integration with
forcing and dissipation presented in Figure 1 (left panel) one
observes recurrent periods of very low energy of the first triad
(i.e., ~ + +E A A A1

2
2

2
3

2∣ ∣ ∣ ∣ ∣ ∣ ). Such periods resemble the
dynamics of the so-called Grand minima in the observational
record of the magnetic activity of the Sun. In contrast, in the
numerical integration in the conservative case (right panel of
Figure 1), these low-energy states are no longer observed. For
other values of the forcing parameter (not shown here), the
duration and the recurrence of such periods of low energy differ
considerably, from very short and more rare low-energy
periods to more persistent and recurrent periods.
In addition to analyzing the behavior of the amplitudes of the

spectral coefficients, it is also important to investigate the
dynamics of their phases. As discussed in Section 1, recent
studies have shown that the mode phases play an important role
in the nonlinear interaction of the waves (Bustamante et al.
2014). In particular, the dynamics of the wave phases are
directly associated with an intermittent-type behavior of
dynamical systems describing the nonlinear dynamics of

Table 1
Wavenumbers and Corresponding Eigenfrequencies of the Selected Waves in

the Five-wave Model, Separated in Two Triads (a and b)

Wavenumber Frequency(Hz) Triad
Triad

Coefficient
Dissipation
Parameter

(1) (2) (3) (4) (5)

(0, 2) 0 a −0.200293 i -1.02 17

(1, 10) * -1.78236 10 7 a −1.75195 i -1.14 17

(1, 9) * -1.72695 10 7 a −2.15463 i -9.54 18

(1, 9) * -1.72695 10 7 b 0.620163 i -9.54 18

(1, 12) * -1.85859 10 7 b 0.27978 i -1.56 17

(2, 10) * -3.56473 10 7 b 0.904184 i -1.14 17

Note. The corresponding frequency mismatches give d =1 5.72248 yra and
d =1 15.2326 yrb . All the parameter values are in MKS units.

3 The vorticity source included in (1) refers to the linear divergence term of
the vorticity balance (see Raphaldini & Raupp 2015 for details), and can be
thought of as representing the effects of either baroclinic instability (Gilman &
Dikpati 2014) or thermal anomalies at the top of the radiative zone.
4 For simplicity, here we have assumed that the forcing projects only onto
Mode 3.
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interacting wave modes (Chian et al. 2010; Murray &
Bustamante 2018). In addition, the time series of observed
solar activity exhibits a remarkable intermittent behavior
(Usoskin 2017). Thus, Figure 2 shows the time evolution
of the phase difference among the modes, df =t( )
f f f f f- - + -t t t t t3 2 1 4 5( ) ( ) ( ) ( ) ( ). This phase difference
is illustrated in Figure 2 without the multiples of 2πto remove
its singular growth at these points. The evolution of the phase
difference observed in Figure 2 switches between a fast-
growing phase and phase-locked or slowly growing phase
periods. By comparing the time evolution of the phase
difference, df, with the time evolution of the amplitudes of
the modes of the first triad,5 one notices that the phase-locked/
slowly growing periods coincide with periods of low energy of
the modes, as can be clearly noticed in Figure 2 (top panel).
This coincidence suggests that, if we define an instantaneous
frequency mismatch by dw df=t d t dt( ) ( ( )) , one would
expect that this instantaneous frequency mismatch be propor-
tional to the amplitude of the second mode, as can be confirmed
in Figure 2 (bottom panel). Since the signal is too noisy, we
present a smoothed version of the time series of dw t( ) together
with the amplitude of Mode 2 in Figure 2 (bottom panel),
where one can observe: (i) the coincidence of synchronized
periods (low dynamical mismatch dw t( )) with periods of low-
energy states, and (ii) the coincidence of periods when dw t( ) is
large with periods of high amplitude of the modes of the first
triad. By analyzing the phase-space projection onto the plane

´A ARe Im2 2 (Figure 3), one can see that the synchronized
state (bottom panel) is associated with an inhibited propagation
regime of Mode 2, whereas a normal unsynchronized period is

associated with a regular propagation regime of this mode.
Therefore, the synchronization mechanism presented here acts
to decrease the effective (nonlinear) phase speed of Mode 2
such that the difference between its nonlinear frequency and the
nonlinear frequency of the other modes becomes small in the
synchronized regime.
By analyzing the statistical distribution of the solar activity,

Usoskin et al. (2014) suggested the existence of two distinct
activity modes evidenced by the bimodal statistical distribu-
tion of the reconstructed solar activity time series. Our model
presents a similar bimodal behavior, as can be evidenced with
the distribution histogram of dw t( ) illustrated in Figure 4
(left panel). As in Chian et al. (2010) there are two states in
the system, both chaotic, but one of them more organized (and
predictable) than the other. Following the approach of Chian
et al. (2010) we evaluated the Shannon entropy of the
statistical distribution of frequency mismatches in 200 yr
windows:

å dw dw= -
= -

+

 P P t ln P t , 11T
t T

T

T T
100

100

( ) ( ( )) [ ( ( ))] ( )

where  denotes the Shannon entropy, PT is the probability
distribution of the frequency mismatch at time T. In Figure 4
(right panel), we showed that the Shannon entropy closely
follows the frequency mismatch curves with a negative
correlation (note the inverted axis in the entropy scale). Since
the Shannon entropy is a measure of organization of the system
we can conclude that transitions from “normal” to Maunder-
like states in the toy model correspond to a transition from a
more-organized to a less-organized regime.

