UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA

APLICAÇÃO DO MÉTODO CELULAR VARIACIONAL POLIATÔMICO ÀS MOLÉCULAS LINEARES DE CO E CO₂

TEODORO MENDES NETO

DISSERTAÇÃO APRESENTADA AO INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO, PARA OBTENÇÃO DO TÍT<u>U</u> LO DE MESTRE EM CIÊNCIAS.

tololphio tempeltraub ICO DE ÃO PAULO BIELK INFI 1984

539.4 N 538a. N

FICHA CATALOGRÁFICA

Preparada pela Biblioteca do

Instituto de Física da Universidade de São Paulo

Mendes Neto, Teodoro

Aplicação do Método Celular Variacional Poliatômico às Moléculas Lineares de CO e CO₂. São Paulo, 1984.

Dissertação (Mestrado) - Universidade de São Paulo. Instituto de Física. Departamen to de Física dos Materiais e Mecânica.

Área de Concentração: Física do Estado Sólido.

Orientador: Prof.Dr. Luiz Guimarães Fer reira.

Unitermos: 1. Física molecular; 2. Método de cálculo; 3. CO; 4. CO₂; 5. Método celular variacional.

USP/IF - B52/84

A meus país, minha esposa e meus irmãos... pela dedicação, pelo carinho.

A quem está vindo, quase chegando... com toda dedicação e carinho que queremos darlhe.

AGRADECIMENTOS

Ao Prof.Dr. Luiz Guimarães Ferreira, pela segura orien tação, pelas inúmeras conversas e comunicações por escrito, ver dadeiros subsídios para a elaboração deste trabalho.

Ao Prof.Dr. Manoel Lopes de Siqueira, pelo incentivo e apoio nas diversas oportunidades, que ele mesmo ajudou a criar, nas suas vindas a São Paulo.

A Profa. Wanda Valle Marcondes Machado, pelas muitas horas de atenção e esclarecimentos.

À Sra. Dayse Duarte Caliō, pelo esmēro com que tratou este trabalho.

Ao Sr. Carlos Medeiros Pepe, pelos desenhos.

A todos os colegas e amigos, professores e funcionários do Instituto de Física, especialmente do Departamento de Física dos Materiais e Mecânica, pelo ambiente cordial, apoio e e<u>s</u> timulo.

<u>ÍNDICE</u>

	RESUMO	i
	ABSTRACT ·····	ii
Ι.	INTRODUÇÃO	1
11.	O MÉTODO CELULAR VARIACIONAL	
	II-1. Breve Histórico	3
	II-2. Principais Diferenças da Versão Anterior	3
	II-3. Divisão do Espaço Molecular e a Matriz Secular	5
	II-4. A Densidade Eletrônica, o Potencial e a Energia	
	Total	10
	II-5. O Ciclo de Autoconsistência	12
	II-6. A Escolha das Células	14
III.	APLICAÇÃO E RESULTADOS	
	III-1. Para a Molécula de CO	17
	a. Escolha da geometria das células b. Cálculo do γ conveniente para a célula exter-	17
	na	20
	c. Parâmetros das células e a simetria utilizada	21
	d. Resultados obtidos	21
	III-2. Para a Molécula de CO ₂	25
	a. Escolha da geometria das células	25
	b. Parâmetros das células e a simetria utilizada	26
	c. Cálculo exato das superfícies entre as célu-	
	las	27
		20

IV.	COMPARAÇÃO COM RESULTADOS ANTERIORES E EXPERIMENTAIS	
	IV-1. Para a Molécula de CO	36
	IV-2. Para a Molécula de CO ₂	38
	IV-3. O Problema do Potencial	39
۷.	CONCLUSÕES	44
	APÊNDICES	
	A. Cálculo da Densidade Eletrônica	45
	B. Cálculo da Energia Total e do Potencial	52
	C. Uso das Simetrias C _{12v} e D _{12H}	58
	REFERÊNCIAS	66

RESUMO

Utilizamos o Método Celular Variacional, em uma nova versão, para as moléculas lineares de CO e CO_2 . O objetivo deste trabalho é testar o novo programa computacional (XII/83) e consequentemente os novos aspectos da teoria envolvida. Por um lado, estamos estudando o caso de moléculas lineares e exploramos por isto a sua simetria. Por outro, não nos detivemos somente em moléculas diatômicas (como o CO) mas usamos para o CO e o CO_2 a teoria e o programa de moléculas poliatômi cas. Comparamos nossos resultados com alguns obtidos anterior mente e com os resultados experimentais.

ABSTRACT

We have used the Variational Cellular Method, in a new version, for the linear molecules of CO and $\rm CO_2$. The aim of this work is to apply the new computational program (XII/83) and consequently the new aspects of the theory. We have studied the case of linear molecules and explored their symmetries. On the other hand, we have not studied only diatomic molecules (as the CO), but the theory and the program for polyatomic molecules were used for the CO and $\rm CO_2$. Our results are compared with some obtained previously and with the experimental ones.

ii

- I -

1

INTRODUÇÃO

Uma nova versão do método celular variacional de Ferreira e Leite [1-3] foi apresentada por Ferreira e De Siqueira [4] pa ra o cálculo da estrutura eletrônica de sistemas poliatômicos. Es ta nova versão, que tem sido considerada simples de usar, utiliza potenciais e densidades de carga não "muffin-tin". Foram desenvol vidos procedimentos analíticos e programáveis para a definição das células e escolha dos pontos para as integrações de superfície de estruturas poliatômicas.

