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Resumo

Mapas simpléticos têm sido amplamente utilizados para modelar o transporte caótico

em plasmas e fluidos. Neste trabalho, propomos três tipos de mapas simpléticos que

descrevem o movimento de deriva elétrica em plasmas magnetizados. Efeitos de raio de

Larmor finito são inclúıdos em cada um dos mapas. No limite do raio de Larmor tendendo

a zero, o mapa com frequência monotônica se reduz ao mapa de Chirikov-Taylor, e, nos

casos com frequência não-monotônica, os mapas se reduzem ao mapa padrão não-twist.

Mostramos como o raio de Larmor finito pode levar à supressão de caos, modificar a

topologia do espaço de fases e a robustez de barreiras de transporte. Um método baseado

na contagem dos tempos de recorrência é proposto para analisar a influência do raio de

Larmor sobre os parâmetros cŕıticos que definem a quebra de barreiras de transporte.

Também estudamos um modelo para um sistema de part́ıculas onde a deriva elétrica é de-

scrita pelo mapa de frequência monotônica, e o raio de Larmor é uma variável aleatória que

assume valores espećıficos para cada part́ıcula do sistema. A função densidade de proba-

bilidade para o raio de Larmor é obtida a partir da distribuição de Maxwell-Boltzmann,

que caracteriza plasmas na condição de equiĺıbrio térmico. Um importante parâmetro

neste modelo é a variável aleatória gama, definida pelo valor da função de Bessel de or-

dem zero avaliada no raio de Larmor da part́ıcula. Resultados anaĺıticos e numéricos

descrevendo as principais propriedades estat́ısticas do parâmetro gama são apresentados.

Tais resultados são então aplicados no estudo de duas medidas de transporte: a taxa de

escape e a taxa de aprisionamento por ilhas de peŕıodo um.
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Abstract

Area-preserving maps have been extensively used to model chaotic transport in plas-

mas and fluids. In this work we propose three types of maps describing electric drift motion

in magnetized plasmas. Finite Larmor radius effects are included in all maps. In the limit

of zero Larmor radius, the monotonic frequency map reduces to the Chirikov-Taylor map,

and, in cases with non-monotonic frequencies, the maps reduce to the standard nontwist

map. We show how the finite Larmor radius can lead to chaos suppression, modify the

phase space topology and the robustness of transport barriers. A method based on count-

ing the number of recurrence times is used to quantify the dependence on the Larmor

radius of the threshold for the breakup of transport barriers. We also study a model

for a system of particles where the electric drift is described by the monotonic frequency

map, and the Larmor radius is a random variable that takes a specific value for each

particle of the system. The Larmor radius’ probability density function is obtained from

the Maxwell-Boltzmann distribution, which characterizes plasmas in thermal equilibrium.

An important parameter in this model is the random variable gamma, defined by the

zero-order Bessel function evaluated at the Larmor radius’particle. We show analytical

and numerical computations related to the statistics of gamma. The set of analytical

results obtained here is then applied to the study of two numerical transport measures:

the escape rate and the rate of trapping by period-one islands.
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Chapter 1

Introduction

Important research efforts in controlled nuclear fusion are focused on the magnetic

confinement of hot plasmas. In order to improve the confinement conditions, a better

understanding of the particle transport is needed, specially in the case of electric drift

motion or, simply, ~E × ~B transport. A typical approach to this problem is based on the

~E × ~B approximation of charged particle’s guiding center’s motion [1–4]. However, in

case of fast particles (e.g. alpha particles in burning plasmas) or inhomogeneous fields

on the scale of the Larmor radius, it is necessary to consider finite Larmor radius (FLR)

effects [5, 6].

Previous studies on the role of the Larmor radius include Refs. [5, 7, 8], where non-

diffusive particle transport in numerical simulations of eletrostatic turbulence was ana-

lyzed and FLR effects were shown to inhibit transport. Non-diffusive chaotic transport

was studied in [9] using an ~E × ~B Hamiltonian model that incorporates FLR effects.

In [6, 10], the authors studied another Hamiltonian model of the ~E × ~B transport with

FLR effects, making use of dynamical systems methods to investigate Larmor radius’s

influence on the formation of complex phase space topologies and chaos supression.

In this work we analyse FLR effects in simple area preserving maps models of ~E × ~B

motion. The maps presented here are constructed following the Hamiltonian framework

in [11] for electrostatic drift motion. The Hamiltonian is determined by a time dependent

electrostatic potential, which depends on the radial and the poloidal coordinates. FLR

corrections are included into the model by gyro-averaging [12] the electrostatic potential.
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2 Introduction

The electrostatic potential consists of two parts: the first one depends only on the

radial coordinate and is called the equilibrium potential; the second part, which depends

on time and the poloidal coordinate, represents a superposition of drift waves. We model

the drift waves following the approach in [13] that allows the contruction of area preserv-

ing maps as simple discrete models of ~E × ~B transport. Depending on the equilibrium

potential, the maps’ frequencies exhibit monotonic or non-monotonic profiles. Using these

simple maps models of gyro-averaged chaotic ~E× ~B transport, we analyze the role of Lar-

mor radius in the following problems: chaos supression, stability of fixed points, nontwist

phase space topologies, and transport barriers.

The term “nontwist” is used to designate Hamiltonian systems that violate the twist

or nondenegeracy property. That is the case for Hamiltonian systems whose frequency

is a non-monotonic function of the action variable. Nontwist Hamiltonian systems are

characterized by particular phase space topologies [14] and can be found in many different

physical models. Some examples include: E × B transport in magnetized plasmas [3, 4,

15]; magnetic fields with reverse shear in toroidal plasma devices [16–18]; modelling of

transport by traveling waves in shear flows in fluids [19–21].

The presence of nontwist transport barriers is among the most important properties

exhibited by nontwist Hamiltonian systems. By nontwist transport barriers we mean a

robust region of spanning Kolmogorov-Arnold-Moser (KAM) curves that are resistant to

“breakup”, i.e. they can survive even when the phase space is almost completely dominated

by chaotic dynamics. In Hamiltonian dynamical systems theory, spanning KAM curves,

also called KAM barriers [19] or rotational invariant circles [22], are known to divide

the phase space in such a way that chaotic orbits become confined among them. For this

reason, spanning KAM curves are interesting in the study of transport problems, specially

those related to E ×B Hamiltonian models. In the context of one and a half degrees of

freedom nontwist Hamiltonian systems, the robusteness of spanning KAM curves has also

been called strong KAM stability [23] and has been the subject of several studies (see, for

example, [24–27] and references therein).

In this work the maps correspond to Hamiltonians whose frequencies can be monotonic

or non-monotonic functions of the action variable. The latter case are characterized by the
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presence of nontwist transport barriers that can be destroyed or restored by changing the

value of the Larmor radius. This feature is directly related to the FLR effect of chaotic

transport suppression, whose study was initiated by [6, 10]. Here we show that chaos

suppression occurs when the Larmor radii are close to specific values, for which invariant

circles become very resilient to breakup. In the case of the nontwist maps, the invariant

circles that constitute the nontwist transport barrier are the most easily restored and

hardest to break.

Among the main goals of the present work is the study of the critical parameters related

to the destruction of nontwist barriers. These thresholds can be aproximately determined

by what we call here the breakup diagrams. In order to efficiently compute breakup

diagrams, this work describes a procedure based on a technique [28] which explores the

recurrence properties of a dynamical system’s orbit that result from the Slater’s Theorem

[29]. As shown in [28], and also in the later work [30], the recurrence properties of an

orbit can be used to differentiate chaotic and non-chaotic motion. A recent example of

the application of this technique to the standard nontwist map [19] was presented in [31].

We also study statistical properties of a model based on the gyro-averaged standard

map (GSM), the simplest area-preserving map proposed in this this work. The GSM

corresponds to the map with monotonic frequency map and is a modified version of the

Chirikov-Taylor or standard map [32,33].

Besides a perturbation parameter, the GSM has a dependence on a function gamma,

given by the zero-order Bessel function of the Larmor radius. The GSM’s effective pertur-

bation consists in the product between the perturbation parameter and gamma. In the

limit of zero Larmor radius, the GSM corresponds exactly to the standard map.

In the GSM model initially analyzed, we have assumed the Larmor radius as a param-

eter and our goal was to study non-linear dynamics properties emerging from changing

the value of this parameter. After concluding this study, we adapted the GSM model

in order to consider an ensemble of charged particles, each one having its own Lamor

radius. Following [6,9], the Larmor radius’ probability density function (pdf) results from

a Maxwell-Boltzmann distribution, which describes plasmas in thermal equilibrium.

Particles have different Larmor radii and their orbits are computed by iterations of
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different GSMs, each one with its own effective perturbation. Thus, particles“see”different

phase space topologies: a particle can be trapped inside an stability island as other one,

after crossing the orbit of the first, is able to reach far regions of the phase space following

chaotic orbit.

Since the effective perturbation depends on the value of gamma, determining its basic

statistical features is important to any transport study in the GSM model. Using the

Larmor radius’ pdf, we start by obtaining a set of analytical expressions including the

pdf, the average and the dispersion of gamma. Histograms of gamma are discussed using

the formulas obtained.

An analytical formula for the cumulative distribution function of gamma is also pre-

sented and verified by numerical simulations. We describe its main properties and relate

them to the gamma’s pdf. The cumulative distribution function of gamma is then ap-

plied to obtain two additional analytical results: the probability of global chaos and the

probability of trapping by period-one islands.

The probability of global chaos is the probability of a particle moving in a phase

space characterized by global chaos, i.e. a phase space where KAM barriers do not exist.

The probability of trapping by period-one islands is the probability of a particle, initially

located near a fixed point, being trapped by the corresponding period-one island. If the

fixed point is elliptic, there is an island trapping particles near it. In case of an hyperbolic

fixed point, particles, in general, move away from it following chaotic orbits.

The probabilities of global chaos and trapping are functions depending on the thermal

Larmor radius and the perturbation parameter, the only two parameters in GSM model

and that incorporate all relevant physics. We show plots of both probabilities, analyzing

how they change regarding variations of the two parameters.

To illustrate the application of the analytical results obtained, we define and analyze

two numerical transport measures: the escape rate and the rate of trapping by period-

one-islands. Numerical simulations of both measures are shown and compared to the

probabilites of global chaos and trapping. The role of the thermal Larmor radius and the

perturbation parameter is again analyzed in detail.

The remaning part of this thesis is structured as follows.
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In chapter 2, we introduce a discrete model of the gyro-averaged ~E × ~B drift motion,

which we call here as gyro-averaged drift wave map. The model is used to construct all

maps discussed in this work. Non-linar dynamics properties resulting from FLR effects

are studied for each of those maps.

In chapter 3, we focus on the statistical analysis of the GSM model.

In chapter 4, we present a summary and concluding remarks.

Appendix A describes the details in the obtention of the gyro-averaged drift wave map.

Appendix B shows necessary conditions and computations to obtain indicator point

formulas, which are important to detect the presence of nontwist transport barriers.

In the last chapter, Appendix C, we present an alternative approach to obtain the main

statistical properties of gamma and also an additional discussion about the gamma’s pdf.
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Chapter 2

Gyro-Averaged E×B Maps and

FLR Effects

This chapter is organized as follows. Section 2.1 describes the discrete model of gyro-

averaged ~E × ~B drift motion, from which we derive different kinds of maps. The first

example, for which the frequency has a monotonic profile, is presented in section 2.2,

where FLR effects on the transition to global chaos are analyzed. Section 2.3 describes an

example with a non-monotonic profile and dicusses FLR effects on the stability of fixed

points, phase space topologies and breakup diagrams. Another nontwist map is analysed

in section 2.4, where we turn our attention to FLR effects on zonal flow bifurcations. This

chapter is partly based on Ref. [34], our last published paper.

2.1 Gyro-averaged ~E × ~B Drift Model

The ~E × ~B drift velocity of the guiding center is given by [35]:

~vGC =
~E × ~B

B2
. (2.1)

Using x as the radial coordinate and y as the poloidal coordinate, the equations of the

~E× ~B drift motion, given by ~vGC = (ẋ(t), ẏ(t)), can be written as the Hamiltonian system:

dy

dt
=
∂H(x, y, t)

∂x
,

dx

dt
= −∂H(x, y, t)

∂y
, (2.2)

7



8 Gyro-Averaged E×B Maps and FLR Effects

where:

H(x, y, t) =
φ(x, y, t)

B0

, (2.3)

φ is the electrostatic potential, and we assume a constant toroidal magnetic field ~B = B0êz.

As discussed in [10], finite Larmor radius (FLR) effects can be incorporated substituting

the electrostatic potential by its average over a circle around the guiding center:

〈φ (x, y, t)〉ϕ =
1

2π

∫ 2π

0

φ(x+ ρ cosϕ, y + ρ sinϕ, t) dϕ, (2.4)

where ρ is the Larmor radius, which defines the radius of a charged particle’s gyration

around its guiding center, and the integration variable ϕ is the angle of gyration. Formula

(2.4) corresponds to the well-known gyro-averaging operation [12].

The gyro-averaged Hamiltonian can then be defined as:

〈H(x, y, t)〉ϕ =
〈φ (x, y, t)〉ϕ

B0

, (2.5)

and the gyro-averaged equations of motion (2.2) can be written as:

dy

dt
=
∂〈H〉ϕ
∂x

,
dx

dt
= −∂〈H〉ϕ

∂y
. (2.6)

Following [13], we assume an electrostatic potential of the form:

φ (x, y, t) = φ0(x) + A
+∞∑

m=−∞

cos(ky −mω0t), (2.7)

where φ0(x) is the equilibrium potential, A, the amplitude of the drift waves, k is the

wave number, and ω0 is the fundamental frequency.

Applying the gyro-average operation (2.4) to (2.7), and substituting the result in (2.5),

we obtain the Hamiltonian:

〈H(x, y, t)〉ϕ = 〈H0(x)〉ϕ +
A

B0

J0 (kρ)
+∞∑

m=−∞

cos (ky −mω0t) , (2.8)

where J0 is the zero-order Bessel function, and the integrable Hamiltonian 〈H0(x)〉ϕ is

defined as:

〈H0(x)〉ϕ =
〈φ0 (x)〉ϕ

B0

. (2.9)
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Using the Fourier series representation of the Dirac delta function, equation (2.8) can be

rewritten as:

〈H(x, y, t)〉ϕ = 〈H0(x)〉ϕ +
2πA

B0

J0 (kρ) cos(ky)
+∞∑

m=−∞

δ(ω0t− 2πm). (2.10)

Let xn = x(t−n ) and yn = y(t−n ), with t−n = 2πn
ω0
− ε, n ∈ N, and ε → 0+. Integrating

equations (2.6) in the interval (t−n , t
−
n+1) leads to the gyro-averaged drift wave map 1:

xn+1 = xn +
2πkA

ω0B0

J0 (ρ̂) sin(kyn), (2.11)

yn+1 = yn +
2π

ω0

Ω (xn+1) , (2.12)

where ρ̂ = kρ, which will call here the normalized Larmor radius, and Ω (x) corresponds

to the frequency associated to the integrable Hamiltonian (2.9):

Ω (x) =
d〈H0(x)〉ϕ

dx
. (2.13)

For ρ = 0, Ω (x) = −Er(x)/B0, where Er(x) is the radial component of the electric field.

Depending on the function assumed for the equilibrium potential φ0(x), which determines

Er(x) and Ω (x), we can obtain different area preserving maps from equations (2.11) and

(2.12). In the next sections, we discuss three different cases.

2.2 Gyro-averaged standard map (GSM)

As a first and simple example, we show how to construct the gyro-averaged standard

map (GSM), assuming a monotonic linear frequency profile. The GSM is a modified

version of the standard map, also known as the Chirikov-Taylor map [32, 33]. To define

the frequency in (2.12), we use the following form to the equilibrium potential:

φ0(x) = α
(kx)2

2
, (2.14)

where k is the wave number in equation (2.7), and α is a free parameter. Applying the

gyro-average operation to the equilibrium potential (2.14), we get:

〈H0(x)〉ϕ =
α

B0

[
(kx)2

2
+
ρ̂2

4

]
. (2.15)

1Details about the steps followed in this section to obtain the gyro-averaged drift wave map are

presented in appendix A.
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Substituting (2.15) in (2.13), we get the frequency:

Ω (x) =
αk2

B0

x, (2.16)

which does not depend on the Larmor radius, and has a monotonic profile. Introducing

the non-dimensional variables:

I = kγx, θ = ky, (2.17)

and the constant:

γ =
2παk2

ω0B0

, (2.18)

we get, from (2.11) and (2.12), the gyro-averaged standard map (GSM):

In+1 =In +Kef (ρ̂) sin θn, (2.19)

θn+1 =θn + In+1, mod 2π (2.20)

where:

Kef = KJ0 (ρ̂) (2.21)

is the effective perturbation parameter and K = γ2A
α

is the perturbation parameter. For

ρ̂ = 0, Kef = K, and the GSM reduces to the standard map.

The phase space of the GSM, as in the case of any area-preserving map, is characterized

by the presence of periodic, quasiperiodic, and chaotic orbits. Quasiperiodic orbits covers

densely invariant curves. The invariant curves around the elliptic fixed points form island

chains. The invariant curves that wind around the entire domain of the angle variable

are known as rotational invariant circles [22] or, simply, as spanning KAM curves. The

presence of spanning spanning KAM curves is of special interest in our model because

they inhibit transport in the direction of the radial coordinate x, keeping chaotic orbits

confined to specific regions of phase space.