Figure 1. Time evolution of the energies in each mode =E A Aj j j*, j=1, 2, 3, of Triad a, for the forced/dissipative case (left panel) and for the conservative case
(right panel), over a 10,000 year period. One observes long-term modulations with timescales of several hundred/thousand years on the amplitude peaks of the main
∼10 yr cycle in the case with forcing and dissipation. One notices in this case the occurrence of periods of very low energy of the three wave modes, whereas for
conservative case (right panel) one does not observe such periods.

5 For the purpose of clarity, only the amplitude of Mode 2 is displayed.
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4. Final Remarks

We extended the study of Raphaldini et al. (2019) in order to
investigate the mechanisms associated with the periods of
suppressed activity of wave amplitudes. Such periods resemble
the Grand minimum states that are noticeable in observational
records of the Solar magnetic activity. We demonstrated that
the suppression of the mode energies is associated with a
regime of synchronized wave phases. In these regimes, the
mismatch of wave phases becomes locked or drifts very slowly.
By contrast, the phase mismatch grows much faster during
periods of large mode energies. Similar synchronization
mechanisms are also reported in other astrophysical and
plasma contexts (see Chian et al. 2010; Miranda et al. 2015;
and Rempel et al. 2009). Therefore, we suggest that the
amplitude-phase synchronization of Rossby modes at the solar
tachocline is a possible dynamical mechanism for the
emergence of Grand minimum states in the solar magnetic
activity. Consequently, this Letter corroborates with the results
of the previous works of Raphaldini et al. (2019) and
Raphaldini & Raupp (2015), pointing out the importance of
nonlinear MHD Rossby modes at the solar tachocline for the
magnetic activity of the Sun.

The model presented here contrasts with stochastic models
of the long-term behavior of the Solar activity. Most of these
models describe the long-term modulations of the Solar activity

driven by stochastic variations of model parameters, most
notably the α effect in mean-field dynamos. Arising as a
consequence of a random process in these models, states such
as grand Solar minima are unpredictable. Since our model is
deterministic, although chaotic, it possesses some degree of
predictability. This is compatible with the analysis of the
available records according to Moss et al. (2008); see also
Usoskin (2017).
It remains an open question whether Grand minima are

associated with a different state of the Solar dynamo, as
pointed out by Usoskin et al. (2014). Our model suggests the
existence of at least two separate regimes of the system. In
one of these regimes, as system evolves it becomes trapped
for long periods in regions of the phase space where the
amplitudes of the waves are very low. In these regions, the
wave phases become locked, with their mismatch becoming
approximately constant for a long time. This poses a strong
constraint to the theory proposed here. According to our
results, in a Grand minimum state one would expect structures
propagating with different velocities compared with a period
of normal variability, probably exhibiting slowly propagating
or essentially steady structures such as more predominant
preferential longitudes.
In the present study we have presented the ideas in a

simplified setting, with only five waves and an idealized static

Figure 2. Top panel: the time evolution of the amplitude A t2∣ ( )∣ of Mode 2 (blue line) and the modal phase difference df f f f f f= - - + -t t t t t t3 2 1 4 5( ) ( ) ( ) ( ) ( ) ( )
(brown line) referred to the same numerical integration illustrated in the left panel of Figure 1 (i.e., for the value of the forcing parameter = ´ -f 2.08 103

17), but over a
shorter period around a prevalent low-energy state. Bottom panel: the time evolution of A t2∣ ( )∣ is plotted together with the instantaneous frequency mismatch δω (see the
text). The frequency mismatch is divided by 10 in order to fit the same scale as the amplitude. It is observed that the modal phases become locked for an extended period
of time when the energy is very low, unlike the periods of very strong activity in which the phase difference grows faster.
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toroidal magnetic field. A more realistic model should take into
account dynamo effects, in particular the asymmetric structure
of the toroidal magnetic field that reverses direction according
to the dynamo cycle. This type of oscillatory background state
can give rise to an MHD analog of the modulational instability
explored by Connaughton et al. (2010). The study of unstable
Rossby modes under an oscillatory background toroidal
magnetic field may provide a selection criterion of the most
relevant Rossby modes (i.e., unstable wavenumbers) for the

mechanism proposed here, and could also be relevant to
shorter-term solar oscillations (Dikpati et al. 2018b, 2018c).
Another important extension of this study is the investigation
of the role of Rossby waves in the dynamo process. Rossby
waves are known to be associated to the alpha effect; such a
study could be performed in a model taking into account the
role of poloidal fields and stratification (see Avalos-Zuniga
et al. 2009 for a Rossby wave-driven dynamo in the context of
the geodynamo). The extension of this idea to more complete

Figure 3. Trajectories in a projection of the phase space (real vs. imaginary parts of Mode 2 amplitude). The top panel refers to a “normal” period, and the bottom
panel to a synchronized period. One notices that this particular mode switches from a regular to an irregular propagation regime.

Figure 4. Histogram of the instantaneous frequency mismatch δωreferred to the same numerical solution of Figure 1 (left panel). It is evident that the system has a
bimodal character. The evolution of the Shannon Entropy of the system compared with the frequency mismatch curve (right panel).
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models and its comparison with the observational record is
necessary to test the hypothesis raised in this article.

The research reported here has received financial support
from FAPESP (Fundação de Amparo à Pesquisa do Estado de
São Paulo; grants 2015/50686-1, 2017/23417-5, and 2018/
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