Depois de alguns testes do Método Celular Variacional P<u>a</u> ra Sistemas Poliatômicos (MCVP) [4-7], aos quais se acrescenta este nosso trabalho, confirma-se a grande eficiência deste método, proporcionando cálculos precisos e relativamente rápidos da estrutura eletrônica de moléculas.

Recomendamos estas referências mais recentes [4-7], tanto aos que conhecem a versão antiga [1-3], para se familiarizarem com a nova, como aos que não conhecendo o método, desejam estudálo. Estes últimos encontrarão, nestas publicações mais recentes, as referências necessárias às antigas: ou por aquele aspecto não ter sido alterado ou por estar baseado na versão anterior.

Fazemos no Capítulo II uma descrição do MCVP que nos parece útil a quem pretende conhecer seus fundamentos. Depois de um breve histórico, comparamos com a versão anterior e descrevemos as pectos da nova formulação variacional. Nas referências citadas po dem ser encontrados mais pormenores de uma ou outra passagem. No Capítulo III estão as aplicações que fizemos do MCVP às moléculas de CO e CO₂, com os dados e simetrias utilizados e os resultados obtidos. A comparação com resultados anteriores e experimentais é feita no Capítulo IV. No seu final chamamos a atenção para a pri<u>n</u> cipal fonte de desvio: o problema do potencial. Resumimos no Cap<u>í</u> tulo V as nossas conclusões.

Nos Apêndices A e B acrescentamos o que tornaria, talvez, menos claro e mais longo o Capítulo II. No Apêndice C justificamos a simetria C_{12V} utilizada para o CO e a D_{12H} para o CO₂, através do estudo do grupo C_{nV} .

O MÉTODO CELULAR VARIACIONAL

- II -

II-1. BREVE HISTÓRICO

O Método Celular foi proposto originalmente por Slater em 1934 [8]. A idéia básica é dividir o espaço molecular em células onde expandimos as funções de onda e escolhemos os coeficientes da expansão de modo que a função de onda e sua derivada normal sejam contínuas nas fronteiras da célula. Altman (1974) [9] explo rou esta idéia simples usando um grande número de pontos de continuidade distribuídos nas fronteiras da célula. Antoci (1975) [10] e Ferreira e Leite (1978) [1] substituiram o problema da continuidade por uma expressão variacional para a energia, mas fizeram usos bem diferentes da expressão. Mais tarde Ferreira e Leite (1979) [3] usaram a mesma idéia para resolver a equação de Poisson no espaço dividido em células, dando assim o passo final para a solução autoconsistente do problema de vários elétrons.

II-2. PRINCIPAIS DIFERENÇAS DA VERSÃO ANTERIOR

A versão do Método Celular Variacional que utilizamos é um aperfeiçoamento da versão antiga (Ferreira e Leite 1979) em qua tro aspectos:

a) A densidade eletrônica não é mais "muffin-tin".

b) Foi desenvolvido um procedimento simples e programá vel tanto para a definição das células de uma estrutura poliatômi-

ca como para a escolha dos pontos para as integrações de superfície.

c) Na versão anterior do método celular frequentemente o corria o seguinte problema. Dentro de uma célula as funções de ba se eram a solução da equação de Schroedinger convergindo no núcleo. Na integração desta equação a partir do núcleo para as fronteiras da célula a função de base crescia exponencialmente. O crescimento exponencial criava dificuldades no casamento da função com as das células vizinhas nas fronteiras das células. Acompanhando esse crescimento exponencial, o determinante da matriz secular frequentemente possuia um comportamento bem crítico nas proximidades do autovalor da energia. Todos estes problemas parecem estar resolvi dos na atual versão, aumentando o número de coeficientes variacionais da função de onda. Isto é conseguido dividindo cada célula em duas regiões, uma interna e outra externa a uma esfera inscrita na célula.

d) Na versão anterior haviam restrições para os conjuntos de base através de desigualdades que eram impostas ((16) de Fer reira e Leite 1979). Aquelas desigualdades restringindo o número de coeficientes variacionais nas células vizinhas demonstrou ser uma inconveniência no uso do método. Esta inconveniência também foi solucionada.

Esta versão do MCVP que utilizamos está publicada nas referências [4] e [5].

II-3. DIVISÃO DO ESPAÇO MOLECULAR E A MATRIZ SECULAR

<u>FIGURA 1.</u> Divisão do espaço em quatro celu las e suas esferas inscritas.

O espaço molecular é dividido em células. No caso da Fi gura 1 temos 4 células. Cada célula i é dividida por uma esfera inscrita de raio R_i em duas regiões: a externa que chamamos i e a interna que chamamos i'. As correspondentes funções de onda nes sas regiões chamaremos de ψ_i e ψ'_i . A célula externa, que contém o infinito, é dividida também em duas regiões por uma esfera de raio R_o envolvendo todas as outras células: São elas: uma r<u>e</u> gião interna O', que contém o infinito, e uma região externa que chamamos de O.