According to Greene’s residue method [37], the transition to global chaos in the stan-

dard map occurs when the absolute value of the perturbation parameter is equal to, or

greater than, the critical value Kc ' 0.9716. That is, for K ≥ Kc, all spanning spanning

KAM curves are broken, and chaotics orbits can spread over all phase space (except in

regions occupied by isolated islands), which corresponds to the situation of global chaos.
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Figure 2.1: Critical lines for the standard map (blue horizontal line) and for the gyro-averaged standard map

(black curves). Inside the shaded regions, there is global chaos.

Larmor radius effects on the transition to global chaos in the GSM can be analyzed

by defining the critical line dividing the K − ρ̂ parameter space in two regions: one for

which the phase space contains at least one KAM curve and another for which transition

to global chaos has occured. In the standard map, there is no dependence on ρ̂, which

means that the critical line is just a horizontal line defined at K = Kc, as indicated

in figure 2.1. However, for the GSM, the critical line is determined by the condition

|Kef | = Kc:

K =
Kc

| J0(ρ̂)|
. (2.22)

As shown in Fig. 2.1, even for high values of the perturbation parameter (K � Kc) there

are an infinite number of bands of Larmor radius values for which the spanning KAM

curves can be restored and chaos is supressed.

The gyro-averaging operation “breaks” the critical line at the zeros of the zero-order

Bessel function. Near the zeros, the critical perturbation goes to infinity and the transition

to global chaos can not occur. The first five positive zeros, indicated in figure 2.1, are

approximately ρ1 = 2.40, ρ2 = 5.52, ρ3 = 8.65, ρ4 = 11.79, and ρ5 = 14.93.
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Figure 2.2: (a) GSM Poincaré section for ρ̂ = 3.9 and K = 8.0 (point P0 in figure 2.1): no spanning KAM

curves are observed. (b) GSM Poincaré section for ρ̂ = 5.52 and K = 8.0 (point P1 in figure 2.1): spanning

KAM curves are restored.

The effect of chaos suppression is illustrated by Figs. 2.2(a)-(b). Figure 2.2(a) shows

a GSM Poincaré section for the parameter values ρ̂ = 3.9 and K = 8.0, which correspond

to the point P0 in Fig. 2.1. No spanning KAM curves are observed in the Poincaré section

as P0 belongs to the region of global chaos. Keeping the same value of K and changing

the ρ̂ value to ρ2 (point P1 in Fig. 2.1) elliminates all the chaotic orbits (see figure 2.2(b)).

2.3 Gyro-averaged standard nontwist map (GSNM)

As a second example of the gyro-averaged drift wave map, we introduce the gyro-

averaged standard nontwist map (GSNM), which corresponds to a non-monotonic radial

eletric field. The equilibrium potential is defined by:

φ0(x) = α

[(x
L

)
− 1

3

(x
L

)3
]
, (2.23)

where α and L are dimensional constants. The gyro-average of (2.23) results in:

〈H0(x)〉ϕ =
α

B0

[(x
L

)(
1− ρ2

2L2

)
− 1

3

(x
L

)3
]
, (2.24)
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and from (2.13):

Ω (x) =
α

B0L

{[
1−

(
ρ√
2L

)2
]
−
(x
L

)2
}

(2.25)

The frequency Ω (x) has a non-monotonic parabolic profile with a maximum critical point

at x = 0. For ρ = 0, the zeros of Ω (x) (and also of the Er profile) are located at −L and

+L, where L is the characteristic length of the frequency profile. Substituting (2.25) into

(2.12), we obtain:

xn+1 =xn +
2π

ω0B0

AkJ0 (kρ) sin (kyn) (2.26)

yn+1 =yn +
2π

ω0B0

α

L

{[
1−

(
ρ√
2L

)2
]
−
(xn+1

L

)2
}
. (2.27)

Introducing the dimensionless variables:

I = −x
L
, θ =

ky

2π
, (2.28)

we get the gyro-averaged standard nontwist map (GSNM):

In+1 =In − bJ0 (ρ̂) sin (2πθn) (2.29)

θn+1 =θn + a

[(
1− ρ̄2

2

)
− I2

n+1

]
, mod 1 (2.30)

where:

a = αk
ω0B0L

, b =
2πaA

α
, (2.31)

ρ̄ = ρ
L
, ρ̂ = kρ, (2.32)

are four dimensionless parameters. We refer to b as the perturbation parameter, which is

proportional to the amplitude A of the drift waves. Like in the GSM case, we can also

define an effective perturbation parameter :

bef = bJ0 (ρ̂) . (2.33)

The parameters ρ̂ and ρ̄, as indicated by equations (2.32), correspond to the Larmor radius

ρ normalized using two different length scales: ρ̂ is proportional to the ratio between ρ

and the wave length λ = 2π
k

, and ρ̄ is the ratio between ρ and the characteristic length of

the frequency profile L.
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2.3.1 Fixed Points

We now study FLR effects on the position and stability of the fixed points of the

GSNM, I∗ = In+1 = In and θ∗ = θn+1 + m = θn, which, according to equations (2.29)-

(2.30), satisfy:

0 =bJ0 (ρ̂) sin(2πθ∗), (2.34)

m =a

[(
1− ρ̄2

2

)
− I∗2

]
, (2.35)

where m is an integer number. For each m ∈ Z, a 6= 0, bJ0 (ρ̂) 6= 0, and ρ̄ ≤
√

2
(
1− m

a

)
,

there are four fixed points:

P± = (0,±I∗ (ρ̄)) , (2.36)

Q± =

(
1

2
,±I∗ (ρ̄)

)
, (2.37)

where:

I∗ (ρ̄) =
1√
2

√
2
(

1− m

a

)
− ρ̄2. (2.38)

The θ coordinate of P± and Q± does not depend on any parameters. For fixed m and a,

the I-coordinate depends only on ρ̄ and can be determined by using the function (2.38).

If ρ̄ =
√

2
(
1− m

a

)
, the pair of points {P+, P−} collide at (0, 0), and {Q+, Q−} collide at(

1
2
, 0
)
. Figure 2.3 shows the I-axis position of both pairs for m = 0 and increasing ρ̄. The

collision occurs for ρ̄ =
√

2. For higher values of ρ̄, the fixed points don’t exist.

The stability of a k-periodic orbit of a map M is determined by the residue:

R =
1

4

[
2− Tr

(
k−1∏
i=0

J (~xi)

)]
(2.39)

where J is the Jacobian matrix of M , evaluated at all points of the k-period orbit {~xi}k−1
i=0 .

If 0 < R < 1, the periodic orbit is elliptic (stable); if R < 0 or R > 1, it is hyperbolic

(unstable); and, finally, it is parabolic in the transition from one case to the other, which

occurs for R = 0 or R = 1.

Applying formula (2.39) to the GNSM fixed points (2.36)-(2.37), we have:

R (P±) = R (Q∓) = ∓πabJ0 (ρ̂) I∗ (ρ̄) (2.40)
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Figure 2.3: Coordinate I of fixed points for m=0 and increasing ρ̄. The fixed points collide for ρ̄ =
√

2 and

cease to exist for higher values of ρ̄.

The stability of the fixed points {P±, Q±} with m = 0 can be analyzed using the parameter

Λ (a, b, ρ̂, ρ̄) = R (P−). As shown in Fig. 2.4, depending on the value of Λ, there are three

possible configurations. The symbol “x” denotes an hyperbolic point, and “o” an elliptic

point. The points have their stability inverted when −1 < Λ < 0 (configuration II ), as

indicated in figure 2.4b. All the fixed points are hyperbolic in configuration III (fig. 2.4c),

which occurs for Λ < −1 or Λ > 1.

2.3.2 Separatrix reconnection

The location and stability of the fixed points determine the different phase space

topologies of the GSNM. These topologies, illustrated in Figs. (2.5a)-(2.5c), are charac-

teristic of nontwist maps and are called heteroclinic, separatrix reconnection, and homo-

clinic [19]. Since the Larmor radius changes the stability of the fixed points, it is expected

that it will also change the topology. Figures 2.5(a)-(c) show the heteroclinic-type, separa-

trix reconnection, and the homoclinic-type topologies in Poincaré sections of the GSNM.

We adopt different values of a and b, and keep ρ̂ and ρ̄ fixed.

To determine the condition for separatrix reconnection associated to the fixed points

P± and Q± with m = 0, we follow [?, 19] and approximate the GSNM in the vicinity of
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(a) Configuration I: 0 < Λ < 1 (b) Configuration II: −1 < Λ < 0

(c) Configuration III: Λ < −1 or Λ > 1.

Figure 2.4: Stability of the fixed points points P± and Q±with m = 0.

the fixed points by the Hamiltonian:

H (I, θ) = a

[
I

(
1− ρ̄2

2

)
− I3

3

]
− b

2π
J0 (ρ̂) cos (2πθ) , (2.41)

For 0 < Λ < 1 (configuration I), separatrix reconnection occurs when H (P+) = H (Q−).

If −1 < Λ < 0 (configuration II), reconnection is observed when H (P−) = H (Q+).

Combining these two conditions, we obtain the reconnection line:

a =
3

4π
σ (ρ̂, ρ̄) b, (2.42)

with slope:

σ (ρ̂, ρ̄) =
|J0 (ρ̂)|(
1− ρ̄2

2

) 3
2

. (2.43)

The reconnection line divides the a − b parameter space in two regions: one with

heteroclinic-type topology (a
b
> 3

4π
σ (ρ̂, ρ̄)) and another with homoclinic-type topology

(a
b
< 3

4π
σ (ρ̂, ρ̄)). The slope of the reconnection line is defined by the angle arctan

[
3

4π
σ (ρ̂, ρ̄)

]
,

which varies according to the formula (2.43). Figure 2.6 shows isolines of the angle



Gyro-averaged standard nontwist map (GSNM) 17

(a) Heteroclinic-type topology with a =

0.0796 and b = 0.125.

(b) Separatrix reconnection with a = 0.0478

and b = 0.2.

(c) Homoclinic-type topology with a =

0.0239 and b = 0.3.

Figure 2.5: GSNM phase space topologies associated with the fixed points P± and Q± with m = 0. In all

figures, the Larmor radius is such that ρ̂ = 0.05 and ρ̄ = 0.01.
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arctan
[

3
4π
σ (ρ̂, ρ̄)

]
. Keeping a and b fixed, the topology of the phase space remains un-

changed if the parameters ρ̂ and ρ̄ vary over an isoline. As an example, consider the case

for fixed a and b such that a = 3
4π
b, which correponds to the reconnection condition in the

standard nontwist map [19]. In this case, there is always a reconnection for any values of

ρ̂ and ρ̄ over the red isoline of Fig. 2.6. The red isoline crosses the point ρ̂ = ρ̄ = 0, at

which the GNSM reduces to the standard nontwist map. For high (red) values of σ, the

slope of the reconnection line approaches π
2
, and the phase space is characterized by the

homoclinic-type topology for a fixed a and almost every value of the parameter b. For

low (blue) values of σ, the slope of the reconnection line tends to 0, and the phase space

is characterized by the heteroclinic-type topology for a fixed b and almost every value of

the parameter a.

Figure 2.6: Isolines of arctan
[

3
4πσ (ρ̂, ρ̄)

]
: varying ρ̂ and ρ̄ along isolines does not change the topology of

the phase space. For high (red) values of σ, homoclinic-type topology is observed for a fixed a and almost

every value of b. For low (blue) values of σ, heteroclinic-type topology is observed for a fixed b and almost

every value of a.
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2.3.3 Nontwist transport barrier

The transition to global chaos in the GSNM occurs with the destruction of the non-

twist transport barrier (NTB). One of main properties of nontwist 3/2-degrees of freedom

Hamiltonian systems, the NTB is a robust non-chaotic region of spanning KAM curves

dividing the phase space. The NTB is robust in the sense that their spanning KAM curves

are more resistant to perturbation than the other spanning KAM curves in the system.

NTBs are observed in both continuous in time Hamiltonian systems, and time discrete

area preserving models. The GSNM is an example of such a discrete model.

Let us consider the following form of Hamiltonian systems with 3/2 degrees of freedom

corresponding to a time-dependent perturbation of a one degree of freedom Hamiltonian:

H = H0 (I) + εV (I, θ, t) (2.44)

where I and θ are the action-angle variables of the integrable system, H0, and the pa-

rameter ε controls the strength of the time-periodic pertubative term V . In this case, the

twist or non-degenerate condition is given by:

dΩ

dI
=
d2H0

dI2
6= 0, (2.45)

for all I. If there is at least one critical or degenerate point in the frequency profile, i.e.

points such that dΩ/dI = 0 for I = Ic, the non-degenerate condition is violated, and

the system defined by (2.44) is called as a nontwist or degenerate 3/2-degrees of freedom

Hamiltonian system.

One of the main properties of such systems is the presence of NTBs, one for each

degenerate point of the frequency profile. This property was described originally in Ref.

[19] and was called banded chaos. A more recent work referred to the same property

as strong Kolmogorov-Arnold-Moser stability [23]. In this case, the phase space can be

almost completely occupied by chaotic orbits, but robust spanning KAM curves forming

constitute the NTB can still be present.

Figure 2.7 shows a GSNM Poincaré section with a NTB. The Poincaré section pre-

sented in figure 2.7 is the same for any values of b and ρ̂ such that: a = 0.354, ρ̄ = 0,

and bJ0 (ρ̂) = 0.8. We see that the phase space is characterized predominantly by chaotic
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Figure 2.7: Nontwist transport barrier in the GSNM: robust region of spanning KAM curves (black curves)

splitting the phase space in two chaotic regions, indicated by the red and green orbits.

orbits (green and red regions), but it has a robust “belt” of spanning KAM curves (black

curves). As we have already seen, the GSNM can be obtained by integrating the equations

of motion of the 3/2-degrees of freedom Hamiltonian (2.8) with a frequency defined by

(2.25). The Hamiltonian system is degenerate because its frequency has a critical point

(a maximum located at x = 0).

2.3.4 Breakup Diagrams

Here we study the transition to global chaos in the GSNM, which is related to the

destruction of the robust spanning KAM curves that constitute the NTB. It is important

to remark that the transition to global chaos in nontwist systems is still an open problem.

However, a possible approach to this problem consists of estimating the parameter values,

or the critical thresholds, that determine the breakup of the shearless KAM curve. We say

that a KAM curve is destroyed or broken when it becomes chaotic by changing parameter

values.

The shearless curve, in absence of perturbation, is the KAM curve located at the value

of action variable that violates the twist condition and defines a degenerate point in the

frequency’s profile. For this reason, according to the “strong KAM stability” argument
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developed in [23], the shearless curve corresponds to a “degenerate tori”, which has the

same robustness properties that characterizes the NTB’s spanning KAM curves. Thus, we

can say that the shearless curve belongs to the NTB, and the parameters values related

to the NTB destruction can be estimated from the parameter values that determine the

breakup of shearless curve.

A standard way to determine the parameter values of shearless curve’s breakup is based

on the indicator point (IP) method (see, for example, Refs. [6, 21, 38, 40]). This method

consists on finding the parameter values for which the iterations of the indicator point,

which defines the indicator point orbit (IPO), are chaotic. If the IPO is quasiperiodic, it

covers a shearless KAM curve. When the IPO is chaotic, the shearless curve is broken.

The indicator points can be found in nontwist maps with special symmetries by computing

the fixed points of transformations of the reversing symmetry group. Further details can

be found in Ref. [39].

Using the same arguments and a procedure similar to the one in [40], which shows

how to obtain the IPs for the standard nontwist map (see Appendix B of Ref. [40] and

also Appendix B at the end of this work for more details), we obtain the following IPs for

the gyro-averaged standard nontwist map:

z1
0 =

(
1

4
,+

bJ0 (ρ̂)

2

)
, z2

0 =

(
3

4
,−bJ0 (ρ̂)

2

)
, (2.46)

z1
1 =

(
a

2

(
1− ρ̄2

2

)
+

1

4
mod 1, 0

)
, z2

1 =

(
a

2

(
1− ρ̄2

2

)
+

3

4
mod 1, 0

)
.

(2.47)

Once the IPs are found, the next step is to obtain the critical thresholds using an appro-

priate criterion to determine if the IPO is chaotic. Our criterion is based on the technique

proposed in [28], which considers the recurrence properties of the IPO in conjunction with

Slater’s Theorem [29]. Recurrence properties and their relation to the Slater’s Theorem

were also discussed in [30]. In Ref. [31], the technique described in [28] was used to study

the breakup of the shearless curve in the nontwist standard map.

The Slater’s Theorem states that, for any quasiperiodic motion on the circle, there are

at most three different recurrences, or return times, in any connected interval. Although

the Slater’s Theorem was originally formulated for circle maps, it can also be applied to
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two-dimensional systems, once the dynamics on a KAM curve is mapped to a quasiperiodic

rotation on a circle [28]. The recurrence time is defined as the number of iterations that

an orbit takes to return to a neighbourhood of a point. Our procedure to characterize the

dynamics of an indicator point orbit of the GSNM is the following: with any one of the

indicator points as the initial condition, we compute the orbit for a number N of iterations

and choose the point of the orbit which has the maximum number of different recurrence

times. If there are more than three different recurrence times, we conclude that the orbit

is chaotic and the corresponding KAM curve is destroyed.

More precisely, the procedure consists of the following steps:

• Compute the orbit O = {uk}Nk=0 with initial condition u0 = z1
1 , where N is the

number of iterations.

• Construct the recurrence matrix 2:

Rij = Θ(ε− ‖ui − uj‖), (2.48)

where i, j ∈ {0, ..., N}, ui, uj ∈ O, Θ is the Heaviside function, and ε is a parameter

defining the size of the neighbourhood. If the distance beetween ui and uj, given by

the norm ‖ui − uj‖, is less than ε, Rij = 1; otherwise, Rij = 0.

