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ABSTRACT 

In situ X-ray diffraction is one of the most useful tools for studying a variety of 

processes, among which crystallization of nanoparticles where phase purity and size 

control are desired. Growth kinetics of a single phase can be completely resolved by 

proper analysis of the diffraction peaks as a function of time. The peak width provides a 

parameter for monitoring the time evolution of the particle size distribution (PSD), while 

the peak area (integrated intensity) is directly related to the whole diffracting volume of 

crystallized material in the sample. However, to precisely describe the growth kinetics in 

terms of nucleation and coarsening, the correlation between PSD parameters and 

diffraction peak widths has to be established in each particular study. Corrections in 

integrated intensity values for physical phenomena such as variation in atomic thermal 

vibrations and dynamical diffraction effects have also to be considered in certain cases. 

In this work, a general correlation between PSD median value and diffraction peak 

width is deduced, and a systematic procedure to resolve time-dependent lognormal PSDs 

from in situ XRD experiments is described in details. A procedure to correct the 

integrated intensities for dynamical diffraction effects is proposed. As a practical 

demonstration, this analytical procedure has been applied to the single-phase 

crystallization process of bismuth ferrite nanoparticles. 
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INTRODUCTION 

 Advanced synchrotron sources of high flux combined with detector 

systems capable of collecting, in just a few seconds, full X-ray diffraction (XRD) 

patterns of powder samples create opportunities for in situ studies of a variety of 

processes such as catalysis [1,2], energy storage and conversion [3], and crystallization 

of nanoparticles from amorphous precursors [4,5]. Fast in situ data acquisition may result 

in thousands of XRD patterns containing information on structural changes along the 

processes. Particularly in crystallization studies, there will be information on crystalline 

phases, lattice strain, and particle size distribution (PSD) as a function of time and 

temperature, covering the whole process from amorphous to fully crystalline phases.  

 Besides position of the diffraction peaks that can provide information 

on thermal expansion coefficients from nanoscale to large particles with bulk properties, 

width and area of the diffraction peaks allow detailed investigation of the growth 

kinetics, evidencing the role of nucleation and coarsening in time-dependent PSDs. 

Particle size from diffraction peak widths stand for just one value that can be produced 

by countless PSDs. In situ measures of integrated intensities during growth of crystalline 

particles provide a direct route to access fluctuation in the population      of particles as 

a function of time  . Stages of nucleation,     ⁄   , and coarsening (particles growing 

in size) can be resolved from the experimental integrated intensities when compared to 

theoretical values for PSDs with constant number of particles and with imposed 

constraints to the determined particle sizes from diffraction peak widths. Coarsening 

under constant volume of diffraction is possible at the cost of small particles that are 

dissolved,       ⁄ , providing material to the larger ones in a process widely known 

as the Ostwald ripening phenomenon. Since first described by Wilhelm Ostwald in 1896, 

the phenomenon has been observed in a number of general nanocrystal growth systems 

where broad spectrum of particle sizes is present [6]. This process play a fundamental 

role in determining the evolution in time of the particle population, and it is crucial in 

controlling size and size distribution during synthesis of nanocrystals.  

 For PSDs with broader distributions, particle sizes from diffraction 

peak widths have complex behavior with the PSD parameters such as mode (most 

probable value) and standard deviation, and where dynamical diffraction corrections can 

be indispensable. For strong Bragg reflections, neglecting dynamical corrections in broad 

PSDs with many particles of sizes above a few hundred nanometers leads to incorrect 

reading of the PSD parameters. The large-particle kinematical intensity contributions are 

much stronger than they actually are when neglecting dynamical effects. Then, the mode 

and width of the PSDs would have to be smaller than their actual values to reproduce the 

experimental peak widths. In this work we developed a systematic procedure to resolve 

time-dependent PSDs for in situ XRD studies. It is based on the kinematical approach of 

X-ray diffraction [7], with proper integrated reflectivity corrections from dynamical 

diffraction calculation [8]. As practical demonstration, the calculation involved in this 

analytical procedure is carried out for the single-phase crystallization process of bismuth 

ferrite [9]. 