Na versão antiga (1979) uma divisão como esta era usada na solução da equação de Poisson. A novidade do método celular v<u>a</u> riacional apresentado por Ferreira e De Siqueira (1983) é que a me<u>s</u> ma divisão também é usada na solução da equação de Schroedinger. Em cada célula o potencial é esfericamente simétrico.

Na região i', dentro da esfera inscrita da célula i, a função de onda de um elétron precisa ser convergente no núcleo. As sim, ela pode ser expandida em uma série

$$\Psi'_{i} = \sum_{\lambda} B_{i\lambda} g_{i\lambda} (\vec{r}_{i})$$
(1)

onde λ é o par (l,m) de momentos angulares, $B_{i\lambda}$ é um coeficiente de expansão e

$$g_{i\lambda}(\hat{r}) = R_{\ell}(r_{i}) Y_{\lambda}(\hat{r}_{i})$$
(2)

Na equação (2) $R_{g}(r_{i})$ é a solução da equação radial de Schroedi<u>n</u> ger que é finita na origem, $Y_{\lambda}(\hat{r}_{i})$ são harmônicos esféricos e

$$\vec{r}_i = \vec{r} - \vec{a}_i$$

onde \vec{a}_i é o centro da célula i, r_i e \hat{r}_i são o módulo e o ver sor na direção de \vec{r}_i .

Para a região externa i, que não contém nem a origem nem o infinito, podemos expandir a função de onda do seguinte modo:

$$\Psi_{i} = \sum_{I=1,2} \sum_{\lambda} A_{i\lambda}^{(I)} f_{i\lambda}^{(I)} (\vec{r})$$
(3)

isto é, uma combinação linear de duas soluções linearmente indepe<u>n</u> dentes, onde

$$f_{i\lambda}^{(I)}(\vec{r}) = R_{\ell}^{(I)}(r_{i}) Y_{\lambda}(\hat{r}_{i})$$
(4)

Analogamente, λ é o par (l,m), $A_{i\lambda}^{(I)}$ são coeficientes variacionais, $Y_{\lambda}(\hat{r}_{i})$ são harmônicos esféricos e $R_{\hat{z}}^{(I)}(r_{i})$ é uma solução da equação radial de Schroedinger na região $r_{i} > R_{i}$ com uma das seguintes condições de contorno

$$R_{l}^{(1)}(R_{i}) = 1$$
 (5a)

$$\partial_n R_{\ell}^{(1)}(R_{i}) = 0 \tag{5b}$$

ou

$$R_{\ell}^{(2)}(R_{i}) = 0 \tag{6a}$$

$$\partial_n R_{\ell}^{(2)}(R_{i}) = 1 \tag{6b}$$

onde ∂_n é a derivada normal à superfície da região i dirigida p<u>a</u>ra fora.

Para a célula externa, região O', a função $R_{l}(r_{O})$ é finita no infinito.

A novidade nesta versão do método celular (1983) em rel<u>a</u> ção à antiga é o surgimento do superscrito I na equação (4) referente ao comportamento na superfície da esfera inscrita.

De modo análogo à expressão variacional para a energia eletrostática (equação (9) de Ferreira e Leite, 1979 [3]) completamos a expressão variacional (equação (1) de Ferreira e Leite, 1978 [1]) de modo a incluir termos de superfície nas esferas inscritas.

$$\varepsilon \sum_{i} \int d\Omega \ \psi_{i}^{\star} \ \psi_{i} \ + \ \varepsilon \sum_{i} \int d\Omega' \ \psi_{i}^{\star} \ \psi_{i}^{\star} \ =$$

$$= \sum_{i} \int d\Omega \ \psi_{i}^{\star} \ (-\nabla^{2} + \nabla) \ \psi_{i} \ + \sum_{i} \int d\Omega' \ \psi_{i}^{\star} \ (-\nabla^{2} + \nabla) \ \psi_{i}^{\star} \ +$$

$$+ \frac{1}{2} \sum_{s_{ij}} \int dS \ (\psi_{i} - \psi_{j}) \ (\partial_{n} \psi_{j}^{\star} - \partial_{n} \psi_{i}^{\star}) \ +$$

$$+ \frac{1}{2} \sum_{s_{ij}} \int dS \ (\psi_{i}^{\star} + \psi_{j}^{\star}) \ (\partial_{n} \psi_{i} + \partial_{n} \psi_{j}) \ +$$

$$+\sum_{i} d\sigma (\psi_{i} - \psi_{i}') \partial_{n} \psi_{i}^{*} + \sum_{i} d\sigma \psi_{i}^{*} (\partial_{n} \psi_{i}' + \partial_{n} \psi_{i})$$
(7)

Para melhor compreender a equação acima:

- as integrais em d Ω e d Ω ' são integrais de volume fora e dentro da esfera inscrita da célula,

- as integrais em dS são integrais de superfície nas fronteiras da célula e

 as integrais em do são integrais de superfície nas esferas inscritas.