• Define the recurrence time τij as τij = |i− j| such that i 6= j and Rij = 1. That is,

there is a recurrence time τij if the orbit O crosses the neighbouhood of uj at the i-th

iteration. For each point uj, compute the set of recurrences S
(j)
R = ∪Ni=0,i 6=j {τij}.

Note that just different recurrence times belong to S
(j)
R

• Determine the maximum number of different recurrence times:

nR = max
{
n
(
S

(j)
R

)}N
j=0

, (2.49)

where n is the number of recurrence times belonging to S
(j)
R , and use the Slater’s

Theorem to conclude that the orbit O is chaotic if nR > 3.

2Here we borrow the definition presented in Ref. [30] of the binary matrix R. Its graphical rep-

resentation, called recurrence plot, can be used to analyse the recurrence properties of any dynamical

system.
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For nR ≤ 3, the characterization of the dynamics using the Slater’s Theorem is incon-

clusive because the orbit might be periodic, quasiperiodic or even chaotic. In this case,

we can increase the number of iterations, N , to explore if nR increases beyond 3. If the

condition nR ≤ 3 still persists and no change in nR is observed, we assume that the orbit

is periodic for nR = 1 and quasiperiodic for nR = 3. The condition nR = 2 requires a

more careful analysis with higher values N . Increasing N , nR stabilizes in 3, indicating

quasiperiodic dynamics, or assumes values greater than 3, which is the case for chaotic

dynamics. Although more rigourous criteria for the case nR ≤ 3 are lacking, the numerical

results of Refs. [28, 30] support the use of the recurrence properties and their relation to

the Slater’s Theorem as a computationally fast diagnostic to recognize chaotic motion.

We now apply this diagnostic to compute breakup diagrams for the GSNM show-

ing regions in the parameter space where the shearless curve is broken. The diagrams

were constructed by applying the procedure described above to IPOs generated with dif-

ferent values of the GSNM parameters. Each set of values corresponds to a point on

2-dimensional parameter space. Since the GSNM has four parameters, the breakup dia-

grams are constructed varying two parameters at a time while keeping the others constant.

Our first examples are presented in Figs. 2.8a and 2.8b. In both diagrams, we used a grid

of 1000 × 1000 points and vary b and ρ̂. We fix ρ̄ = 0 (which means that ρ � L ) and

a = 0.1. For each point on the grid, the IPO and its nR are computed for ε = 0.1. The

color of each point is defined by the value of nR. The relation between the colors and

the nR values is indicated in the color palette. For example, blue corresponds to nR = 1;

dark-blue, nR = 2; green, nR = 3; magenta, nR = 4; and all points with nR ≥ 9 are

plotted in yellow.

To construct diagram 2.8a, we used N = 100. Although the number of iterations is

increased to N = 1000 in diagram 2.8b, the main geometric features that enable us to

distinguish between regular and chaotic dynamics are mantained. The main difference is

observed in points with nR = 2 (dark-blue points). Increasing the number of iterations,

most of these points have their color changed corresponding to nR > 3. Diagram 2.8a

shows that, even for a low number of iterations, it’s possible to identify the breakup of

the shearless curve in domains where nR > 3. These domains have points plotted with
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(a) N = 100 (b) N = 1000

Figure 2.8: GSNM breakup diagrams for ρ̂ versus b, with ρ̄ = 0, and a = 0.1. For each point (ρ̂, b) in

the diagram, the IPO and the correspondent nR are computed with ε = 0.1. The color pallete indicates the

value of nR. The breakup of the shearless curve can be detected in the points where nR > 3. The IPO is

quasiperiodic in the green region (nR = 3) which corresponds to low effective perturbation bef , i.e, low b or

ρ̂ near a zero of J0.

magenta, red, and yellow colors. Green points (nR = 3) are concentrated in domains

with low effective perturbation bef , which means a low perturbation b or ρ̂ close to a zero

of the zero-order Bessel function. As verified in Figs. 2.9(a)-(c), nR = 3 (green points)

corresponds to quasiperiodic IPOs. For points outside the green region (e.g. point A in

Fig. 2.8b), the IPO is chaotic, and, as shown in Fig. 2.9a, the shearless curve is destroyed.

Changing ρ̂ to a value near a zero of J0 such that the point moves inside the green region

(e.g. point B of Fig. 2.8b), the shearless KAM curve is restored because the IPO becomes

quasi-periodic, as shown by the red orbit in Fig. 2.9b. Figure 2.9c shows that the shearless

KAM curve is broken again for parameter values outside the green region (e.g. point C

in Fig. 2.8b).

Breakup diagrams with varying a and ρ̂ are shown in figures 2.10a and 2.10b. The

number of iterations adopted to construct the first diagram was N = 100. In the second

diagram, we increased the number of iterations to N = 1000. As before, the green points

(nR = 3), which are indicators of non-chaotic dynamics, are concentrated near the zeros

of J0. A high occurrence of points with nR = 3 is also observed in regions with low a.

When the number of iterations is increased from N = 100 to N = 1000, we can see that
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(a) ρ̂ = 1.75 (b) ρ̂ = 2.2

(c) ρ̂ = 3

Figure 2.9: The shearless KAM curve, identified through a quasiperiodic IPO (red orbit), is restored near the

zeros of J0. Fixed parameters: a = 0.1; b = 3; ρ̄ = 0. (a) For ρ̂ = 1.75 (point A, figure 2.8b), the IPO is

chaotic. (b) For ρ̂ = 2.2 (point B), the IPO (red orbit) is quasiperiodic. (c) For ρ̂ = 3 (point C), the shearless

KAM curve is broken again.
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(a) N = 100 (b) N = 1000

Figure 2.10: GSNM breakup diagrams for ρ̂ versus a, with ρ̄ = 0 and b = 1.5. Neighbouhood size: ε = 0.1.

Green points, corresponding to quasiperiodic dynamics, are concentrated near the zeros of J0 and in domains

with low a.

the main geometric features remain the same, although many of the blue points (nR = 1

or nR = 2) have their colors changed such that nR > 3. Poincaré sections for parameters

corresponding to points A, B, and C in Fig. 2.10b are shown in figures 2.11a-c. As

expected, the shearless KAM curve is broken at points A and C, and restored at point

B.

Additional examples of breakup diagrams are presented in figures 2.12a-d. The param-

eters are the same as those in Figs. 2.8b and 2.10b, but the value of the fixed parameter ρ̄

is higher. Comparing figures 2.12a-b to 2.8b, we see that increasing ρ̄ increases the number

of green points (nR = 3) and the robustness of the shearless KAM curve. That is, higher

values of the perturbation parameter b are required to make the IPO chaotic. As shown

in Figs. 2.12c-d, the distribution of points with nR = 3 is changed with the increasing

of ρ̄, resulting in different critical thresholds but with no significant suppression of green

points. Red and yellow points disappear in certain regions and reappear in others, as can

be seen by comparing Figs. 2.10b, 2.12c and 2.12d.

Summarizing: in this section we used a computational technique based on the recur-

rence properties of the IPO to estimate the critical parameter values for the breakup of

the shearless KAM curve. In particular, we computed breakup diagrams to understand



Gyro-averaged standard nontwist map (GSNM) 27

(a) ρ̂ = 1 (point A) (b) ρ̂ = 2.05 (point B)

(c) ρ̂ = 3.5 (point C)

Figure 2.11: Poincaré sections of the GSNM map for points A, B and C, in the diagram 2.8b. The shearless

KAM curve corresnponding to point B is present, but it breaks at A and C. Fixed parameters: a = 1; b = 1.5;

ρ̄ = 0
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(a) ρ̄ = 0.8; a = 0.1 (b) ρ̄ = 1.2; a = 0.1

(c) ρ̄ = 0.8; b = 1.5 (d) ρ̄ = 1.2;b = 1.5

Figure 2.12: Diagram: (a) and (b): the robustness of the shearless KAM increases when ρ̄ increases, which

means that more green points (nR = 3) are observed. Diagrams (c) and (d): the critical thresholds change

when the value of ρ̄ changes. For all diagrams, we adopted N = 1000 and ε = 0.1.
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the role of the Larmor radius in the destruction and formation of shearless spanning KAM

curves. FLR effects were studied by varying the parameters ρ̂ or ρ̄. When ρ̂ is close to a

zero of J0, the shearless curve becomes more robust to perturbation in b. An explanation

for this effect is that, no matter how high the values of b are, the zeros of J0 make the

GSNM’s Hamiltonian integrable, as seen in equation (2.8). As ρ̂ approaches a zero of

J0, the shearless curve and the other spanning KAM curves that make up the nontwist

transport barrier are restored. Another FLR effect is observed by changing the parameter

ρ̄. As can be seen in Figs. 2.12a-b, the robustness of the shearless curve and the critical

thresholds can also be modified by increasing ρ̄.

2.4 Gyro-averaged quartic nontwist map (GQNM)

In this section, we propose another area-preserving map, the gyro-averaged quartic

nontwist map (GQNM). A key property of the GQNM is that it has a zonal flow bifur-

cation, similar to the one observed in the nontwist Hamiltonian system of Ref. [6]. The

Hamiltonian system in [6] is a drift-wave model of the E × B transport with FLR ef-

fects, and the zonal flow bifurcation corresponds to a bifurcation of the maximum of the

frequecy’s profile that occurs when the Larmor radius increases.

As in the previous maps, the GQNM equations are obtained from the gyro-averaged

drift wave map in equations (2.11) and (2.12). Here we adopt an equilibrium potential

similar to the one proposed by [6]:

φ0(x) = α tanh
(x
L

)
, (2.50)

where α and L are dimensional constants. Applying the gyro-average operation (2.4) to

(2.50), we have:

〈H0(x)〉ϕ =
α

2πB0

∫ 2π

0

tanh
(x
L

+
ρ

L
cosϕ

)
dϕ. (2.51)

The nonlinear frequency, according to (2.13), is defined by:

Ω (I) =
α

2πLB0

∫ 2π

0

sech2 (I + ρ̄ cosϕ) dϕ, (2.52)

where I = x/L, and ρ̄ = ρ/L. The zonal flow bifurcation occurs due to a bifurcation of

a critical point in the profile of function (2.52), which can be evaluated using numerical
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Figure 2.13: Bifurcation of the critical point in the frequency profile (2.53)

methods or approximated by Taylor expansions. To analyse, in a simple way, the FLR

effect on the zonal flow in (2.52), we consider the following approximation:

Ω (I) =
α

LB0

(
1− I2

){
1− ρ̄2

[
3

2

(
1− I2

)
− 1

]}
, (2.53)

valid for small values of |I| and ρ̄. Figure 2.13 shows profiles of (2.53) for different values

of ρ̄. For ρ̄ = 0, there is only one critical (Ω′ = 0) maximum point, located at I = 0.

Increasing ρ̄ leads to the increasing the profile’s “flatness”, followed by a critical point

bifurcation, where the maximum becomes a minimum and two maxima appear. The

bifurcation threshold ρ̄b can be determined from the condition:

∂2Ω

∂I2

∣∣∣∣
I=0, ρ̄=ρ̄b

= 0. (2.54)

The second-order derivative of (2.53) is given by:

∂2Ω

∂I2

∣∣∣∣
I=0

= −2 + 4ρ̄2. (2.55)

From (2.54) and (2.55), it follows that the bifurcation threshold occurs at:

ρ̄b = 1/
√

2. (2.56)

Let In = xn/L, θn = kyn/2π, and ρ̂ = kρ. Using (2.53), we get, from (2.11) and (2.12),
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the GQNM:

In+1 =In + bJ0 (ρ̂) sin (2πθn) , (2.57)

θn+1 =θn + a
(
1− I2

n+1

){
1− ρ̄2

[
3

2

(
1− I2

n+1

)
− 1

]}
, mod 1, (2.58)

where a = kα/ω0LB0, and b, the perturbation parameter, is given by b = 2πaA/α. As in

the previous maps, an effective perturbation parameter can be defined as bef = bJ0 (ρ̂).

Like the GSNM, the GQNM reduces to the standard nontwist map for ρ̂ = ρ̄ = 0. In

what follows, we discuss FLR effects on the GQNM’s fixed points and nontwist transport

barriers.

2.4.1 Fixed Points and nontwist transport barriers

In a similar way as we have done for the GSNM (section 2.3.1), FLR effects on the

location and stability of period-1 orbits can be analysed in the GQNM. The fixed points

(θ∗, I∗) of the GQNM satisfy:

0 =bJ0 (ρ̂) sin (2πθ∗) (2.59)

m =a
(
1− I∗2

){
1− ρ̄2

[
3

2

(
1− I∗2

)
− 1

]}
, m ∈ Z (2.60)

For m = 0, which corresponds to the simplest case, a 6= 0, and bJ0 (ρ̂) 6= 0, there are four

fixed points, given by:

P±1 = (0,±1) , Q±1 =

(
1

2
,±1

)
(2.61)

If ρ̄ ≥ 2ρ̄b =
√

2, there is an adittional set of fixed points:

P±2 = (0,±h (ρ̄)) Q±2 =

(
1

2
,±h (ρ̄)

)
(2.62)

where the function h (ρ̄) is defined by:

h (ρ̄) =

√
(ρ̄2 − 2)

3ρ̄2
(2.63)

Figure 2.14 shows the I coordinates of the fixed points with m = 0. P±1 and Q±1 exist for

all ρ̄ ≥ 0 and are always located at I = ±1. P±2 and Q±2 only exist for ρ̄ ≥ 2ρ̄b =
√

2
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Figure 2.14: I coordinates of fixed points with m = 0. The set
{
P±1 , Q

±
1

}
is fixed in the I-axis and exists

for any ρ̄ ≥ 0. The set
{
P±2 , Q

±
2

}
only exists for ρ̄ ≥ 2ρ̄b =

√
2

and their positions in the I axis are determined by the function h (ρ̄), which satisfies

0 ≤ h (ρ̄) < 1√
3
. The stability of the fixed points

{
P±1 , Q

±
1 , P

±
2 , Q

±
2

}
can be analysed by

evaluating the Greene’s residue (2.39):

R
(
P±1
)

= −R
(
Q±1
)

= ∓Λ (a, b, ρ̂, ρ̄) (2.64)

R
(
P±2
)

= −R
(
Q±2
)

= ±h (ρ̄) Λ (a, b, ρ̂, ρ̄) (2.65)

where the function Λ (a, b, ρ̂, ρ̄), which corresponds to the residue of P−1 , is given by:

Λ = πabJ0 (ρ̂)
(
1 + ρ̄2

)
(2.66)

Given the values of the parameters a, b, ρ̂, and ρ̄, we can determine the residue of P−1 ,

and then, using equations (2.64)-(2.65), compute the residues of the other fixed points{
P+

1 , Q
±
1 , P

±
2 , Q

±
2

}
. As shown in Fig. 2.15, depending on the value of Λ, there are five

possible stability configurations. The number of elliptic fixed points reduces when Λ

increases, and the first points to lose stability are the outer ones. In the configuration

V (figure 2.15e), which occurs for |Λ| > 1
h(ρ̄)

, all the fixed points are hyperbolic. A final

remark is regarding the strong stability of the elliptic points in configurations III and IV

when h (ρ̄) is near to zero (ρ̄ greater than and close to
√

2). A high Λ can be attained by

high values of the parameter a or the effective perturbation bef = bJ0(ρ̂), but the islands
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associated to the elliptic points can still survive once the limit 1
h(ρ̄)

goes to infinity when

ρ̄→
√

2
+

(ρ̄ greater than and close to
√

2).

An important consequence of the zonal flow bifurcation is the occurrence of nontwist

barrier bifurcations. In particular, instead of just one NTB, two additional NTBs appear

after the zonal flow bifurcation, which occurs when ρ̄ increases. The NTB bifurcation is

illustrated in Figs. 2.16a and 2.16b: for ρ̄ . ρ̄b, only one region with robust spanning

KAM curves is present (Fig. 2.16a); increasing ρ̄ such that ρ̄ > ρ̄b (Fig. 2.16b), two

additional NTBs appear. The outer NTBs are separated from the central one by two

regions of confined chaotic orbits.

2.4.2 Robustness of the central shearless curve

Our interest in studying the robustness of spanning KAM curves as function of b

resides on the fact that this parameter is proportional to the amplitude of the drift waves.

For a very small Larmor radius (or in the absence of FLR corrections), high amplitude

values can easily destroy all spanning KAM curves, what is not always the case when

FLR effects are taken into account. As mentioned in section 2.3.3, the robustness of the

GSNM’s shearless curve can be significantly increased if ρ̂ is near a zero of J0. In this

case, the effective perturbation bef is small, what explains the robustness of the shearless

curve even for high values of b. The same effect is present in the GQNM, as we can see

in equation (2.57).

Figures 2.17(a)-(d) show breakup diagrams for the central shearless KAM curve as

function of b and ρ̄. In all cases, bef is small, because the values of ρ̂ are close to the

zeros of J0. Under this condition, and when ρ̄ is near the zonal flow bifurcation threshold

ρ̄b, defined in (2.56), a significant increasing of the robustness of the shearless curve is

observed. For ρ̄ < ρ̄b, higher values of b are required to the breakup as ρ̄ approaches ρ̄b.

However, for ρ̄ > ρ̄b, the robustness diminishes as ρ̄ increases. Therefore, the central NTB

robustness can be increased not only by approximating ρ̂ to any of the J0’s zeros, but also

by making ρ̄ close to ρ̄b.