X-RAY DIFFRACTION IN PARTICLE SIZE DISTRIBUTIONS 

According to the kinematical theory of X-ray diffraction, the integrated 

intensity      ∫           or area under each diffraction peak Ic(2θ) from a single 

crystallite (small crystal, grain, or particle diffracting in powder samples) as a function of 

the scattering angle 2θ is proportional to the crystallite volume Vc, that is         [4]. On 

the other hand, while the peak area increase with Vc, the peak width (fwhm – full width at 
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half maximum) β gets narrower inversely with crystallite size L, that is       ⁄ . To 

account for the fact that actual powder samples are formed by crystallites with different 

sizes, the number of diffracting particles (crystallites) with size between L and L + dL is 

given by n(L)dL where n(L) is the particle size distribution (PSD) function so that 

 
   ∫             ( 1 ) 

is the total number of diffracting particles in the sample. 

By using normalized line profile functions, such as a Lorentzian 

 

                            ,  ( 2 ) 

crystallites of size L produce a diffraction peak 

 
                                 ( 3 ) 

where K contains all terms that are independent of the crystallite size for reflections of 

Bragg angle   . It provides diffraction peaks of fwhm β and integrated intensity 
     ∫                      , since ∫                For the line profile 

function in Equation (2),            , and in the case of crystallites with cubic shape 

of edges L,          and the fwhm              ⁄  follows from Scherrer 

equation (SE) [10]. Diffraction peaks from the powder samples are then given by 

 
        ∫                 ,   ( 4 ) 

whose integrated intensity     ∫            ∫                are 

proportional to the total volume V of diffracting particles. 

Measurable diffraction peaks of powder samples with PSD have width    

defined at the half maximum according to   

 

               
 

 
∫                   ∫                

  

 
 ( 5 ) 

where the median value    is related to the fwhm    through the SE (to be numerically 

demonstrated later on). It means that the experimental peak widths lead to the median 

value    of the intensity-weighted PSD, that is weighting by the particles’ dimension to 

the power of four as from Equation (3) we have                          .  

DYNAMICAL DIFFRACTION CORRECTIONS 

In a crystal slab of thickness   , the integrated reflectivity       
   from 

dynamical diffraction calculation in specular reflection geometry is always smaller than a 

finite value and it is proportional to    within the kinematical approach, only for very 

small crystals [11-13]. In more precise words, 

 
               

        and                          

where W is the intrinsic width [14,15] of a Bragg reflection and α is just a constant of 

proportionality. Examples of dynamical integrated reflectivities [7],         , in BiFeO3 

(BFO) crystals are shown in Figure 1. 
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To account for dynamical diffraction corrections or, as formerly called, primary 

extinction, the diffraction peak expression for crystallites of size L in Equation (3) can be 

multiplied by the ratio       
     ⁄  having in mind that    stands for the crystallite 

dimension along the normal direction of the Bragg planes. In the case of cubic 

crystallites of edge L and Bragg planes parallel to one face of the crystallites, dynamical 

diffraction effects are easily taking into account by rewriting Equation (3) as 

 
                                    ,  ( 6 ) 

in agreement with the kinematical approach where ∫                    when 

L→0. 

 
 

 

Figure 1. Integrated reflectivities (solid lines) from dynamical diffraction calculation as a function of thickness in BFO 

crystal slabs. X-rays of 12 keV and 8keV for Bragg reflections 110 and 006. Deviations of 5% from the linear behaviour 

(dashed lines) due to dynamical diffraction effects (absorption and re-scattering processes) occur for slabs of thicknesses 

(a) 95.3 nm, (b) 127.9 nm, (c) 136.3 nm and (d) 194,4 nm. 

LOGNORMAL PSD 

Numerical demonstration of the correlation between    and    in Equation (5) 

through the SE is carried out here for the case of the most used function describing PSD 

in powder samples, which is the lognormal PSD [16,17]  

 

      
 

  √  
   [ 

           

   ].   ( 7 ) 

              is the median value of the PSD, that is  ∫       
  

 
      , given in 

terms of both PSD parameters, the most probable particle size L0 (mode) and σ (the 

standard deviation in log scale). Besides the median value, the PSD width 

           √          at half maximum also depends on both parameters L0 and σ. It 

follows from Equation (5) that, in the case of narrow PSDs where                  
           ∫       , measures of diffraction peak widths in powder samples provide 

the particle size      , see Figure 2(a). For broader PSDs, the particle size Ls obtained 

from SE has a more complex behavior with the variables L0 and σ, and where dynamical 
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diffraction corrections can be indispensable, as shown for instance in Figure 2(b). For 

strong Bragg reflections such as the 110 reflection in BFO crystals, neglecting dynamical 

corrections in broad PSDs with many particles of sizes above a few hundred nanometers 

leads to a deviation from the actual median value. Without accounting for dynamical 

effects to suppress the kinematical intensity contribution of large particles, the mode and 

width of the PSDs would have to be much smaller than they actually are to reproduce the 

experimental peak widths.  