Convém comentar que estamos usando o sistema atômico de unidades baseado em Rydbergs. Nele temos:

> carga eletrônica e = $\sqrt{2}$ constante de Planck $f_1 = 1$ massa eletrônica m = 0.5 unidade de distância = raio de Bohr: $a_{n} = 5.2917706 \times 10^{-11}$ m

unidade de energia = Rydberg: 1 Ry = 13.605803 eV

Assim, esta expressão variacional (eq. 7) publicada em 1983 difere da publicada anteriormente pelos termos nas superficies das esferas inscritas. Podemos notar que esta expressão variacional é simétrica na troca dos índices i e j, mas esta sime tria não é mantida na troca das funções de onda ψ_i e ψ'_i . Não hã uma maneira única de escrever uma expressão variacional com termos de superfície [11]. A equação (7) foi escrita, como dissemos, em analogia à expressão variacional para a equação de Poisson e os ter

mos de superficie nas esferas inscritas foram escolhidos de modo a obter a continuidade de ψ_i e ψ'_i na esfera.

Fazendo com que as funções de onda ψ_i e ψ'_i , dentro e fora da esfera inscrita respectivamente, satisfaçam a equação de Schroedinger temos:

$$-\nabla^{2}\psi_{i} + \nabla\psi_{i} = \varepsilon\psi_{i}$$
 (8a)

$$-\nabla^{2}\psi_{i}' + \nabla\psi_{i}' = \varepsilon\psi_{i}'$$
(8b)

Então a expressão variacional (7) se reduz a

$$\frac{1}{2} \sum_{ij} \int dS \left(\psi_{i} \partial_{n} \psi_{j}^{*} + \psi_{j} \partial_{n} \psi_{i}^{*} + \psi_{i}^{*} \partial_{n} \psi_{j} + \psi_{j}^{*} \partial_{n} \psi_{i}\right) +$$

$$+ \sum_{i} \int d\sigma \left(\psi_{i} - \psi_{i}^{*}\right) \partial_{n} \psi_{i}^{*} +$$

$$+ \frac{1}{2} \sum_{i} \int d\sigma \left(2\psi_{i}^{*} \partial_{n} \psi_{i}^{*} + \psi_{i}^{*} \partial_{n} \psi_{i} + \psi_{i} \partial_{n} \psi_{i}^{*}\right) = 0 \qquad (9)$$

Igualando a zero a derivada desta expressão em relação a $B_{i\lambda}^{*}$ obtemos:

$$B_{i\lambda} R_{\ell}(R_{i}) = A_{i\lambda}^{(1)}$$
(10)

e fazendo o mesmo em relação a $A_{i\lambda}^{(I)*}$ obtemos:

$$\sum_{i'\lambda'I'} \langle i\lambda I | H | i'\lambda'I' \rangle A_{i'\lambda'}^{(I')} = 0$$
(11)

onde os elementos da matriz H são dados por

$$\langle i\lambda I | H | i'\lambda'I' \rangle = \int dS_{ii'} \left(\partial_n f_{i\lambda}^{(I)*} f_{i'\lambda'}^{(I')} + f_{i\lambda}^{(I)*} \partial_n f_{i'\lambda'}^{(I')} \right)$$
(12)

$$\langle i\lambda 1 | H | i\lambda' 1 \rangle = 2 R_{i}^{2} \frac{\partial_{n} R_{\ell}(R_{i})}{R_{\ell}(R_{i})} \delta_{\lambda\lambda'}$$
 (13)

$$\langle i\lambda 1 | H | i\lambda' 2 \rangle = R_i^2 \delta_{\lambda\lambda'}$$
 (14)

$$\langle i\lambda 2 | H | i\lambda' 2 \rangle = 0$$
 (15)

As equações (8a), (8b) e (10 - 15) são básicas para o método celular variacional poliatômico, pois elas permitem obter os autovalores ε_i e as autofunções ψ_i a partir do potencial efet<u>i</u> vo.

II-4. A DENSIDADE ELETRÔNICA, O POTENCIAL E A ENERGIA TOTAL

Nesta altura, para não nos alongarmos, vamos omitir passagens intermediárias. Elas encontram-se com mais detalhes nos Apêndices A e B e nas referências ali citadas.

De momento não vamos mostrar, por exemplo, como proceder para normalizar os estados de um elétron (ver Apêndice A). Diremos somente que é possível escrever a densidade eletrônica na região entre a esfera inscrita e as fronteiras da célula como uma série de potências

$$n_{i}(r) = \sum_{k=1}^{M} \alpha_{ik} r^{k-2}$$
(16)

Assim sendo, o potencial coulombiano nesta região é

$$c_{i}(r) = \sum_{k=1}^{M+2} A_{ik} r^{k-2}$$
 (17)

onde

$$A_{i,k+2} = -\frac{8\pi \alpha_{ik}}{k(k+1)}$$
(18)

e A_{i1} e A_{i2} são determinados de modo que a expressão abaixo, p<u>a</u> ra a energia molecular total, seja estacionária

$$E = \sum_{j} E_{j} + E_{x}[n] - \int \nabla n \, d\Omega + U[n-p,c] - S[p] \qquad (19)$$

Nesta expressão

- E_x[n] = alguma expressão para a energia de "exchange"-correlação. Temos usado a expressão de Gunnarsson e Lundqvist [12]
 - S[p] = autoenergia eletrostática dos núcleos

U[n-p,c] = equação (9) de [3]

c = são as soluções da Equação Radial de Poisson com constantes escolhidas de tal maneira que U seja mínimo. Na região i estas constantes são A_{i1} e A_{i2}. Na região i', só há uma constante aditiva que é escolhida de modo a fazer c contínuo na e<u>s</u> fera inscrita.