It is interesting to note that, in the neighbourhood of I = 0, the degree of “flatness” of

the frequency’s profile has a similar behavior. Like the robustness of the central shearless
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(a) I : 0 < Λ < 1 (b) II : −1 < Λ < 0

(c) III : 1 < Λ < 1
h(ρ̄) (d) IV : − 1

h(ρ̄) < Λ < −1

(e) V : Λ < − 1
h(ρ̄) or + 1

h(ρ̄) < Λ

Figure 2.15: Depending on the value of Λ, there are five possible configurations characterizing the stabillity

of the period-one fixed points
{
P±1 , Q

±
1 , P

±
2 , Q

±
2

}
in the GQNM.
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(a) ρ̄ = 0.707 (b) ρ̄ = 1.42

Figure 2.16: (a) One NTB for ρ̄ . ρ̄b. (b) After the zonal flow bifurcation, three NTBs can be observed.

Parameters: a = 0.5; b = 1.35; ρ̂ = 2.8.

curve, the degree of “flatness” is higher near the bifurcation threshold, but it becomes

smaller otherwise. The flatness around I = 0 can be measured through |Ω′′(0)|, which

corresponds to the absolute value of the second-order derivative of Ω around I = 0. A high

degree of flatness around I = 0 means a small value of |Ω′′(0)|. Based on these results,

we conjecture that the robustness of NTBs in nontwist symplectic maps depends on the

flatness of the frequency profile around the points of maximum or minimum (critical

points), and that, for small perturbation, the robustness increases with the degree of

flatness.

In section 2.3.3, we mentioned that the robustness of a NTB is related to the phe-

nomena referred to as strong KAM stabillity [23]. The strong KAM stabillity argument

is based on the idea of overlapping of resonances, as presented by [32], to explain the

destruction of invariant tori (spanning KAM curves). Tori located between neighbouring

resonances break up when the resonances overlap. Thus, one expects that tori are more

resilient to perturbation when resonance widths are smaller. As shown in [23], in 3/2 de-

grees of freedom nontwist Hamiltonian systems, the width, δΩ, of second-order degenerate

resonances scales as:

δΩ ∼ [ε |Ω′′(I0)|]2/3 , (2.67)

where ε is the small perturbation parameter, and I0 the value of the action variable for
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(a) a = 0.5; ρ̂ = 5.47; ρ2 = 5.52 (b) a = 3; ρ̂ = 8.67; ρ3 = 8.65

(c) a = 10; ρ̂ = 11.80; ρ4 = 11.79 (d) a = 30; ρ̂ = 2.42; ρ1 = 2.40

Figure 2.17: For small bef values, the robustness of the central shearless curve (and, thus, also of the central

NTB) increases with the degree of flatness of the frequency’s profile around the critical point. The flatness can

be controlled by the parameter ρ̄ and becomes higher when ρ̄ is close to the zonal flow bifurcation threshold

ρ̄b (shown with the solid black vertical line). The values of bef are made small by setting ρ̂ close to the zeros

of J0. The first four positive zeros are approximately given by: ρ1 = 2.40; ρ2 = 5.52; ρ3 = 8.65; ρ4 = 11.79.
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which:

Ω′(I0) = 0, Ω′′(I0) 6= 0. (2.68)

As we have seen in section 2.3.3 (see eq. (2.45)), I0 in (2.68) corresponds to the value of the

action variable for which the frequency’s profile violates the twist condition. For ε = 0, the

shearless KAM curve is located exactly at I0. If the system is slightly perturbed, second-

order degenerate resonances appear along the neighbourhood of the shearless curve. When

these resonances overlap, the shearless curve breaks up.

The central shearless curve of the GQNM is associated to the critical point located

at I0 = 0. At this point, the frequency’s profile, defined by (2.53), satisfies (2.68) for

any ρ̄ 6= ρ̄b. Thus, in the Hamiltonian system from which the GQNM equations are

derived, second-order degenerate resonances might appear near the central shearless curve.

According to (2.67) and (2.55), the width of second-order resonances has the property:

lim
ρ̄→ρ̄b

δΩ = 0, (2.69)

because, for ρ̄ close to ρ̄b, |Ω′′(I0)| vanishes. Small values of |Ω′′(I0)| result in small

degenerate resonance widths and a more robust central shearless curve. As |Ω′′(I0)| is

directly related to the flatness of the frequency’s profile around I0 (a small |Ω′′(I0)| means

more “flatness” around I0), formula (2.67) is consistent with the results showed in figures

2.17(a)-(b) and supports our conjecture relating high robustness of the shearless curve to

non-monotonic frequency profiles with high flatness around degenerate points.

It is important to remark that the same arguments developed in this section can be

applied to interpret the results presented in Ref. [36], in which the authors study the effect

of shearless safety factor profiles on the confinement properties of magnetic field lines in

Tokamaks. In the 1 + 1/2 degrees of fredom Hamiltonian model adopted to describe

magnetic field lines, the safety factor q is characterized by regions with vanishing shear

that makes the system of a nontwist kind because the q-profile is inversely proportional

to the nonlinear frequency of system. In Ref. [36], the authors analyze the influence of

the amount of flatness in low shear regions of the q-profile on the robustness of the NTBs.

Changing the form of the q-profile, the flatness can be increased, and a more robust NTB

can be observed.
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Chapter 3

Statistical Properties of the GSM

Model

In this chapter we study statistical properties of a GSM based model where the effective

perturbation is considered a random variable. Section 3.1 describes the basic assumptions

and equations of the model. In section 3.2, the first set of results related to statistics of

the effective perturbation are presented: we obtain the gamma’s pdf, analyze its main

properties and also histograms of gamma for different values of the thermal Lamor radius.

The moments, as well the average and dispersion of gamma, are presented in section

3.3. Section 3.4 describes the analytical and numerical results related to the cumulative

distributive function of gamma, which is used in section 3.5 to obtain the probability

of global chaos. We study the escape rate in section 3.6, and the rate of trapping by

period-one islands in section 3.7. This chapter is partly based on Ref. [42].

3.1 GSM Model

In the GSM model, particles are assumed to follow orbits described by gyro-averaged

standard maps with effective perturbation values which are not necessarily the same.

These values differ randomly from one to other particle and are constant in time. The

model comes from the idea of considering an ensemble of particles whose Larmor radii are

randomly defined and kept constant in time.

39
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Therefore, the dynamics of each charged particle in the GSM model is determined by:

In+1 = In +K(ρ̂) sin θn, θn+1 = θn + In+1, mod 2π, (3.1)

where K, the effective perturbation, is a random variable defined by:

K = K0J0 (ρ̂) , (3.2)

and K0 denotes the perturbation parameter, which is a constant and the same for all

particles of the ensemble 1.

In a similar a way as done in [6, 9], we assume plasmas in thermal equilibrium and

a Larmor radius’ pdf resulting from the Maxwell-Boltzmann distribution. The Larmor

radius’ pdf characterizes the statistics of the random variable ρ̂ and can be obtained as

follows.

3.1.1 Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution is given by [43]:

F (~v) = n

(
β

2π

) 3
2

exp

(
−β

2
~v2

)
, (3.3)

where ~v is the three-dimensional particles’ velocity and n is the number of particles per

unit volume. The parameter β is defined by:

β =
kBT

m
, (3.4)

where kB is the Boltzmann constant, T is the absolute temperature and m defines the par-

ticle’s mass. Equation (3.3) represents the most probable distribution function satisfying

the macroscopic conditions or constraints imposed on the system [43].

According to (3.3), the probability density function of the particle’s velocity in one

dimension is a Gaussian with zero mean (see [43] for details):

fi (vi) =

√
β

2π
exp

(
−β

2
v2
i

)
, (3.5)

1Although the set of Eqs. (3.1) corresponds exactly to th GSM, here we decided to change notation

used in the previous chapter to refer to the effective perturbation and the perturbation parameter. Kef

is now simply K, and the perturbation parameter, previously denoted by K, is now K0.
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where the index i denotes the x, y, and z components of the velocity. The thermal velocity

is defined as [44]:

vth =
1√
β
. (3.6)

The thermal velocity vth corresponds to the standard deviation of the particle’s velocity

in one dimension:

vth = σvi =

√
〈v2
i 〉 − 〈vi〉

2. (3.7)

Equation (3.7) can be verified considering that 〈vi〉 = 0 and computing the moment

〈v2
i 〉: 〈

v2
i

〉
=

+∞∫
−∞

fi (vi) v
2
i dvi =

1

β
. (3.8)

Using (3.7), equation (3.5) can rewritten as:

fi (vi) =
1√

2πv2
th

exp

(
− v2

i

2v2
th

)
. (3.9)

3.1.2 Larmor Radius’ PDF

The Larmor radius is defined by [44]:

ρ =
v⊥
Ω0

, (3.10)

where the cyclotron frequency Ω0 is:

Ω0 =
|q|B0

m
, (3.11)

and v⊥ corresponds to the perpendicular component of the particle’s velocity to the

toroidal magnetic field lines:

v⊥ =
√
v2
x + v2

y. (3.12)

The probability of the perpendicular velocity assuming a value between v⊥ and v⊥ +

dv⊥, denoted by f⊥ (v⊥) dv⊥, corresponds to the probability of having ~v⊥ = (vx, vy) inside
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a circular region R of radii v⊥ and v⊥ + dv⊥, i.e.:

f⊥ (v⊥) dv⊥ =

∫
R

fx (vx) fy (vy) dvxdvy (3.13)

=
β

2π

∫
R

exp

[
−β

2

(
v2
x + v2

y

)]
dvxdvy (3.14)

=
β

2π

2π∫
0

exp

(
−β

2
v2
⊥

)
v⊥dθdv⊥. (3.15)

Thus, the perpendicular velocity’s pdf is:

f⊥ (v⊥) = βv⊥ exp

(
−β

2
v2
⊥

)
(3.16)

The probability of finding the Larmor radius between ρ and ρ+ dρ is fL (ρ) dρ, where

fL is the Larmor radius’ pdf. According to Eq. (3.10), if we assume that the cyclotron

frequency is a constant and the same for all charged particles, then:

fL (ρ) dρ =f⊥ (v⊥) dv⊥ (3.17)

=βΩ2
0ρ exp

(
−βΩ2

0

2
ρ2

)
dρ (3.18)

and:

fL (ρ) = βΩ2
0ρ exp

(
−βΩ2

0

2
ρ2

)
(3.19)

Defining the thermal Lamor radius as:

ρth =
vth
Ω0

=
1

Ω0

√
β
, (3.20)

and substituting (3.20) in (3.19), we have:

fL (ρ) =
ρ

ρ2
th

exp

[
−1

2

(
ρ

ρth

)2
]

(3.21)

In chapter 2, we defined the normalized Lamor radius as ρ̂ = kρ. According to (3.21),

the normalized Lamor radius’ pdf is then given by:

f (ρ̂) =
ρ̂

ρ̂2
th

exp

[
−1

2

(
ρ̂

ρ̂th

)2
]
, (3.22)
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Figure 3.1: Probability density function of ρ̂, Eq. (3.22), for different values of the thermal Larmor radius,

ρ̂th.

where ρ̂th denotes the normalized thermal Larmor radius, which we define as ρ̂th = kρth.

Using (3.4), (3.11) and (3.20), the parameter ρ̂th can also be written as:

ρ̂th =
k

|q|B0

√
mkBT . (3.23)

Together with (3.1), the pdf (3.22) completes the set of equations of the GSM model.

For the sake of brevity will call from here on the dimensionless variable ρ̂ simply “Larmor

radius”. Thus, we will refer to ρ̂th and f (ρ̂) simply as “thermal Larmor radius” and

“Larmor radius’ pdf”, respectively.

Figure 3.1 shows plots of (3.22) for different values of the thermal Larmor radius. The

PDF has a maximum at ρ̂th, which means that ρ̂th is the most probable Larmor radius.

The average and variance associated to ρ̂ can be easily obtained from (3.22) and are both

dependent on ρ̂th. The average 〈ρ̂〉 is given by:

〈ρ̂〉 =

√
π

2
ρ̂th, (3.24)

and the variance, defined by σ2 = 〈ρ̂2〉 − 〈ρ̂〉2, is:

σ2 =
4− π

2
ρ̂2
th. (3.25)

3.2 Gamma’s Probability Density Function

Let γ be defined as ratio between the effective perturbation K and the perturbation

parameter K0. According to Eq. (3.2), γ is a random variable depending on the particle’s
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Larmor radius and is given by γ = J0(ρ̂)

Applying the random variable transformation theorem [45], the probability density

function (PDF) of γ can be written as:

g(γ) =

∫ ∞
0

δ [γ − J0(ρ̂)] f(ρ̂)dρ̂. (3.26)

For a given value of γ, let Γγ = {ρ̂0, ρ̂1, ρ̂2, ...} be the set of non-negative solutions ρ̂i

in equation γ = J0(ρ̂i) such that J ′0(ρ̂i) 6= 0. If Γγ is a non-empty set, the Dirac delta

function in (3.26) can rewritten as [46]:

δ [γ − J0(ρ̂)] =
∑
ρ̂i∈Γγ

δ(ρ̂− ρ̂i)
|J ′0(ρ̂i)|

, (3.27)

where J ′0 is the derivative of J0. We note that J ′0(ρ̂) = −J1(ρ̂), where J1 is the first-order

bessel function.

Substituting (3.27) in (3.26), we have:

g(γ) =
1

ρ̂2
th

∑
ρ̂i∈Γγ

ρ̂i
|J ′0(ρ̂i)|

exp

[
−1

2

(
ρ̂i
ρ̂th

)2
]
, γmin < γ < γmax (3.28)

where the interval limits γmin and γmax are the smallest minimum and the greatest max-

imum of J0: γmin ' −0.4 and γmax = 1. Outside the interval γmin < γ < γmax, Γγ is an

empty set and g(γ) = 0.

We note that a PDF equivalent to (3.28) was also obtained in Ref. [9], where the same

mathematical problem arises, although the models and related problems considerer there

are different from those studied in this work.

Function g consists of a sum of terms involving the product of two other functions:

f(ρ̂), defined by (3.22), and s(ρ̂) = 1/ |J ′0(ρ̂)|, both of them evaluated at values ρ̂ = ρ̂i

such that γ = J0(ρ̂i). If γ is near a maximum or a minimum of J0, function s diverges.

Thus, the minima and maxima of J0 correspond to singularities of g.

The singularities’ locations are indicated by the blue vertical lines of Fig. 3.2. The

singularities occur in large number near γ = 0 at positive and negative positions. This

property can be explained by the asymtotic behavior of zero-order Bessel function for

high arguments. Since J0 is an oscillatory and decaying function varying like J0(ρ̂) ∼
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Figure 3.2: Vertical lines: location of singularities

√
2
πρ̂

cos(ρ̂− π
4
) for high values of ρ̂ [47], J0 has an infinite number of maxima and minima

near zero. Thus, an infinite number of singularities concentrate near γ = 0.

Figure 3.3 shows the vertical lines that indicate the singularities superimposed to

histograms of γ. To construct each histogram, we proceeded as following. A set of random

Larmor radii is numerically generated according to the PDF defined by Eq. (3.22). For

each random Larmor radius ρ̂ generated, the corresponding value of γ is computed using

the relation γ = J0(ρ̂). The histograms are normalized by the total number of γ values

generated.

The main feature exhibited by the histograms of Fig. 3.3 is the occurence of “peaks”

near the singularities. Although peaks do not emerge in all singularities, if a certain peak

exists, it occurs near one of the singularities. Here we call the singularity as “strong” in

case that an associated“peak”exists or“weak”when no peak is observed in the histogram.

The fast exponential decaying character of function f , present in all terms of g, controls

the effect of each singularity, acting as an“height”function and limiting the growth of g(γ).

In Fig. 3.4(a), the histogram shown in Fig. 3.3(c) is compared to function f (points),

which is evaluated at values ρ̂∗ for which J0(ρ̂∗) defines the position of a singularity. As

can be seen in Fig. 3.4(a), peaks occur where f has higher values and the singularities

are more distant to each other. The peaks can not be observed near γ = 0 where f goes
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(a) ρ̂th = 0.5 (b) ρ̂th = 5

(c) ρ̂th = 15 (d) ρ̂th = 50

Figure 3.3: Histograms of γ superimposed to the vertical lines indicating the singularities.
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(a) Function f at the singularities and the histogram

of Fig. 3.3(c).

(b) Function f at the singularities for different values

of ρ̂th.

Figure 3.4: Function f , defined by Eq.(3.22), evaluated at the points of singularity. The fast exponential

decaying character of f controls the effects of singularities, acting as an “height” function and limiting the

growth of g(γ).

to zero and the singularities are more concentrated. Thus, function f determines what

singularities can be considered as strong or weak.

Fig. 3.4(b) shows other plots of f , also evaluated at the singularity points and using

different values of ρ̂th, the same ones used in the histograms of Figs. 3.3(a)-(c). Comparing

the histograms with the plots in Fig. 3.4(b), we see again peaks emerging at singularities

with the highest values of f and disappearing at singularities where f goes to zero.