In powder samples, measures of x-ray diffraction peak widths βs provide 

                  (SE for cubic crystallite), corresponding exactly to the median 

values of the peak intensity distributions defined in Equation (5). This correlation is 

numerically demonstrated in Figure 3(a), taking as a reference the 110 reflection of the 

BFO crystal. Diffraction peaks I(2θ) are simulated by using Equation (4) with the 

Lorentzian line profile function given in Equation (2), and cubic crystallites with 

dynamical corrections as in Equation (6). Examples of two simulated diffraction peaks 

are shown in Figure 3(b). Note that diffraction peak widths are unable to solve both 

parameters of the PSDs, for a single median value Ls there are countless combinations of 

L0 and σ, as shown in the case of the two simulated peaks in Figure 3(b). However, 

according to Figure 3(a), for a given  value there is a nearly linear relationship 

connecting the measured    values from diffraction peaks to the PSD mode   , e.g., 
            for      . This is an important observation that can be used to monitor 

time-dependent PSDs via diffraction peak width during in situ studies of crystallization 

processes.  

 

 

Figure 2. (a,b) Peak intensity distributions (PID) as                           , for lognormal PSDs (insets) with 

mode L0 = 80 nm and standard deviation (a)  = 0.3 and (b)  = 0.6. Dynamical diffraction corrections, Equation (6), of 

the kinematical approach in Equation (3) start to be significant in PSDs with sizes above 100 nm. Median values are 

indicated by vertical lines. Reflection 110 of the BFO crystal with x-rays of 12 keV. 

 

NUCLEATION AND COARSENING 

 At the very early beginning of the crystallization process, particles are quickly 

formed at many nucleation sites with narrow size distribution [18]. If X-ray diffraction 

can already be detected at this early stage,          is the initial particle population 

observed at the reference time instant   . After this instant, nucleation may simply end or 

continue followed or not by coarsening. Nucleation without coarsening is easily 

evidenced by increasing of integrated intensities (peak areas) while diffraction peak 

widths display nearly constant values as a function of time. To distinguish the instant 
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when nucleation ends and Ostwald ripening begins, it is necessary to choose a suitable 

time-dependent PSD to each system under investigation. Lognormal PSD is a reasonable 

choice as it broads with its mode    even when parameter  is kept constant. Then, 

diffraction peak width can be used to monitor the PSD as a function of time. Nucleation 

rate, end of nucleation, coarsening, and beginning of Ostwald ripening are readily 

identified by comparing the experimental integrated intensities with the theoretical ones 

for PSDs with constant population of    particles. In other words,       ⁄  
          ⁄  where       is an experimental integrated intensity and       is the 

integrated intensity calculated for a population of    particles whose PSD        is 

constrained to the       values determined from diffraction peak widths.  

 

 

Figure 3. (a) Median particle size Ls (solid lines) according to Equation (5) for different lognormal PSDs of mode L0 and 

standard deviation , as indicated. Particle sizes from SE (dots) in simulated x-ray diffraction peaks from Equation (4) 

showing an exact match with the Ls values in Equation (5). Dynamical diffraction effects are disregarded in the 

kinematical approach (dashed lines, kin, theory). (b) Examples of simulated diffraction peaks I(2θ) of similar widths 

(horizontal lines) for PSDs with different parameters L0 and σ (arrows A and B in (a)). Reflection 110 of the BFO crystal 

with X-rays of 12 keV (            at     [19]). 

 

CONCLUSIONS 

We show with this work that the peak width appearing in the Scherrer equation 

stands for the median value of the peak intensity distribution, corresponding to the 

weighted particle size distribution by particles' dimensions to the power of four in the 

case of particles with 3D shapes as cubes and spheres. Establishing a direct correlation 

between diffraction peak width and particle size distribution allows tracking the temporal 

evolution of the particle size distribution from experimental values of diffraction peak 

area and width. When compared with theoretical diffraction peak area it’s conceivable to 

distinguish stages of nucleation, coarsening, and Ostwald ripening. Moreover, applying 

dynamical corrections can be relevant depending on X-ray energy, chosen reflection, 

material, and mainly on size of the largest particles present in a given distribution.  
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