2 Constantes escolhidas de modo a fazer U mínimo.

l Constante escolhida de modo a fazer c contínuo na esfera inscrita.

FIGURA 2. Celula com esfera inscrita.

II-5. O CICLO DE AUTOCONSISTÊNCIA

O MCV é baseado num ciclo de autoconsistência. Partimos de um potencial V(\dot{r}) não convergido. Com ele, através das equações e condições do item II-3, calculamos os autovalores ε_i e au tovetores ψ_i . Dos ψ_i obtemos a densidade esférico-simétrica n, usando o processo de normalização. Com n, pelas equações da ener gia total, que equivalem à equação de Poisson, obtemos o potencial escalar c. A este somamos o potencial de "exchange" para obter o novo potencial V(\dot{r}).

E assim fechamos o ciclo, que será repetido o número de vezes necessário para que obtenhamos a autoconsistência. Ela será determinada por uma comparação entre o valor obtido para um dos pa râmetros do método (por exemplo E ou $V(\vec{r})$) na última iteração rea-

FIGURA 3. O ciclo de autoconsistência.

lizada e na imediatamente anterior. De acordo com uma precisão que tenhamos estabelecido, diremos que, por exemplo, o potencial convergiu.

II-6. <u>A ESCOLHA DAS CÉLULAS</u>

Como afirmamos no item 2 deste Capítulo, foi desenvolvido um procedimento exprimivel em formas analíticas para definir as células de uma estrutura poliatômica. Dentre as diversas soluções possíveis para dividir o espaço molecular em células, a solução que tem sido utilizada pois simplifica sua aplicação e satisfaz as con dições descritas no item 3 é a seguinte: um ponto $\dot{\vec{r}}$ pertence à célula i se satisfaz à equação

$$\gamma_{i}(r_{i}^{2} - R_{i}^{2}) < \gamma_{j}(r_{j}^{2} - R_{j}^{2})$$
 (20)

para qualquer j≠i. Nesta equação R_i e R_j são os raios das esferas inscritas e γ_i são números tais que

> para as células internas (i \neq 0): $\gamma_i > 0$ para a célula externa (i = 0): $\gamma_0 < 0$

Escolhendo-se os raios das esferas inscritas de modo que não haja intersecção entre elas e o raio R_o, da esfera externa, de modo que ela circunscreva todas as esferas inscritas podemos afirmar que

para r_i < R_i o ponto pertence à célula i e para r_o > R_o o ponto pertence à célula externa.

As fronteiras da célula serão determinadas pelas equa-

ções

$$\gamma_{i}(r_{i}^{2} - R_{i}^{2}) = \gamma_{j}(r_{j}^{2} - R_{j}^{2})$$
 (21)

$$\gamma_{i}(r_{i}^{2} - R_{i}^{2}) < \gamma_{k}(r_{k}^{2} - R_{k}^{2}) \qquad k \neq i,j$$
 (22)

Sendo $\vec{r}_{i} = r_{i}\hat{u}$ (\hat{u} versor de \vec{r}_{i})

à e à posições dos centros das células i e j

como

 $\vec{r}_{i} = \vec{r}_{i} + \vec{a}_{i} - \vec{a}_{i}$

podemos escrever assim a equação (21):

$$(\gamma_{i} - \gamma_{j}) r_{i}^{2} - 2\gamma_{j} (\vec{a}_{i} - \vec{a}_{j}) \cdot \hat{u} r_{i} + \gamma_{j} R_{j}^{2} - \gamma_{i} R_{i}^{2} - \gamma_{j} (\vec{a}_{i} - \vec{a}_{j})^{2} = 0$$
(23)

Observando a equação acima vemos que:

 $\gamma_i = \gamma_j$ ela é uma equação de um plano, para $\gamma_i \neq \gamma_i$ ela é uma equação de uma esfera. para

Assim, a fronteira entre células é composta de seções de planos e esferas. Analiticamente, pode-se notar que a variação no $|\gamma_i|$ al tera a forma da célula.

Entretanto, como é feito na Ref. [6], vale ressaltar que, embora a escolha dos R_i e dos γ_i não seja a princípio um fator essencial para se obter bons resultados com o método CVP, deve-se tomar algum cuidado na escolha destes valores, tendo-se em vista a aproximação de média esférica adotada no método. Mais especificamente, a escolha de células nas quais a densidade de carga e/ou o

potencial escalar "verdadeiros" difiram muito da média esférica po deria levar, hipoteticamente, a soluções pouco realísticas pelo mé todo CVP. Em alguns casos, torna-se aconselhável o uso de células vazias (que não contêm átomos) para uma melhor simulação do potencial ou para evitar-se células muito "alongadas".