3.3 Gamma’s Average and Dispersion

The n-th moment of γ is given by:

〈γn〉 =

+∞∫
−∞

γng(γ)dγ. (3.29)

Substituting (3.26) in (C.27), we have:

〈γn〉 =
1

ρ̂2
th

+∞∫
0

[J0(ρ̂)]n exp

[
−1

2

(
ρ̂

ρ̂th

)2
]
ρ̂dρ̂. (3.30)

The first-moment, 〈γ〉, can be computed using (3.30) and Eq. (6.631-4) of Ref. [48]
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(pg. 706):
+∞∫
0

ρ̂ν+1e−αρ̂
2

Jν(βρ̂)dρ̂ =
βν

(2α)ν+1
exp

(
−β

2

4α

)
, (3.31)

where the parameters α, β, and ν are here defined as: α = 1
2ρ̂2th

, β = 1, and ν = 0. Setting

n = 1 and substituting (3.31) in (3.30), we obtain:

〈γ〉 = exp

(
− ρ̂

2
th

2

)
. (3.32)

Thus, the average of γ is near one for small values of the thermal Larmor radius and

decreases exponentially to zero for increasing values of that radius. Since γ = K/K0, the

average of the effective perturbation, according to (3.32), is given by:

〈K〉 = K0 exp

(
− ρ̂

2
th

2

)
. (3.33)

The second moment, 〈γ2〉, can be determined using Eq. (6.633-2) of Ref. [48] (pq.

707):
+∞∫
0

ρ̂e−%
2ρ̂2Jp(αρ̂)Jp(βρ̂)dρ̂ =

1

2%2
exp

[
α2 + β2

4%2

]
Ip

(
αβ

2%2

)
. (3.34)

Let %2 = 1
2ρ̂2th

, α = β = 1, and p = 0. Substituting (3.34) in (3.30), with n = 2, the second

moment is: 〈
γ2
〉

= e−ρ̂
2
thI0

(
ρ̂2
th

)
. (3.35)

Finally, using (3.32) and (3.35), the dispersion of γ, defined by σ2
γ = 〈γ2〉 − 〈γ〉2, can

be written as:

σ2
γ = e−ρ̂

2
th

[
I0

(
ρ̂2
th

)
− 1
]
. (3.36)

The dispersion of the effective perturbation is then given by:

σ2
K = K2

0e
−ρ̂2th

[
I0

(
ρ̂2
th

)
− 1
]
. (3.37)

As can be seen in Fig. 3.5, the dispersion increases for small values of ρ̂th from zero

to a maximum and then starts to decay. For large ρ̂th, since I0 (ρ̂2
th) ∼ e+ρ̂

2
th√

2πρ̂2th
[47], σ2

γ

decays as σ2
γ ∼ 1

ρ̂th
. Thus, the dispersion “expands” from zero to a maximum and then

“compress” to zero again for increasing ρ̂th.
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Figure 3.5: Dispersion of γ, σ2
γ . For increasing ρ̂th, σ2

γ increases from zero to maximum and then goes to

zero again at high values of ρ̂th.

The histograms shown in Figs. 3.3(a)-(d) also indicate that, for increasing ρ̂th, both

the average and the dispersion goes to zero because the peaks become more symmetrically

concentrated near γ = 0, what is specially evident in the histogram of Fig. 3.3(d).

3.4 Gamma’s Cumulative Distribution Function

The cumulative distribution function of γ, denoted by G(γ), is defined as:

G (γ) =

∫ γ

−∞
g(γ′)dγ′ (3.38)

Substituting (3.26) in (3.38), we have:

G (γ) =

∫ ∞
0

Θ[γ − J0(ρ̂)]f(ρ̂)dρ̂ (3.39)

where Θ is the Heaviside step function. A partial integration in (3.39) yields:

G (γ) = Θ(γ − 1)−
∫ ∞

0

δ [γ − J0(ρ̂)] J ′0(ρ̂) exp

[
−1

2

(
ρ̂

ρ̂th

)2
]
dρ̂ (3.40)

If γ is outside the interval γmin < γ < γmax, the second term in (3.40) is zero, and:

G (γ) = Θ(γ − 1), (3.41)
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which means that G(γ) = 0 for γ ≤ γmin and G(γ) = 1 for γ ≥ γmax.

If γmin < γ < γmax, Θ(γ − 1) = 0 and, using again formula (3.27), Eq. (3.40) yields:

G (γ) = −
∑
ρ̂i∈Γγ

J ′0(ρ̂i)

|J ′0(ρ̂i)|
exp

[
−1

2

(
ρ̂i
ρ̂th

)2
]

(3.42)

A simpler form for (3.42) can be obtained if we define an additional property for Γγ.

Let Γγ be an order set such that ρ̂0 < ρ̂1 < ρ̂2 < .... Each solution ρ̂i belongs to an interval

where J0(ρ̂) is increasing or decreasing. J0(ρ̂) oscillates such that J ′0(ρ̂i)/ |J ′0(ρ̂i)| = −1

for i = 0, 2, 4, .. and J ′0(ρ̂i)/ |J ′0(ρ̂i)| = +1 for i = 1, 3, 5, .., or:

J ′0(ρ̂i)/ |J ′0(ρ̂i)| = (−1)i−1, i = 0, 1, 2, ... (3.43)

Substituting (3.43) in (3.42), we have the following set of equations for the cumulative

distribution function:

G (γ) =


0, γ ≤ γmin∑

ρ̂i∈Γγ
(−1)i exp

[
−1

2

(
ρ̂i
ρ̂th

)2
]
, γmin < γ < γmax

1 γ ≥ γmax

(3.44)

In Figs. 3.6(a)-(b), using different values of ρ̂th, we show plots of (3.44) (red curves)

compared to numerical simulations of G (black points). Figures 3.6(a)-(b) show that both

analytical and numerical results are in good agreement. The numerical simulations are

performed as follows: first, we generate a set of random Larmor radii; second, for each

Larmor radius value ρ̂ generated, we compute J0(ρ̂); finally, for a given γ, we determine

the rate or frequency of values J0(ρ̂) such that J0(ρ̂) ≤ γ. The total number of random

values generated is 1000.

As shown in Figs. 3.6(a)-(b), the main properties of G (γ) are the following:

• G (γ) goes to zero if γ is near γmin, since no value of J0 can be below γmin.

• G (γ) goes to one if γ is near γmax, since no value of J0 can be above γmax.

• G (γ) is not a“smooth”function, what means that its derivative have descontinuities.
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(a) ρ̂th = 0.5 (b) ρ̂th = 5.0

(c) ρ̂th = 15 (d) ρ̂th = 50

Figure 3.6: Cumulative distribution function of γ, denoted by G(γ) The red curves are plots of the analytical

result described by Eq. (3.44). The black points correspond to numerical simulations.
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(a) (b)

(c)

Figure 3.7: Zooms in Fig. 3.6(c). G is a non-smooth function, showing corners at the same position of the

singularities. The corners occur at strong singularities. More clearly visible corners in the curves of G are

associated to more pronounced “peaks” in the histograms of γ.
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We have seen that the PDF of γ, defined by function g(γ) and which is the derivative fo

G(γ), has singularities near maxima and minima of J0. Such singularities are descontinu-

ities of g(γ) and explain the non-smooth character of G (γ), clearly seen in Figs. 3.7(a)-(c),

that correspond to zooms in three different regions of Fig. 3.6(c). The singularities are

indicated by vertical lines (in gray color).

Figures 3.7(a)-(c) show corners located at the same position of the singularities. How-

ever, not all singularities have clearly visible corners associated to them. In Fig. 3.7(b),

though there are many singularities near γ = 0, G is quite smooth near them. The figures

indicate that visible corners appear only in case of strong singularities. As mentioned be-

fore, strong singularities are associated to peaks in the histograms of γ. If the derivative

of G, given by g, has a singularity, G has a corresponding corner, but this corner is not

necessarily visible. Weak singularities do not produce visible corners.

3.5 Probability of Global Chaos (Pc)

In this section, we obtain the probability of global chaos, i.e. the probability of finding

a particle moving in a phase space with no Kolmogorov-Arnold-Moser (KAM) barriers.

Since γ = K/K0, the transition to global chaos occurs if:

|γ| > Kc/K0 (3.45)

where Kc is the critical parameter that defines the transition to global chaos in the stan-

dard map. According to [37], Kc ' 0.9716. As discussed in chapter 2, increasing K0 and

keeping constant ρ̂ increase the effective perturbation parameter K and the amount of

chaos in phase space, i.e. the area of the phase space occupied by chaotic orbits.

Assuming here just positive values for K0, the probability of global chaos, Pc, is given

by:

Pc = 1− P (−Kc/K0 ≤ γ ≤ +Kc/K0) (3.46)

where P (−Kc/K0 ≤ γ ≤ +Kc/K0) measures the probability of γ belonging to the interval

−Kc/K0 ≤ γ ≤ +Kc/K0 or, equivalently, the rate of particles moving in phase spaces

with KAM barriers. Thus, Pc measures the portion of particles moving in global chaos

phase spaces.
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Equation (3.46) can be rewritten as:

Pc = 1− [G(+Kc/K0)−G(−Kc/K0)] (3.47)

Considering that Kc/K0 > 0 and substituting (3.44) in (3.47), there are three possible

expressions for the probability of global chaos:

• If Kc/K0 ≥ γmax, then G(Kc/K0) = 1, G(−Kc/K0) = 0, and:

Pc = 0, for 0 <
K0

Kc

≤ 1 (3.48)

• If |γmin| ≤ Kc/K0 < γmax, then:

G(+Kc/K0) =
∑

ρ̂+i ∈Γ+Kc/K0

(−1)i exp

[
−1

2

(
ρ̂+
i

ρ̂th

)2
]
, (3.49)

G(−Kc/K0) = 0, and:

Pc = 1− exp

[
−1

2

(
ρ̂+

0

ρ̂th

)2
]
, for 1 <

K0

Kc

≤ 1

|γmin|
(3.50)

since, in this interval, Γ+Kc/K0 has only one element, ρ̂+
0 .

• If 0 < Kc/K0 < |γmin|, then Eq. (3.49) also applies for G(+Kc/K0), G(−Kc/K0) is

given by:

G(−Kc/K0) =
∑

ρ̂−i ∈Γ−Kc/K0

(−1)i exp

[
−1

2

(
ρ̂−i
ρ̂th

)2
]
, (3.51)

and:

Pc = 1−

 ∑
ρ̂+i ∈Γ+Kc/K0

(−1)i exp

[
−1

2

(
ρ̂+
i

ρ̂th

)2
]
−

∑
ρ̂−i ∈Γ−Kc/K0

(−1)i exp

[
−1

2

(
ρ̂−i
ρ̂th

)2
]

(3.52)

where K0

Kc
> 1
|γmin| .

Let SKc/K0 be the ordered set (ρ̂+
0 , ρ̂

−
0 , ρ̂

−
1 , ρ̂

+
1 , ρ̂

+
2 , ρ̂

−
2 , ρ̂

−
3 ...), which corresponds to set

formed by the elements of Γ+Kc/K0 and Γ+Kc/K0 . Denoting the terms of S by ρ̂i such that
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ρ̂0 = ρ̂+
0 , ρ̂1 = ρ̂−0 , ρ̂2 = ρ̂−1 , and so on, Eqs (3.48), (3.50) and (3.52) can be written in a

more compact form:

Pc =


0 0 < K0

Kc
≤ 1

1−
∑

ρ̂i∈SKc/K0
(−1)i exp

[
−1

2

(
ρ̂i
ρ̂th

)2
]

1 < K0

Kc

(3.53)

We note that SKc/K0 is also the set of solutions ρ̂i of Kc/K0 = |J0(ρ̂i)|, where |J0(ρ̂i)|

corresponds to the absolute value of J0(ρ̂i).

In Figure 3.8, Pc is plotted as a function of K0

Kc
for different fixed values of ρ̂th. For

0 < K0/Kc ≤ 1, Pc = 0, which means that all particles move in phase spaces with KAM

barriers. In this case, some of the particles are trapped inside stability islands and those

following chaotic orbits remains confined in regions isolated by KAM barriers.

Figure 3.8: Probability of global chaos (Pc) as a function of K0/Kc and for different values of ρ̂th. For

0 < K0/Kc ≤ 1, Pc = 0: all particles are confined inside stability islands or chaotic regions isolated by KAM

barriers. For high and increasing values of K0/Kc, Pc goes to one, that is, particles following chaotic orbits

move freely in the radial direction since all KAM barriers are broken.

As can also be seen in Fig. 3.8, for K0/Kc > 1 and increasing K0, Pc goes from zero

to one, that is, most particles move in phase spaces without KAM barriers and those

following chaotic orbits move freely in the radial direction.

According to Eq. (3.53), for high values of K0/Kc (or small Kc/K0) the sum in (3.53)

goes to zero. That happens because consecutive elements of SKc/K0 , ρ̂i and ρ̂i+1, become
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Figure 3.9: Probability of global chaos (Pc) as a function of ρ̂th and for different fixed values of K0/Kc.

both near one of the zeros of |J0(ρ̂)|. Thus, the exponential terms of the sum, evaluated

at ρ̂i and ρ̂i+1 and that have oppposite signs, cancel each other.

The probability of global chaos is plotted also in Fig. 3.9 as a function of ρ̂th and for

different fixed values of K0/Kc. If 0 < K0/Kc ≤ 1, Pc is always zero for any ρ̂th, as

indicated by the brown horizontal line (K0/Kc = 1). If K0/Kc > 1, Pc is close to one for

small ρ̂th and decays for increasing ρ̂th.

Still considering the case K0/Kc > 1, the plots shown in Fig. 3.9 also indicate a fast

decreasing for small ρ̂th and a slower one for high ρ̂th, what, according to Eq. (3.53), can

explained considering that dPc/dρ̂th ∼ 1/ρ̂3
th.

3.6 Escape Rate

Motivated by the results of section 3.5, we now analyze a numerical transport measure

called “escape rate” or, simply, ηe, Measures of the escape rate are presented for the

standard map and also for the GSM. In the latter case, these measures are compared to

the probability of global chaos

The escape rate can be computed by the following steps:
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• First, we define an ensemble of N particles whose initial positions (θ0, I0) are spread

over a line, defined by a fixed initial radial coordinate I0. The initial poloidal

coordinate θ0 is a random number between 0 and 2π chosen according to a random

uniform distribution.

• Second, for each particle of the ensemble, the map is iterated until the particle

“escapes”, what occurs when its radial coordinate, In, satisfies the escape condition

|In − I0| > 2π for a number of iterations n such that n ≤ T , where T corresponds to

the maximum number of iterations allowed. If n = T and the escape condition was

not satisfied, we consider that the particle has not escaped. We then stop iterating

the map and repeat the procedure for the other particles of the ensemble.

• Finally, after performing the previous step for all particles, we calculate the ratio

Ne/N , where Ne is the number of particles that have escaped.

In the procedure to compute ηe, it is necessary to specify the initial radial coordinate I0.

We adopt I0 = π, although any other position for the line of initial conditions is valid. We

avoid using I0 near zero because a significative number of particles can be located inside

the period-one island, which can occupy a relatively large area, even in a global chaos

phase space. In that case, it is necessary to wait the maximum number of iterations T ,

making the procedure computationally expensive.

The reason for the escape condition adopted is the following. The standard map’s

phase space is invariant by translations of 2π in the direction of the I coordinate, what

means that objects like islands, quasi-periodic or chaotic orbits repeat themselves by

translations of 2π. Thus, if a particle initially located at I0 is found in a position In such

that the escape condition holds, it follows the same orbit in the next n iterations and

is always escaping from regions between the limits I0 ± 2πm and I0 ± 2π(m + 1), where

m = 1, 2, 3, ... .

Figure 3.10 shows plots of ηe versus K/Kc for the standard map. K is the perturbation

parameter, and Kc is the critical parameter that defines the transition to global chaos.

All particles have the same K, and, as mentioned before, Kc ' 1.

The plots are created for different values of T : T = 1000, 5000, and 10000 iterations.
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Figure 3.10: Rate of escaping particles, ηe, versus K/Kc for the standard map model. K is the perturbation

parameter of the standard map, and Kc is the critical parameter defining the transition to global chaos. If

K > Kc, there are no KAM barriers, allowing particles that follow chaotic orbits to escape. Due to trapping

effects around or inside stability islands, there is no abrubt transition in escape rate for K ' Kc.

Each point corresponds to a simulation where ηe is calculated for an ensemble of N = 5000

particles.

As can be seen in Fig. 3.10, ηe = 0 for |K| ≤ Kc. Due to the presence of KAM

barriers, there are no particles escaping if the absoulte value of the perturbation is below

the critical parameter. Particles trapped inside islands or following quasi-periodic orbits

can not escape, just as those following chaotic orbits, which are confined among KAM

barriers.

For |K| > Kc, Fig. 3.10 shows that ηe = 0 increase with |K|. Since there are no

KAM barriers, particles following chaotic orbits can escape. However, due to trapping of

particles inside islands or long time stickiness of chaotic orbits near islands, there is not

a well defined or an abrubt transition from zero to one at |K| = Kc. Higher perturbation

values can destroy islands and increase the amount of chaos, bringing the escape rate to

maximum value.

Figure 3.11 shows the GSM’s escape rate (colored points) versus K0/Kc for different

and fixed values of ρ̂th. Each point corresponds to a simulation where ηe is calculated
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Figure 3.11: GSM model’s escape rate (colored points) for increasing K0/Kc and fixed ρ̂th compared to the

probability of global chaos (colored continuous lines). The analytical quantity Pc provides an upper bound for

ηe. Parameters: N = 5× 103; T = 5× 103.

for an ensemble of N = 5 × 103 particles and a maximum number of iterations given by

T = 5 × 103. The particles have different random Larmor radii, generated according to

the PDF (3.22). Let us denote these random numbers as ρ̂l, where l = 1..N . Orbits are

computed by iterating N gyroaveraged standard maps with different effective perturbation

Kl = K0J0(ρ̂l) and the same K0 for all particles.

In Fig. 3.11, the escape rate is plotted with the probability of global chaos (colored

continuous lines) using the same value for ρ̂th. The results show that the analytical

quantity Pc provides an upper bound for ηe. Although Pc measures the rate of orbits

embedded in global chaos phase spaces, not all of them can escape. As already mentioned,

there are trapping or stickiness effects due to the existence of islands, and these effects

make the transport measure ηe lesser than Pc.

However, the difference diminishes with increasing K0. According to Eq. (3.32),

the mean effective perturbation 〈K〉 increases proportionally with K0, supressing islands’

effects and increasing chaos.

Figure 3.12 shows plots of the GSM model’s escape rate and probability of global chaos

for varying ρ̂th and fixed K0/Kc. Again, the escape rate is below the limit provided by the
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Figure 3.12: Rate of escaping particles and probability of global chaos in the GSM model for increasing ρ̂th

and fixed K0/Kc. Parameters: N = 5× 103; T = 5× 103.

probability of global chaos. It is expected that both measures go to zero with increasing

ρ̂th. As prescribed by Eqs. (3.32) and (3.36), the average and dispersion of the effective

perturbation go to zero for high values of ρ̂th, restoring islands and KAM barriers. This

is shown, for example, by the fast decaying plots of Fig. 3.12 (K0/Kc = 2.0).

3.7 Rate of Trapping by Period-One Islands

In this section we define and analyze another numerical transport measure, which

quantifies the amount of particles trapped by period-one islands. Period-one islands oc-

cupy the largest areas in the phase space of the standard map. We will call this measure

rate of trapping and denote it by ηt.

In the GSM model, all particles move in phase spaces where the standard map’s fixed

point exists. Since the phase spaces’ topologies are determined by different values of the

effective perturbation, the fixed point can be stable or unstable, having then different

effects on the transport of particles located near it.

Some particles “see” phase spaces where the fixed points are hyperbolic, and others

where the fixed points are parabolic or elliptic. In general, particles located near el-
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liptic fixed points are trapped by the corresponding period-one islands, and those near

hyperbolic points spread in their respective phase spaces.

Let O be the standard map’s fixed point located at θ = π and I = 0. Given the

translation invariance of the standard map, the discussion presented here can be applied

to other fixed points located at θ = π and I = ±2πm, where m = 1, 2, 3, ... .

We compute the rate of trapping associated to O using the following procedure:

• N particles are randomly spread according to an uniform distribution inside a circle

of center O and radius εr, where ε � r and r is the radius of other larger and

concentric cicle.

• For a particle of the ensemble, the map is iterated until the particle escapes from

the circle of radius r or the number of iterations is greater than a maximum limit

T . The particle is considered to be “trapped” if it remains inside the circle of radius

r during T iterations. After deciding whether the particle is trapped, this step is

repeated for the other particles.

• Finally, we calculate ηt, which is determined by the ratio Nt/N , where Nt is the

number of trapped particles.

In all simulations presented here, we adopt ε = 0.05, r = 1.0, N = 5 × 103, and

T = 5 × 103. Different values can also be used under the condition of keeping ε � r,

r ≤ π and using large values for N and T . The condition r ≤ π comes from the fact that

the standard map is modulated by 2π in the direction of coordinate θ.

Figure 3.13 shows measures of the trapping rate in the standard map (red points)

versus K/4, where K denotes the perturbation parameter. For each measure, the orbits

are computed by iterations of N = 5× 103 standard maps with the same value for K.

There are two abrubt transitions occuring near 0 and Kc ' 4.04. During T = 5× 103

iterations, orbits remain trapped (ηt = 1) for 0 < K < Kc. If K < 0 or K > Kc, all of

them escape (ηt = 1). The interval 0 < K < Kc, that we call here as trapping interval,

corresponds approximately to the stability interval of the fixed point O, 0 < K < 4. O is

elliptic for K inside the stability interval and hyperbolic otherwise.
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Figure 3.13: Rate of trapping in the standard map by the period-one island associated to the fixed point

located at θ0 = π and I0 = 0. Two abrubt transitions occur near 0 and Kc ' 4.04. The trapping interval

0 < K < Kc corresponds approximately to the stability interval of the fixed point, which is elliptic for

0 < K < 4 and hyperbolic for K < 0 and K > 4.

Before analyzing the rate of trapping in the GSM model, we define other analytical

measure based on the cummulative distribution function of γ. We call this measure

probability of trapping, or simply Pt, which is the probability of finding the particle moving

in a phase space for which the effective perturbation K is inside the trapping interval

0 < K < Kc.

Assuming that K0 > 0 and since γ = K/K0, Pt is then given by:

Pt = P (0 < γ < Kc/K0), (3.54)

where P denotes the probability of γ inside the interval 0 < γ < Kc/K0. Thus,

Pt = G(Kc/K0)−G(0). (3.55)

Applying (3.44), Eq. we have:

Pt = 1−
∑
ρ̂j∈Γ0

(−1)i exp

[
−1

2

(
ρ̂j
ρ̂th

)2
]
, for 0 < K0/Kc ≤ 1 (3.56)
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Figure 3.14: Probability of trapping, Pt, versus K0/Kc. Pt is constant for K0/Kc < 1 and goes to zero for

K0/Kc � 1.

and:

Pt =
∑

ρ̂i∈ΓKc/K0

(−1)i exp

[
−1

2

(
ρ̂i
ρ̂th

)2
]
−
∑
ρ̂j∈Γ0

(−1)j exp

[
−1

2

(
ρ̂j
ρ̂th

)2
]
, for K0/Kc > 1

(3.57)

Figure 3.14 shows plots of the probability of trapping versus K0/Kc for different values

of ρ̂th. If K0/Kc < 1, Pt is constant, what is in agreement with the fact that Eq. (3.56)

has no dependence on K0. If K0/Kc > 1, Pt decreases with increasing K0. According to

Eq. (3.57), when K0/Kc � 1, ΓKc/K0 → Γ0, i.e. the two sets become nearly equivalent

and the corresponding sums cancel each other. Thus, Pt goes to zero for high values of

K0/Kc.

Figure 3.15 shows plots of the probability of trapping versus ρ̂th for different values

of K0/Kc. If K0/Kc = 0.5, Pt ' 1 for small values of ρ̂th, decreases to a minimum and

increases a constant level near 0.5. If K0/Kc > 1, the plots exhibit the following features:

Pt increases from zero to a maximum, decreases to a local minimum and increases again

until reaching again the same level near 0.5.

The limit case of small ρ̂th values can be understood through the fast exponential

decaying terms of Eqs. (3.56) and (3.57). If ρ̂th → 0, these terms go to zero and then we
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Figure 3.15: Probability of trapping (Pt) versus ρ̂th for different values of K0/Kc.

have: Pt → 1 for 0 < K0/Kc ≤ 1 and Pt → 0 for K0/Kc > 1.

As already mentioned, the plots in Fig. 3.15 show that Pt becomes constant at high

ρ̂th. This is in agreement with Eqs. (3.56) and (3.57) since their derivatives regarding ρ̂th

vary both like dPt/dρ̂th ∼ 1/ρ̂3
th, going to zero at high ρ̂th.

Now we show, in Figs. 3.16 and 3.17, numerical results (colored points) refering to

the rate of trapping in the GSM model. Each measure is computed for an ensemble of

N = 5×103 particles with different random Larmor radii, determined by the PDF (3.22).

N gyroaveraged standard maps, with different effective perturbation parameters and

the same K0, are iterated at most T = 5 × 103 times. The value of K0 is defined by the

product between a given ratio K0/Kc, whose values are shown in the horizontal axis, and

the critical parameter Kc, estimated as Kc ' 4.04.

The initial positions of the particles are randomly located near point O inside a circular

region of radius εr. Again, we adopt ε = 0.05, and the trapping circular region has a radius

defined by r = 1.

The plots of the rate of trapping in the GSM are compared to plots of the probability

of trapping, the same shown in Figs. 3.14 and 3.15. We see that, in both Figs. 3.16 and

3.17, the analytical measures describe well the numerical ones.
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Figure 3.16: GSM’s rate of trapping (points) versus K0/Kc for fixed values of ρ̂th. The probability of

trapping (lines), defined by Eqs. (3.56) and (3.57), provides a good analytical estimate for ηt. Parameters:

N = 5× 103; T = 5× 103; ε = 0.05; r = 1.

Some properties of the rate of trapping shown in Fig. 3.16 can be understood analyzing

the average of the effective perturbation, 〈K〉. According to Eq. (3.32), for any ρ̂th > 0,

〈K〉 /K0 ≤ 1 and, if ρ̂th is kept fixed, 〈K〉 = O(K0). Thus, 0 < K0 < Kc results that

0 < 〈K〉 < Kc, and particles, in average, are trapped by the preriod-one island. This

explains why, even varying K0 inside the trapping interval 0 < K0 < Kc, the rate of

trapping remains approximately constant. However, increasing K0 indefinitely moves the

average of the effective perturbation outside the trapping interval in order that the rate

of trapping starts to decay if K0 > Kc, as can also be seen in Fig. 3.16.

Figure 3.17 shows that the rate of trapping varies in two different ways for small ρ̂th:

one for 0 < K0 < Kc and other for K0 > Kc.

Let us consider the first case, illustrated by the set of measures of ηt for K0 = 0.5Kc

(red points). According to Eqs. (3.33) and (3.37), if ρ̂th → 0, then 〈K〉 → K0, σ2
K → 0

and, since 0 < K0 < Kc, most particles are trapped. This property is observed in Fig.

3.17, where ηt ' 1 for small ρ̂th and K0 = 0.5Kc .

In the cases where K0 > Kc, we have again 〈K〉 → K0 and σ2
K → 0 for ρ̂th → 0, but
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Figure 3.17: ηt (points) versus ρ̂th for different fixed values of K0/Kc. ηt is compared to Pt (lines). Both

results are in good agreement. Parameters: N = 5× 103; T = 5× 103; ε = 0.05; r = 1.

most K values are outside the trapping interval. Thus, ηt ' 0 for small ρ̂th and K0 > Kc .

However, since 〈K〉 ∼ exp (−ρ̂2
th/2), increasing ρ̂th moves 〈K〉 inside the trapping interval,

increasing then the number of trapped particles.

In all cases shown in Fig. 3.17, we observe the ocurrence of local minima in the rate of

trapping. This property can be explained by the way how the dispersion of the effective

perturbation varies with increasing ρ̂th. We have seen that, according to Eq. (3.37), 〈K〉,

keeping K0 fixed, varies in the same way as σ2
γ, increasing from zero until reaching a

maximum and then decreasing to zero again.

If 〈K〉 is inside the trapping interval and the dispersion increases, then the number

of values of the effective perturbation outside the trapping interval also increases. If the

dispersion reaches its maximum, then the rate of trapping reaches a minimum.

Since 〈K〉 remains inside the trapping interval (〈K〉 → 0+ for ρ̂th → +∞), if the

dispersion starts to decrease from its maximum, then values of the effective perturbation

are brought back to the trapping interval and then the rate of trapping starts to increase.

A final comment about Fig. 3.17 refers to the constant level ηt ' 0.5, reached at high

values of ρ̂th. Let Iε be a small neighborhood of zero, defined by Iε = (−ε,+ε) and such
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that ε is positive and arbitrarily small. The probability that γ is positive given that γ ∈ Iε
is the conditional probability P+ = P (0 < γ < +ε| − ε < γ < +ε), which can be written

as:

P+ =
G(ε)−G(0)

G(ε)−G(−ε)
. (3.58)

Since G(±ε) = G(0)± εg(0) + O(ε2), we see that P+ = εg(0)/2εg(0) = 1/2. Therefore, if

γ has values near zero, these values occur with equal probabilities inside −ε < γ < 0 and

0 < γ < +ε.

For ρ̂th → +∞, 〈γ〉 → 0, σ2
γ → 0, resulting that values of γ become concentrated in a

small neighborhood Iε, half of them in (−ε, 0) and the other half in (0,+ε). Thus, increas-

ing ρ̂th makes values of the effective perturbation K to concentrate inside (−εK0,+εK0),

half outside the trapping interval (−εK0 < K < 0) and the other half inside the trapping

interval (0 < K < +εK0 << Kc). This means that ηt goes to 1/2 for high ρ̂th, as shown

in Fig. 3.17.
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Chapter 4

Conclusion

In this work we studied several finite Larmor radius effects on discrete models of ~E× ~B

transport of test charged particles. FLR effects were included in our model by gyro-

averaging the electrostatic potential. The discrete models correspond to area preserving

maps assuming an eletrostatic potential consisting of a superposition of an equilibrium

field and a perturbation consisting of a broad spectrum of drift waves. The maps were

constructed from the integration of the gyro-averaged ~E × ~B Hamiltonian system, whose

frequency is determined by the equilibrium potential. For zero Lamor radius (i.e., in

the absence of FLR corrections), the ~E × ~B frequency’s profile corresponds to the radial

component of the eletric field.

We considered three different equilibrium potentials and constructed three different

maps: the gyro-averaged standard map (GSM), the gyro-averaged standard nontwist

map (GSNM), and the gyro-averaged quartic nontwist map (GQNM). In the GSM, the

frequency, i.e. the gyro-averaged ~E × ~B zonal flow, has a monotonic radial profile. The

GSNM and GQNM are nontwist maps their frequencies have non-monotonic radial pro-

files. Non-monotonic frequencies have degenerate points (points where the frequency is

maximum or minimum) which cause the occurence of robust transport barriers, that we

called nontwist transport barriers (NTBs). A NTB is a region of the phase space formed

by KAM curves that are very resiliant to breakup. The KAM curves, in the context of

our ~E × ~B models, preclude the radial transport of charged particles.

The perturbation parameter in all maps is proportional to the amplitude of the drift
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waves. Increasing the perturbation increases the chaos in the phase space. However,

even for a high perturbation, we showed that, when the Larmor radius is sufficiently

close to the zeros of the zero-order Bessel function, chaotic dynamics can be significantly

supressed. Chaos suppression means that KAM curves are restored, forming barriers that

restrict the transport of charged particles. The chaos supression effect due to the zeros of

the zero-order Bessel function was analytically verified in our simplest model, the GSM,

by applying the well-known critical threshold for the transition to global chaos in the

Chirikov-Taylor map. We studied numerically the same effect in the GSNM by using

breakup diagrams.

The breakup diagrams provide critical thresholds for the breakup of the shearless

curve, one of the robust KAM curves that constitute the NTB. We used a method to

determine the breakup of the shearless curve based on the maximum number of different

recurrence times. We showed that a relatively low number of iterations was sufficient

to determine the main features of the GSNM’s breakup diagrams. As far as we know,

few works have applied the recurrence properties of orbits as a tool to recognize chaotic

motion.

We also used the GSNM to investigate the role of the Larmor radius in the formation of

typical nontwist phase space topologies. The phase space of the GSNM exhibits separatrix

reconnection, homoclinic and heteroclinic topologies. We obtained a formula determining

the condition for separatrix reconnection as a function of the Larmor radius. In particular,

by changing the Larmor radius, the phase space can assume the homoclinic or heteroclinic

topologies.

Fixed points play an important role on the transport properties of dynamical systems.

In the GSNM, the location and stability of the fixed points are affected by the Larmor

radius. In order to determine the stability of the GSNM’s fixed points, we applied Greene’s

residue criterion and computed the residues of the fixed points. The residue of each fixed

point is a function of all the parameters of the GSNM, including the Larmor radius. The

residues are correlated in such a way that knowing the residue of only one fixed point

is sufficient to determine the residues of the others. As a consequence, we showed that

there are only three possible configurations describing the fixed points in terms of their
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positions and stability.

For the GQNM, the other nontwist map studied in this work, we analysed the FLR

effect on zonal flow bifurcation. The zonal flow bifucation occurs when the Larmor ra-

dius exceeds a critical threshold, and we showed that it is followed by the formation of

additional fixed points and NTBs. In particular, we found a set of eight period-one fixed

points and verified that four of them only exist for Larmor radii greater than a critical

threshold. It was noticed that the elliptic fixed points created by varying the Larmor

radius can acquire a strong stability, i.e. high perturbations are required for the elliptic

points to become hyperbolic. The presence of elliptic points results in the formation of

islands that trap charged particles. If the elliptic points have a strong stability, the as-

sociated islands cannot be easily destroyed by increasing the perturbation parameter. A

consequence of the zonal flow bifurcation is the occurrence of three nontwist transport

barriers. We focused on the central NTB and analysed the robustness of its shearless

curve through breakup diagrams. The results show that the robustness of the central

shearless significantly increases when the Larmor radius is close to the critical threshold

for the zonal flow bifurcation. In this work we argued that, near the critical threshold,

a high level of “flatness” of the frequency profile around the central degenerate point is

associated with a high level of robustness of the central shearless curve. This property,

which is in agreement with previous works, results in the formation of stronger NTBs near

the threshold of the zonal flow bifurcation.

After studying FLR effects on the dynamics of single particles, we proposed a model

based on the GSM to investigate statistical properties of ensembles of particles. In this

GSM based model, we considered particles that“observe”different phase space topologies.

Each particle of the ensemble has a random Larmor radius and follows a GSM orbit for

which the effective perturbation is also randomly defined.

The Larmor radius’ probability density function (pdf) results from the Maxwell-

Bolztmann distribution, which describes plasmas in thermal equilibrium. The only param-

eter present in the Larmor radius’ pdf is the thermal Larmor radius, which incorporates

important physical parameters and determines the mean Larmor radius of an ensemble

of particles.
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Having in mind the goal of providing results relevant to transport studies, here we

focused on statistical properties related to the effective perturbation for it completely

determines the orbit of each particle in the GSM model. The effective perturbation is the

product of a constant, the perturbation parameter, and the zero-order Bessel function of

Larmor radius, here called simply as gamma.

A first set of results refers to the statistics of the gamma function. We obtained

its probability density function (pdf), average, dispersion and cumulative distribution

function.