No caso da molécula de CO que estudamos, usamos para o oxigênio e o carbono $\gamma = 1$ e para a célula externa $\gamma_{O} = -0.33$. No Capítulo seguinte, o item III-1.b e as Figuras, podem esclare-cer mais a relação entre a variação no $|\gamma_{i}|$ e a forma que adquire a célula correspondente.

Resumidamente podemos notar que o aumento de $|\gamma_i|$ para uma célula (ou, o que é equivalente, a diminuição dos $|\gamma_i|$ adjacentes) reduz o volume de sua parte externa.

1010ža -

- III -

APLICAÇÃO E RESULTADOS

Utilizamos o Método Celular Variacional Poliatômico para duas moléculas lineares: uma diatômica e outra triatômica.

A molécula linear diatômica que estudamos - CO - já foi calculada anteriormente, inclusive pela antiga versão do método ce lular variacional para moléculas diatômicas [3].

A molécula linear triatômica que estudamos - CO₂ - tem resultados conhecidos que não são do método celular pois a antiga versão deste, entre outras diferenças, não servia para moléculas com mais de 2 átomos [13].

Transcrevemos a seguir os principais resultados que obti vemos para essas duas moléculas. No Capítulo seguinte comparamos nossos resultados com os obtidos anteriormente, com resultados de outros métodos e com os resultados experimentais.

III-1. PARA A MOLÉCULA DE CO

De acordo com a nomenclatura utilizada no método celular, temos para o CO, que possui 2 átomos por molécula, três espécies e três células a saber: a do oxigénio, a do carbono e a célula externa.

a. Escolha da Geometria das Células

A partir da distância interatômica C-O de 2.13 a [14]

<u>FIGURA 4.</u> Dois exemplos de possiveis células para uma molécula de CO, de acordo com a definição no MCVP. Escolhemos: $(R_C/R_0) = 5/6$; Y_C = Y_O = 1; (a) Y_F = -1; (b) Y_F = -2.

julgamos que, por ser o oxigênio mais eletronegativo que o carbono, deveríamos escolher para a cêlula do oxigênio um raio um pouco maior que para a do carbono. Escolhemos uma proporção de 5/6. De pois de iniciar testes com as 3 células esféricas decidimos que ao invés de usarmos $\gamma = 1$ para as células do oxigênio e carbono e $\gamma = -1$ para a célula externa deveríamos obter o valor conveniente de γ para a célula externa de tal modo que ela ficasse um pouco "achatada". Com isto diminuímos a imprecisão nos "bicos" das regiões entre as células (conforme Figuras 4 e 5).

<u>FIGURA 5.</u> Células que utilizamos para a molécula de CO: $(R_C/R_0) = 5/6$; $Y_C = Y_0 = 1$; $Y_F = -0.33$.

b. Cálculo do
$$\gamma$$
 Conveniente para a Célula Externa
0 = centro da célula do oxigénio
C = centro da célula do carbono
F = centro da célula de fora (externa)
 $\vec{a}_{O} = \begin{pmatrix} R_{O} \\ 0 \end{pmatrix}$
 $\vec{a}_{C} = \begin{pmatrix} -R_{C} \\ 0 \end{pmatrix}$
 $\vec{a}_{F} = \begin{pmatrix} R_{O} - R_{C} \\ 0 \end{pmatrix}$
 $\vec{a}_{F} = \begin{pmatrix} 0 \\ R_{O} \end{pmatrix}$ define o ponto P
 $\vec{a}_{C} = \begin{pmatrix} 0 \\ R_{O} \end{pmatrix}$

 $R_{F} = R_{O} + R_{C} + 0.2$

. .

Fazendo g = $-\gamma$, da equação (21) temos que:

$$g = \frac{(\vec{r} - \vec{a}_{o})^{2} - R_{o}^{2}}{R_{F}^{2} - (\vec{r} - \vec{a}_{F})^{2}}$$
(24)

Como

$$\vec{r} - \vec{a}_{0} = \begin{pmatrix} -R_{0} \\ R_{0} \end{pmatrix} \qquad (\vec{r} - \vec{a}_{0})^{2} = R_{0}^{2} + R_{0}^{2}$$

$$\vec{r} - \vec{a}_{F} = \begin{pmatrix} R_{c} - R_{0} \\ R_{0} \end{pmatrix} \qquad (\vec{r} - \vec{a}_{F})^{2} = (R_{c} - R_{0})^{2} + R_{0}^{2}$$

1.5

temos de (24) que

$$g = \frac{R_0^2}{R_F^2 - R_0^2 - (R_0 - R_c)^2}$$

Substituindo os valores de R_0 , $R_c \in R_F$ obtemos g = 0.33, isto é, $\gamma = -0.33$.

c. Parâmetros das Células e a Simetria Utilizada

distância interatômica C-O: 2.13 a_0 Raios das células: $(R_C/R_0 = 5/6)$ oxigênio: $R_0 = 1.16 a_0$ carbono: $R_C = 0.97 a_0$ fora: $R_F = 2.33 a_0$ $Y_0 = Y_C = 1$ $Y_F = -0.33$ ℓ_{max} para as 3 espécies = 4 (notação: $\ell_{max} = 4, 4, 4$) A simetria da molécula linear diatômica CO é C_{my} . Uti-

lizamos em nosso estudo o grupo C_{12v} (conforme Apêndice C). Neste grupo, C_{12v}, temos 24 operações de simetria.

d. Resultados Obtidos

Com a simetria C_{12v} (conforme item anterior e Apêndice C) e os parâmetros das células que usamos (item c), usando a dis tância experimental C-O de 2.13 a_o, obtivemos uma tabela para as áreas das superfícies entre as células como função do sorteio

dos pontos de integração. Usamos $\gamma = 1, 1, -0.33$ (onde a ordem corresponde às espécies 1, 2 e 3, isto é, oxigênio, carbono e externa, respectivamente).