We showed the occurrence of high probability points or “peaks” in the histograms of

gamma and related these peaks to singularity points in the gamma’s pdf. The singularities

correspond to maxima and minima of the zero-order Bessel function, defined at Larmor

radii values which are zeros of the first-order Bessel function.

Although the peaks are always located near the singularities, not all singularities have

peaks associated to them. The gamma’s pdf has terms with exponential decaying factors

coming from the Larmor radius’ pdf and which are able to inhibit the effects of the

singularities. The singularities can be “strong” (have peaks) or “weak” (have not peaks)

depending on the magnitude of these factors at the singularities.

Among the properties of the average and dispersion of gamma, we saw that, for in-

creasing Larmor radii, the average decays exponentially fast and the dispersion increases

from zero to a maximum and then decreases to zero again. We argued that this property

can also be explained by the infinite number of singularities concentrated near zero which

become strong for high thermal Larmor radii.

An analytical formula for the cumulative distribution function (cdf) of gamma was

obtained and validated by numerical simulations. We showed that this cdf is not a smooth

function, presenting corners due to the singularities of the gamma’s pdf. Our interest in

the cdf of gamma comes from the fact that it allows to obtain formulas for probabilities

associated to any specific interval of the effective perturbation

The examples discussed in this work were the probability of global chaos and the

probability of trapping. The probabilities of global chaos and trapping were both analyzed

considering variations of the perturbation parameter and the thermal Larmor radius. Even
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though evaluating the formulas of these probabilities require complicated computations,

where it is necessary to solve transcedental equations involving the zero-order Bessel

function, they showed to be useful tools for the study of two types of transport measures:

the escape rate and the rate of trapping by period-one island.

The numerical results showed that the probability of global chaos represents an upper

bound for the escape rate. The difference between both measures occurs because the

escape rate in the standard map has not a well-defined transition at the critical parameter

that defines the transition to global chaos. Many orbits, even in global chaos phase spaces,

can be trapped inside or stick near outside stability islands. Despite the difference, which

reduces for high values of the perturbation parameter, the escape rate can not be greater

than the probability of global chaos. A particle can escape only in a global chaos phase

space, but not all of the particles moving in global chaos phase spaces can do it.

We showed that the probability of trapping is a good theoretical estimate for the rate

of trapping in the GSM model. This is due to a well-defined transition in the standard

map’ rate of trapping near the extrema of the fixed point’s stability interval. Thus, in

the context of GSM model, this well-defined transition makes the rate of trapping more

strongly related to the statistics of the effective perturbation.

The analytical results presented here to describe statistical properties of the GSM

model can also be applied to other types of transport measures, as, for example, to

diffusion coefficients, often studied both analytically and numerically in previous works

about the standard map. Combining known transport properties of the standard map,

including those usually categorized as “strange” or “anomalous”, and the results obtained

here, we can study further transport properties of the GSM model. The work presented

in Ref. [49] is an interesting starting point for future investigations in this direction.

Other possible direction consists in applying to more complicated gyro-averaged E×B

models studied in previous works (see, for example, [9, 10]) the same approach adopted

here of combining statistical information about the most relevant parameters and non-

linear dynamics properties related to those models.
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Appendix A

Gyro-averaged Drift Wave Map

In this appendix, we show some details related to the obtaining process of the gyro-

averaged drift wave map, given by Eqs. (2.11) and (2.12). The gyro-averaged drift wave

map is the basis of all maps discussed in chapter 2.

The gyro-average operation is defined by:

〈φ (x, y, t)〉ϕ =
1

2π

∫ 2π

0

φ(x+ ρ cosϕ, y + ρ sinϕ, t) dϕ, (A.1)

We assumed an electrostatic potential of the form:

φ (x, y, t) = φ0(x) + A
+∞∑

m=−∞

cos(ky −mω0t). (A.2)

Applying (A.1) to (A.2) results in:

〈φ(x, y, t)〉ϕ = 〈φ0(x)〉ϕ + A

+∞∑
m=−∞

〈cos(ky −mω0t)〉ϕ. (A.3)

The terms 〈cos(ky −mω0t)〉ϕ can be solved as follows:

〈cos(ky −mω0t)〉ϕ =〈cos(ky)〉ϕ cos(mω0t) + 〈sin(ky)〉ϕ sin(mω0t)

=
cos(mω0t)

2π

∫ 2π

0

cos(ky + kρ sinϕ) dϕ+
sin(mω0t)

2π

∫ 2π

0

sin(ky + kρ sinϕ) dϕ

=
cos(mω0t)

2π

{∫ 2π

0

[cos(ky) cos(kρ sinϕ)− sin (ky) sin (kρ sinϕ)] dϕ

}
+

sin(mω0t)

2π

{∫ 2π

0

[sin(ky) cos(kρ sinϕ) + cos (ky) sin (kρ sinϕ)] dϕ

}
=J0 (kρ) [cos(ky) cos(mω0t) + sin(ky) sin(mω0t)]

=J0 (kρ) cos (ky −mω0t) (A.4)

77



78 Gyro-averaged Drift Wave Map

where J0 is the zero-order Bessel function.

Substituting (A.4) in (A.3), we obtain:

〈H(x, y, t)〉ϕ = 〈H0(x)〉ϕ +
A

B0

J0 (ρ̂)
+∞∑

m=−∞

cos (ky −mω0t) , (A.5)

which is the gyro-averaged Hamiltonian introduced in chapter 2. The Hamiltonian A.5

can be rewritten as:

〈H(x, y, t)〉ϕ = 〈H0(x)〉ϕ+
A

B0

J0 (ρ̂)
+∞∑

m=−∞

[cos (ky) cos(mω0t) + sin(ky) sin(mω0t)]. (A.6)

The second term inside the sum can be removed since:

+∞∑
m=−∞

sin(mω0t) = 0. (A.7)

Using the Fourier series of the Dirac delta function with period T = 2π/ω0, we can

verify that:
+∞∑

m=−∞

cos(mω0t) = 2π
+∞∑

m=−∞

δ(ω0t− 2πm). (A.8)

Substituting (A.8) in (A.6), we have:

〈H(x, y, t)〉ϕ = 〈H0(x)〉ϕ +
2πA

B0

J0(ρ̂) cos(ky)
+∞∑

m=−∞

δ(ω0t− 2πm). (A.9)

According to the the gyro-averaged Hamiltonian system (2.6), we have:

ẋ = −∂y〈H(x, y, t)〉ϕ =
2πkA

ω0B0

J0(ρ̂) sin(ky)
+∞∑

m=−∞

δ(t−mT ) (A.10)

and:

ẏ = ∂x〈H0(x)〉ϕ = Ω (x) , (A.11)

which defines the frequency of the system, as already mentioned in chapter 2.

Let xn and yn define the coordinates of the particle at a time instant infinitesimally

smaller than τn = nT , i. e.:

xn = x(τn − ε) (A.12)

yn = y(τn − ε), (A.13)
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where n = 0, 1, 2, ... and ε→ 0+.

According to (A.10), the radial coordinate x has a jump at every time instant τn due

to the impulsive terms. However, at any other time instant, x is a constant because ẋ = 0.

Thus,

x(t) =

xn, τn−1 < t < τn

xn+1, τn < t < τn+1.

(A.14)

Assuming a well-behaved function for H0(x) such that Ω (x) is continuous, Eq. (A.11)

implies that y(t) is also a continuous function, what means that yn = y(τn − ε) = y(τn +

ε) = y(τn).

Considering the continuity condition for y(t) and integrating (A.10) from τn − ε to

τn+1 − ε result in:

xn+1 = xn +
2πkA

ω0B0

J0(ρ̂)Sn, (A.15)

where Sn is defined by:

Sn =
+∞∑

m=−∞

∫ τn+1−ε

τn−ε
sin(ky)δ(t−mT ) dt = sin(kyn). (A.16)

The integral in A.16 is zero for values of Tm outside the interval (τn − ε, τn+1 − ε).

Tm belongs to the interval (τn − ε, τn+1 − ε) only if m = n. In this case, the integral in

A.16 is equal to sin(kyn). Thus, (A.15) can be rewritten as:

xn+1 = xn +
2πkA

ω0B0

J0(ρ̂) sin(kyn), (A.17)

Applying (A.14) and integrating (A.11) from τn − ε to τn+1 − ε yield:

yn+1 = yn +

∫ τn+1−ε

τn−ε
Ω[x(t)] dt

= yn +

∫ τn

τn−ε
Ω(xn) dt+

∫ τn+1−ε

τn

Ω(xn+1) dt

= yn + εΩ(xn) +
2π

ω0

Ω(xn+1)

= yn +
2π

ω0

Ω(xn+1) (A.18)

Equations (A.17) and (A.18) correspond to the gyro-averaged drift wave map, intro-

duced in chapter 2.
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Appendix B

Indicator Points

As already discussed in chapter 2, if the orbit computed using a indicator point as

initial condition is quasiperiodic orbit, this orbit fills a one-dimensional curve which is

commonly called shearless curve. In this chapter, we show the necessary conditions and

computations to determine the indicator points’ formulas The procedure adopted here is

based on [40].

B.1 GSNM Indicator Points

In this section, we obtain the formulas of the indicator points for the GSNM. The

GSNM are given by Eqs. (2.29) and (2.30).

B.1.1 Involutions and Symmetry

The map (2.29)-(2.30) can be described by the transformation T , where:

T

I
θ̃

 =

 I − bJ0 (ρ̂) sin
(

2πθ̃n

)
θ̃n + f

(
I − bJ0 (ρ̂) sin

(
2πθ̃n

))
mod 1

 , (B.1)

where:

f (I) = a

[(
1− ρ̄2

2

)
− I2

]
. (B.2)
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The map T is time-reversal symmetric with respect to two involutions I0 and I1, i.e.,

T = I1I0, and I2
0 = I2

1 = I, where:

I0

I
θ̃

 =

I − bJ0 (ρ̂) sin
(

2πθ̃
)

−θ̃ mod 1

 (B.3)

I1

I
θ̃

 =

 I

−θ̃ + f (I) mod 1

 (B.4)

The map T is also symmetric under the S, i.e. ST = TS, defined by:

S

I
θ̃

 =

 −I

θ̃ − 1
2

mod 1

 (B.5)

Let’s now verify the relations T = I1I0, I2
0 = I2

1 = I, and ST = TS.

Decomposition of T: T = I1I0

I1I0

I
θ̃

 =I1

I − bJ0 (ρ̂) sin
(

2πθ̃
)

−θ̃


=

 I − bJ0 (ρ̂) sin
(

2πθ̃
)

θ̃ + f
(
I − bJ0 (ρ̂) sin

(
2πθ̃
))


=T

The transformations I0 and I1 are involutions: I2
0 = I2

1 = I

I2
0

I
θ̃

 =I0

I − bJ0 (ρ̂) sin
(

2πθ̃
)

−θ̃


=

(I − bJ0 (ρ̂) sin
(

2πθ̃
)

)− bJ0 (ρ̂) sin
(
−2πθ̃

)
θ̃


=

I
θ̃


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I2
1

I
θ̃

 =I1

 I

−θ̃ + f (I)


=

 I

−
(
−θ̃ + f (I)

)
+ f (I)


=

I
θ̃


The transformation S is a symmetry of T : ST = TS

ST

I
θ̃

 =S

 I − bJ0 (ρ̂) sin
(

2πθ̃n

)
θ̃n + f

(
I − bJ0 (ρ̂) sin

(
2πθ̃n

))


=

 −I + bJ0 (ρ̂) sin
(

2πθ̃n

)
(
θ̃n + f

(
I − bJ0 (ρ̂) sin

(
2πθ̃n

)))
− 1

2



TS

I
θ̃

 =T

 −I
θ̃ − 1

2


=

 −I − bJ0 (ρ̂) sin
(

2πθ̃n − π
)

θ̃n − 1
2

+ f
(
−I − bJ0 (ρ̂) sin

(
2πθ̃n − π

))


=

 −I + bJ0 (ρ̂) sin
(

2πθ̃n

)
θ̃n − 1

2
+ f

(
−I + bJ0 (ρ̂) sin

(
2πθ̃n

))


=ST

I
θ̃


B.1.2 Fixed Points of SI0 and SI1

Let’s now determine the fixed points of SI0 and SI1, which we call z0 and z1, respec-

tively. The points z0 and z1 are indicator points of the map (2.29)-(2.30).
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If z0 =

I0

θ̃0

, we have:

SI0

I0

θ̃0

 =

I0

θ̃0


S

I0 − bJ0 (ρ̂) sin
(

2πθ̃0

)
−θ̃0

 =

I0

θ̃0


−I0 + bJ0 (ρ̂) sin

(
2πθ̃0

)
−θ̃0 − 1

2

 =

I0

θ̃0

 (B.6)

Using (B.6) and considering that θ̃0 is periodic inside the interval [0, 1), we have:

θ̃m0 =

(
−θ̃m0 −

1

2

)
+m, m ∈ Z

θ̃m0 =
m

2
− 1

4
mod 1 (B.7)

And:

Im0 =− Im0 + bJ0 (ρ̂) sin

[
2π

(
m

2
− 1

4

)]
Im0 = (−1)m+1 bJ0 (ρ̂)

2
(B.8)

In practice, we just need to consider the solutions for m = 1 (z1
0) and m = 2 (z2

0) because

all other ones are equivalent.

θ̃1
0 =

1

4
θ̃2

0 =
3

4

I1
0 = +

bJ0 (ρ̂)

2
Ĩ2

0 = −bJ0 (ρ̂)

2

Therefore,

z1
0 =

+ bJ0(ρ̂)
2

1
4

 z1
0 =

− bJ0(ρ̂)
2

3
4

 (B.9)
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Now let’s determine the fixed point z1 =

I1

θ̃1

:

I1

θ̃1

 =SI1

I1

θ̃1


=S

 I1

−θ̃1 + f (I1)


=

 −I1

−θ̃1 + f (I1)− 1
2

 (B.10)

Using (B.10), we see that I1 = 0. Considering that θ̃1 is periodic inside the interval

[0, 1), we also have:

θ̃m1 =

(
−θ̃m1 + f (0)− 1

2

)
+m, m ∈ Z

θ̃m1 =
f (0)

2
+
m

2
− 1

4
mod 1 (B.11)

Again, just the solutions m = 1 (z1
1) and m = 2 (z2

2) are sufficient:

z1
1 =

 0

a
2

(
1− ρ̄2

2

)
+ 1

4
mod 1

 z2
1 =

 0

a
2

(
1− ρ̄2

2

)
+ 3

4
mod 1

 (B.12)

B.2 GQNM Indicator Points

Using the same procedure presented in section B.1, we can see that the indicator points

for the GQNM are given by the following formulas:

z1
0 =

+ bJ0(ρ̂)
2

1
4

 z2
0 =

− bJ0(ρ̂)
2

3
4

 (B.13)

z1
1 =

 0

f(0)
2

+ 1
4

mod 1

 z2
1 =

 0

f(0)
2

+ 3
4

mod 1

 (B.14)
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where f(I) is given by:

f (I) = a
(
1− I2

){
1− ρ̄2

[
3

2

(
1− I2

)
− 1

]}
(B.15)

Thus, f (0) = a
(

1− ρ̄2

2

)
and:

z1
1 =

 0

a
2

(
1− ρ̄2

2

)
+ 1

4
mod 1

 z2
1 =

 0

a
2

(
1− ρ̄2

2

)
+ 3

4
mod 1

 (B.16)

Note that the indicator point formulas are the same ones of the GNSM.



Appendix C

Statistics of Gamma: Further

Results

In this chapter we provide an alternative way to obtain the probability density function,

the moments and the cumulative distribution function associated to γ, that we call here

also perturbative ratio. An addition discussion about properties of the perturbative ratio’s

pdf is presented.

C.1 Alternative form of the Gamma’s PDF

Let normalized Larmor radius be described by the random variable X, which can

assume any value ρ̂ in the domain D = [0,+∞). X-PDF is defined by:

fX (ρ̂) =
ρ̂

ρ̂2
th

exp

[
−1

2

(
ρ̂

ρ̂th

)2
]
. (C.1)

Let Y be defined as the random variable associated to the perturbative ratio γ =

K/K0. Thus:

Y = u (X) (C.2)

where u : D 7−→ R and u(ρ̂) = J0(ρ̂). Function u corresponds to the zero-order Bessel

function defined on a non-negative real domain.

Let {(ρ̂k, γk = u(ρ̂k))}∞k=0 be defined as the set of points of maximum and minimum

of u, and Dk as the interval [ρ̂k, ρ̂k+1). The set of intervals {Dk}∞k=0 is a partition of the

87
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Figure C.1: Partition of the function γ in the the set of monotonic functions {uk}∞k=0. Each function uk is

defined between points of maximum and minimum of γ. Approximate coordinates of the maxima and minima

shown in the figure are (ρ̂0, γ0) ' (0, 1),(ρ̂1, γ1) ' (3.83171,−0.402759),(ρ̂2, γ2) ' (7.01559, 0.300116), and

(ρ̂3, γ3) ' (10.1735, 0.218359).

domain D in such a way that all functions uk, defined by uk : Dk 7−→ [γk, γk+1) and

uk (ρ̂) = u(ρ̂), are monotonic, as shown in Fig. C.1. Functions uk are increasing for even

values of k and decreasing for odd values of k.