CO:

distância interatômica experimental (2.13 a_0), $\gamma = 1,1,-0.33$, $2_{max} = 4, 4, 4$ NUSORT s₁₂ S₁₃ S22 1 4.202(17)22.257 (56) 17.081 (55) 11 4.204(16)22.251(60) 17.087(52)101 4.204(18) 22.254 (57) 17.089(53) 202 4.205(14)22.259 (55) 17.075 (59) 404 4.204(16)22.258(57)17.083(55)505 4.202(17)22.249(56)17.087(55)1000 4.202(16)22.246(56) 17.095 (56) 1117 4.201(18)22.254(58) 17.083(52) $\overline{S}_{12} = 4.203$ $\overline{S}_{13} = 22.254$ $\overline{S}_{23} = 17.085$

Obs. Entre parêntesis estão os números de pontos para cada superfi Número total de pontos de superfície = 128. cie.

Nesta tabela, NUSORT é o ponto inicial na sequência de núme ros aleatórios usados para determinar os pontos de integração nas superfícies das células. Diferentes valores de NUSORT acarretam diferentes valores para as integrais de superfície. Esta tabela mostra a dispersão das áreas devida a diferentes NUSORT.

Escolhendo $\gamma = -0.33$ para a célula externa (item b), dentre os 8 números de sorteio NUSORT que usamos escolhemos o que deu

resultado melhor em média, NUSORT = 11, e com esses resultados de simetria e geometria começamos o estudo do potencial.

A partir de um potencial inicial, nós usamos $l_{max} = 3$, $l_{max} = 4$ e $l_{max} = 5$ para os possíveis níveis σ e π tirados da simetria da molécula.

Chamamos esses niveis da seguinte forma:

σ	lmax	=	3	:	SP3	π	l max	=	3	:	PP3
	lmax	=	4	:	SP4		1 max	=	4	:	PP4
	lmax	=	5	:	SP5		l max	=	5	:	PP5

e desta forma nos referiremos a eles daqui para a frente. Estes são, naturalmente, os possíveis níveis de valência da molécula.

Procurando estes níveis no potencial inicial encontramos (em Ry)

SP3		PP3	
-3.207427	(+1)	-2.176476	(+1)
-1.973873	(-1)	-0.783948	(-1)
-1.026547	(+1)		
SP4		PP4	
-3.208323	(+1)	-2.073505	(+1)
-2.019822	(-1)	-0.812824	(-1)
-1.065118	(+1)		
SP5		PP5	
-3.208564	(+1)	-2.085405	(+1)
-2.025575	(-1)	-0.811530	(-1)
-1.047532	(+1)		

Então, como esperamos a presença de 3 σ e 1 π , escolhemos os três níveis SP4 e o nível PP4 mais profundo.

Convergimos o potencial, com as iterações autoconsistentes do método, para a distância experimental (2.13 a_o).

Para determinar a distância de equilíbrio da molécula de CO fizemos a convergência para distâncias diferentes, obtendo os seguintes resultados:

Distância (a.u.)	Energia total (Ry)	ΔV (Ry)
2.13	-225.52598	0.0191
2.23	-225.59363	0.0150
2.33	-225.60819	0.0188
2.43	-225.58904	0.0143
2.53	-225.54728	0.0147
2.63	-225.49305	0.0138
2.73	-225.43101	0.0153

Nesta tabela, ΔV é a máxima diferença entre o potencial de partida da última iteração e o potencial nela calculado.

Destes valores da energia molecular podemos ver que a distância de equilíbrio é 2.33 a_o. Nesta distância calculamos as energias de ionização partindo para a convergência dos íons e fazendo a diferença entre as energias totais moleculares dos íons moleculares e da molécula neutra. Obtivemos para os dois níveis de "caroço" (O1S e C1S) e para os quatro de valência os seguintes resultados:

ÍONS	Energia do Íon (Ry)	Energia	de Ionização
0-1S	-185.50	40.11 (Ry)	545.596 (eV)
C-1S	-203.56	22.05	299.880
1SP4	-222.98	2.63	35.768
2SP4	-224.09	1.52	20.672
PP4	-224.13	1.48	20.128
3SP4	-224.90	0.71	9.656

que comparamos com os resultados experimentais e outros resultados calculados no próximo Capítulo.

III-2. PARA A MOLÉCULA DE CO2

Temos na molécula de CO₂ 3 átomos por molécula: dois de oxigênio e um de carbono. Assim, para cada molécula, temos três espécies (oxigênio, carbono e externa) e quatro células.