A way to determine the probability density function of the perturbative ratio (Y -PDF)

is through the distribution function of Y :

FY (γ) = P (Y ≤ γ) (C.3)

which means the probability that Y ≤ γ. The Y -PDF, that we shall decribe by the

function fY (γ), corresponds to the first derivative of FY (γ):

fY (γ) = F ′Y (γ) (C.4)

According to (C.3) and (C.4):

FY (γ) =

∫ γ

−∞
fY (γ′) dγ′ (C.5)

Since {Dk}∞k=0 is a partition of the sample space of X, the probability (C.3) can be

written as:

FY (γ) =
∞∑
k=0

P (Y ≤ γ ∩ X ∈ Dk) (C.6)
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where P (Y ≤ γ ∩ X ∈ Dk) is the probability of the simultaneous occurrence of the events

Y ≤ γ and X ∈ Dk. Let P (Y ≤ γ |X ∈ Dk) be the conditional probability of Y ≤ γ

given that X ∈ Dk. The distribution (C.6) is then:

FY (γ) =
∞∑
k=0

F
(k)
Y (γ) (C.7)

with F
(k)
Y (γ) defined as:

F
(k)
Y (γ) = P (Y ≤ γ |X ∈ Dk)P (X ∈ Dk) (C.8)

where P (X ∈ Dk) is the probability of X ∈ Dk, given by:

P (X ∈ Dk) =

∫ ρ̂k+1

ρ̂k

fX(ρ̂) dρ̂ (C.9)

which, using the distribution function of X, FX (ρ̂), can also be written as:

P (X ∈ Dk) = FX(ρ̂k+1)− FX(ρ̂k) (C.10)

To determine the PDF of Y , we need to compute, according to (C.4), the derivative

of (C.7):

fY (γ) =
∞∑
k=0

f
(k)
Y (γ) (C.11)

where f
(k)
Y (γ) is defined by:

f
(k)
Y (γ) =

d

dγ

[
F

(k)
Y (γ)

]
(C.12)

Let ak = min{γk, γk+1} and bk = max{γk, γk+1}, which correspond to the minimum

and maximum of u(ρ̂) in the interval [ρ̂k, ρ̂k+1]. In case of even k (decreasing uk), the

minimum is ak = γk+1 and the maximum bk = γk. In case of odd k (increasing uk),

the minimum is ak = γk and the maximum bk = γk+1. The terms f
(k)
Y (γ) in (C.11)

are computed in two different ways depending on uk(ρ̂) is an increasing or a decreasing

function.
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f
(k)
Y (γ) for decreasing uk(ρ̂)

Depending on the value γ of the random variable Y , the probability P (Y ≤ γ |X ∈ Dk)

assume three different values:

P (Y ≤ γ |X ∈ Dk) =


1 γ ∈ [bk,+∞)

P [u−1
k (γ) ≤ X < ρ̂k+1 |X ∈ Dk] γ ∈ (ak, bk)

0 γ ∈ (−∞, ak]

(C.13)

where u−1
k (γ) is the inverse function of uk(ρ̂). Substituting (C.13) in (C.8), we have:

F
(k)
Y (γ) =


P (X ∈ Dk) γ ∈ [bk,+∞)

P [u−1
k (γ) ≤ X < ρ̂k+1 |X ∈ Dk]P (X ∈ Dk) γ ∈ (ak, bk)

0 γ ∈ (−∞, ak]

(C.14)

Since:

P [u−1
k (γ) ≤ X < ρ̂k+1 |X ∈ Dk]P (X ∈ Dk) = P [u−1

k (γ) ≤ X < ρ̂k+1 ∩ X ∈ Dk]

= P [u−1
k (γ) ≤ X < ρ̂k+1]

= FX(ρ̂k+1)− FX [u−1
k (γ)]

and knowing that P (X ∈ Dk) and FX(ρ̂k+1) don’t depend on γ, the derivative of (C.14)

is:

f
(k)
Y (γ) =

 −
fX [u−1

k (γ)]

u′k[u
−1
k (γ)]

γ ∈ (ak, bk)

0 γ /∈ (ak, bk)
(C.15)

where u′k(γ) is the derivative of uk(γ).

f
(k)
Y (γ) for increasing uk(ρ̂)

For decreasing uk(ρ̂), the probability P (Y ≤ γ |X ∈ Dk) assume the following values:

P (Y ≤ γ |X ∈ Dk) =


1 γ ∈ [bk,+∞)

P [ρ̂k ≤ X ≤ u−1
k (γ) |X ∈ Dk] γ ∈ (ak, bk)

0 γ ∈ (−∞, ak]

(C.16)
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Substituting (C.16) in (C.8), we have:

F
(k)
Y (γ) =


P (X ∈ Dk) γ ∈ [bk,+∞)

P [ρ̂k ≤ X ≤ u−1
k (γ) |X ∈ Dk]P (X ∈ Dk) γ ∈ (ak, bk)

0 γ ∈ (−∞, ak]

(C.17)

The value of F
(k)
Y (γ) for γ ∈ (ak, bk) is:

P [ρ̂k ≤ X ≤ u−1
k (γ) |X ∈ Dk]P (X ∈ Dk) = P [ρ̂k ≤ X ≤ u−1

k (γ) ∩ X ∈ Dk]

= P [ρ̂k ≤ X ≤ u−1
k (γ)]

= FX [u−1
k (γ)]− FX(ρ̂k) (C.18)

Since FX(ρ̂k) in (C.18) and P (X ∈ Dk) in (C.17) are constants, the derivative of

(C.17) can be written as:

f
(k)
Y (γ) =

 +
fX [u−1

k (γ)]

u′k[u
−1
k (γ)]

γ ∈ (ak, bk)

0 γ /∈ (ak, bk)
(C.19)

PDF

Inside the interval (ak, bk), u
′
k(γ) < 0 for decreasing uk(γ) and uk(γ) > 0 for increasing

uk(γ), which means that equations (C.15) and (C.19) can be written in only one formula:

f
(k)
Y (γ) =

 +
fX [u−1

k (γ)]

|u′k[u−1
k (γ)]| γ ∈ (ak, bk)

0 γ /∈ (ak, bk)
(C.20)

The probability density function of the perturbative ratio, which corresponds to the

PDF of the random variable Y , is thus defined by (C.11):

fY (γ) =
∞∑
k=0

f
(k)
Y (γ) (C.21)

where f
(k)
Y (γ) is given by (C.20), which can be rewritten as:

f
(k)
Y (γ) =

 +
u−1
k (γ)

ρ̂2th

exp

{
− 1

2

[
u−1
k

(γ)

ρ̂th

]2}
|J1[u−1

k (γ)]| γ ∈ (ak, bk)

0 γ /∈ (ak, bk)

(C.22)
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Figure C.2: f
(1)
Y (γ) for ρ̂th = 5.0

Figure C.2 shows a plot of f
(1)
Y (γ) for ρ̂th = 5.0, one of the terms f

(k)
Y (γ), given by

(C.22). Outside the interval (a1, b1), where (a1 ' −0.4 and b1 ' +0.3), f
(1)
Y (γ) is equal

to zero. Otherwise, f
(1)
Y (γ) is different from zero and goes to infinity when γ → a+

1 and

γ → b−1 . In Fig. C.2, the “peaks” near −0.4 and +0.3 result from singularities associated

to f
(1)
Y (γ).

Figure C.3 shows plots of fY (γ) for different values of the thermal Larmor radius, ρ̂th.

The plots exhibit the combined effect of all terms f
(k)
Y (γ). Some terms f

(k)
Y (γ) have a

dominant effect, what means that the corresponding peaks are clearly visible. The peaks

are located near the maxima and minima of J0, which correspond to the singularites of

fY (γ).

Singularities

For increasing uk:

lim
γ→a+k

fX [u−1
k (γ)] = fX(ρ̂k), lim

γ→b−k
fX [u−1

k (γ)] = fX(ρ̂k+1) (C.23)

For decreasing uk:

lim
γ→a+k

fX [u−1
k (γ)] = fx(ρ̂k+1), lim

γ→b−k
fX [u−1

k (γ)] = fX(ρ̂k) (C.24)

Since ak and bk are, respectively, the minimum and maximum of uk, we have:

lim
γ→a+k

∣∣u′k[u−1
k (γ)]

∣∣ = 0, lim
γ→b−k

∣∣u′k[u−1
k (γ)]

∣∣ = 0 (C.25)
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(a) ρ̂th = 0.5 (b) ρ̂th = 1.5

(c) ρ̂th = 5.0 (d) ρ̂th = 7.5

(e) ρ̂th = 15 (f) ρ̂th = 50

Figure C.3: Plots of fY (γ) for different values of ρ̂th. The singularities associated to the terms f
(k)
Y (γ) terms

explain the high values of fY (γ) near the maxima and minima of J0.
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From Eqs. (C.23), (C.24), and (C.25), we see that f
(k)
Y (γ) diverges positively when

γ → a+
k for any k and also when γ → b−k for k > 0. However, according to (C.20),

f
(k)
Y (γ) drops to zero outside the interval (ak, bk) for any k. That is, f

(k)
Y (γ) = 0 for

γ ∈ (−∞, ak]
⋃

[bk,+∞).

There’s no divergence in f
(0)
Y (γ) when γ → b−0 = 1−. From (C.22) and (C.24), we

have:

lim
γ→1−

f
(0)
Y (γ) = lim

ρ̂→0+

ρ̂

ρ̂2
th

exp

[
−1

2

(
ρ̂
ρ̂th

)2
]

|J1(ρ̂)|

=
2

ρ̂2
th

(C.26)

since J1(ρ̂) ∼ ρ̂
2

for small arguments. Therefore, f
(0)
Y (γ) does not diverge if γ → b−0 (the

only case in all set of terms f
(k)
Y (γ)) but diverges if γ → a+

0 .

C.2 Moments

The n-th moment of Y is given by:

〈Y n〉 =

+∞∫
−∞

γnfY (γ)dγ (C.27)

Substituting (C.21) in (C.27), we have:

〈Y n〉 =
∞∑
k=0

γk+1∫
γk

γn
fX [u−1

k (γ)]∣∣u′k[u−1
k (γ)]

∣∣dγ (C.28)

for increasing uk, and:

〈Y n〉 =
∞∑
k=0

γk∫
γk+1

γn
fX [u−1

k (γ)]∣∣u′k[u−1
k (γ)]

∣∣dγ (C.29)

for decreasing uk.

Since |u′k| = +u′k for increasing uk and |u′k| = −u′k for decreasing uk, Eqs. (C.28) and

(C.29) can be written in just one formula:

〈Y n〉 =
∞∑
k=0

γk+1∫
γk

γn
fX [u−1

k (γ)]

u′k[u
−1
k (γ)]

dγ (C.30)
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Let ρ̂ = u−1
k (γ), which means that γ = uk(ρ̂) = u(ρ̂). Changing the integration

variable in (C.30) , we obtain:

〈Y n〉 =

+∞∫
0

[u(ρ̂)]nfX(ρ̂)dρ̂ (C.31)

which, according to (C.1), is the same as:

〈Y n〉 =
1

ρ̂2
th

+∞∫
0

[J0(ρ̂)]n exp

[
−1

2

(
ρ̂

ρ̂th

)2
]
ρ̂dρ̂. (C.32)

Formula (C.32) corresponds to Eq. (3.30), obtained in chapter 3 by a different procedure.

C.3 Cumulative Distribution Function

According to (C.5), the distribution function of Y is:

FY (γ) =
∞∑
k=0

∫ γ

−∞
f

(k)
Y (γ′)dγ′ (C.33)

where f
(k)
Y is defined by (C.20).

Let Ik(γ) be defined by the integral in (C.33):

Ik(γ) =

∫ γ

−∞
f

(k)
Y (γ′)dγ′ (C.34)

Ik(γ) can then assume the following expressions:

Ik(γ) =


∫ bk
ak

fX [u−1
k (γ′)]

|u′k[u−1
k (γ′)]|dγ

′ γ ≥ bk∫ γ
ak

fX [u−1
k (γ′)]

|u′k[u−1
k (γ′)]|dγ

′ γ ∈ (ak, bk)

0 γ ≤ ak

(C.35)

In case of decreasing uk functions, let γ′ = uk(ρ̂) and Ik(γ) = I−k (γ). According to

(C.35), I−k (γ) is given by:

I−k (γ) =


∫ ρ̂k
ρ̂k+1

fX(ρ̂)
u′k(ρ̂)

|u′k(ρ̂)|dρ̂, γ ≥ bk∫ u−1
k (γ)

ρ̂k+1
fX(ρ̂)

u′k(ρ̂)

|u′k(ρ̂)|dρ̂, γ ∈ (ak, bk)

0 γ ≤ ak

(C.36)
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Since uk is decreasing, we have:

u′k(ρ̂)

|u′k(ρ̂)|
= −1 (C.37)

I−k (γ) can then be rewritten as:

I−k (γ) =


∫ ρ̂k+1

ρ̂k
fX(ρ̂)dρ̂, γ ≥ bk∫ ρ̂k+1

u−1
k (γ)

fX(ρ̂)dρ̂, γ ∈ (ak, bk)

0, γ ≤ ak

(C.38)

If γ ≥ bk, γ − uk(ρ̂) > 0 and Θ(γ − uk(ρ̂)) = 1 for any ρ̂ ∈ (ρk, ρ̂k+1), where Θ

corresponds to the Heaviside step function. Thus,∫ ρ̂k+1

ρ̂k

fX(ρ̂)dρ̂ =
∫ ρ̂k+1

ρ̂k
Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂, γ ≥ bk (C.39)

If γ ∈ (ak, bk), γ − uk(ρ̂) > 0 and Θ[γ − uk(ρ̂)] = 1 for any ρ̂ ∈ (u−1
k (γ), ρ̂k+1). For

ρ̂ ∈ (ρ̂k, u
−1
k (γ)), γ − uk(ρ̂) < 0 and Θ[γ − uk(ρ̂)] = 0. Thus, the second case in (C.38)

can then also be written as:∫ ρ̂k+1

u−1
k (γ)

fX(ρ̂)dρ̂ =
∫ u−1

k (γ)

ρ̂k
Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂+

∫ ρ̂k+1

u−1
k (γ)

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂ (C.40)

=
∫ ρ̂k+1

ρ̂k
Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂, γ ∈ (ak, bk) (C.41)

If γ ≤ ak, γ − uk(ρ̂) < 0 and Θ[γ − uk(ρ̂)] = 0 for any ρ̂ ∈ (ρ̂k, ρ̂k+1). The third case

in (C.38)has then also the same form as in the first and second cases (Eqs.(C.39) and

(C.41)).

Therefore,

I−k (γ) =

∫ ρ̂k+1

ρ̂k

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂ (C.42)

for every real γ.

Let Ik(γ) = I+
k (γ) when uk is increasing. Changing again the integration variable from

γ′ to ρ̂ = u−1
k (γ′), I+

k (γ), according to (C.35), is given by:

I+
k (γ) =


∫ ρk+1

ρk
fX(ρ̂)

u′k(ρ̂)

|u′k(ρ̂)|dρ̂ γ ≥ bk∫ u−1
k (γ)

ρk
fX(ρ̂)

u′k(ρ̂)

|u′k(ρ̂)|dρ̂ γ ∈ (ak, bk)

0 γ ≤ ak

(C.43)
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where:
u′k(ρ̂)

|u′k(ρ̂)|
= +1 (C.44)

for increasing uk functions.

The same procedure used to obtain Eq. (C.42) can be applied to obtain I+
k (γ). Again,

if γ ≥ bk, Θ[γ − uk(ρ̂)] = 1 for all increasing uk functions and every ρ̂ ∈ (ρk, ρ̂k+1). And

also, if γ ≤ ak, Θ[γ − uk(ρ̂)] = 0 for all increasing uk functions and every ρ̂ ∈ (ρk, ρ̂k+1).

Therefore, the first and third cases in (C.43) can be written as:

I+
k (γ) =

∫ ρ̂k+1

ρ̂k

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂, γ ∈ (−∞, ak]
⋃

[bk, +∞) (C.45)

If γ ∈ (ak, bk), Θ[γ − uk(ρ̂)] = 1 for ρ̂ ∈ (ρ̂k, u
−1
k (γ)) and Θ[γ − uk(ρ̂)] = 0 for

ρ̂ ∈ (u−1
k (γ), ρ̂k+1). Thus, the second case in (C.43) can be written as:∫ u−1
k (γ)

ρk

fX(ρ̂)dρ̂ =
∫ u−1

k (γ)

ρ̂k
Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂+

∫ ρ̂k+1

u−1
k (γ)

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂(C.46)

=
∫ ρ̂k+1

ρ̂k
Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂, γ ∈ (ak, bk) (C.47)

From (C.45) and (C.47), we see that:

I+
k (γ) =

∫ ρ̂k+1

ρ̂k

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂ (C.48)

which means that the same formula applies to both I+
k (γ) and I−k (γ).

According to (C.33) and (C.34), the distribution function associated to the random

variable Y is given by:

FY (γ) =
∞∑
k=0

Ik(γ) (C.49)

where, since I+
k (γ) (Eq. (C.48)) and I−k (γ) (Eq. (C.42)) are described by the same

formula, Ik(γ) is:

Ik(γ) =

∫ ρ̂k+1

ρ̂k

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂ (C.50)

Thus,

FY (γ) =
∞∑
k=0

∫ ρ̂k+1

ρ̂k

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂ (C.51)

=

∫ ρ̂1

ρ̂0

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂+

∫ ρ̂2

ρ̂1

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂+

∫ ρ̂3

ρ̂2

Θ[γ − uk(ρ̂)]fX(ρ̂)dρ̂+ ...

(C.52)
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which means that:

FY (γ) =

∫ ∞
0

Θ[γ − u(ρ̂)]fX(ρ̂)dρ̂ (C.53)

Formula (C.53) corresponds to Eq. (3.39), obtained in chapter 3 by a different procedure.
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