Denominamos espécie 1 o oxigénio, espécie 2 o carbono e espécie 3 a externa.

a. Escolha da Geometria das Células

A partir da distância interatômica experimental C-O de 2.2 a_o para a molécula de CO₂ [15] escolhemos raios iguais para as células de oxigênio e de carbono e para a célula externa esco lhemos raio de 3.3 a_o. Assim, usando $\gamma = 1$ para as espécies 1 e 2 e $\gamma = -1$ para a espécie 3 temos, de acordo com a Figura, 3 células iguais e todas tangentes.

<u>FIGURA 6.</u> Células que utilizamos para a molécula $de CO_2$: $R_0 = R_C$; $R_F = 3 R_0$; $Y_0 = Y_C = 1$; $Y_F = -1$.

b. Parâmetros das Células e a Simetria Utilizada

distância interatômica C-O = 2.2 a_{O}

Raios das células:

oxigênio: $R_0 = 1.1 a_0$ carbono: $R_C = 1.1 a_0$ externa: $R_F = 3.3 a_0$

 $\gamma_{O} = \gamma_{C} = 1$

 $\gamma_{\rm F} = -1$

²máximo para as 3 espécies = 4 (notação: l_{max} = 4,4,4)

A simetria da molécula linear triatômica CO $_2$ é D $_{\infty H}$. U-tilizamos em nosso estudo o grupo D $_{12H}$ (conforme Apêndice C).

Neste grupo, D_{12H} , temos 48 operações de simetria, pois: $D_{12H} = C_{12v} \times J$.

Assim, temos as 24 operações de simetria do C_{12v}, mais as inversões correspondentes totalizando 48 operações de simetria.

c. Cálculo Exato das Superfícies entre as Células

FIGURA 7. Area de uma calota esférica.

Sabendo que a área de uma calota esférica, de acordo com a Figura 7, é dada por

$$A = 2\pi R^2 (1 - \cos\theta)$$
 (25)

podemos calcular com facilidade e exatamente as áreas das superfícies entre as células para algumas moléculas mais simples como é o caso do CO_2 .

Vamos calcular exatamente, servindo-nos das Figuras 8 e 9 a seguir, as áreas

S12	Ξ	superficie	entre	as	celulas	1	е	2
S13	Ξ	superficie	entre	as	células	1	е	3
s ₂₃	Ξ	superficie	entre	as	células	2	e	3

As outras áreas são obviamente equivalentes: $S_{24} = S_{12}$, $S_{43} = S_{13}$.

<u>FIGURA 8.</u> Esboço das superficies entre as células.

<u>FIGURA 9.</u> Notação fronteira 1-3.

Pela equação (23), seguindo a notação das Figuras 8 e 9, para a fronteira 1-3 que é esférica temos:

$$|\vec{r} - d\hat{x}|^{2} - R_{1}^{2}| = -(r^{2} - R_{3}^{2}) \quad (\gamma_{1} = 1 \ e \ \gamma_{3} = -1)$$

$$r^{2} - 2dx + d^{2} - R_{1}^{2}| = -r^{2} + R_{3}^{2}$$

$$2r^{2} - 2dx + d^{2} - R_{1}^{2} - R_{3}^{2}| = 0$$

$$r^{2} - dx + \frac{d^{2} - R_{1}^{2} - R_{3}^{2}}{2} = 0$$
Com $\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix}$, temos:
$$\begin{pmatrix} x - \frac{d}{2} \end{pmatrix}^{2} + y^{2} - \frac{d^{2}}{4} + \frac{d^{2} - R_{1}^{2} - R_{3}^{2}}{2} = 0$$

$$\begin{pmatrix} x - \frac{d}{2} \end{pmatrix}^{2} + y^{2} = \frac{2R_{1}^{2} + 2R_{3}^{2} - d^{2}}{4} \quad (26)$$

Para a fronteira 1-2, que é plana, temos:
$$r^{2} - R_{2}^{2} = (\vec{r} - d\hat{x})^{2} - R_{1}^{2} \qquad (\gamma_{1} = \gamma_{2} = 1)$$

$$r^{2} - R_{2}^{2} = r^{2} - 2dx + d^{2} - R_{1}^{2}$$

$$x = \frac{d^{2} + R_{2}^{2} - R_{1}^{2}}{2d} \qquad (27)$$

Substituindo os valores de

em

em

$$d = 2.2$$

$$R_{1} = 1.1$$

$$R_{2} = 1.1$$

$$R_{3} = 3.3$$
em (26): $(x - 1.1)^{2} + y^{2} = 2.2^{2}$
em (27): $x = 1.1$
Portanto $y = 2.2$
Então temos para as áreas:
$$S_{12} \ é \ um \ plano \ circular:$$

$$S_{12} = \pi \ y^{2} \qquad S_{12} = 15.205$$

$$S_{13}, \ que \ é \ esférica, \ por \ (25) \ fica:$$

$$S_{13} = 2\pi \ y^{2} \left[1 - \cos \frac{\pi}{2} \right]$$

$$S_{13} = 2\pi \ (2.2)^{2} \qquad S_{13} = 30.411$$

$$S_{23}, \ que \ também \ é \ esférica, \ fica:$$

$$S_{23} = 4\pi \ R_{2}^{2} - 2\pi \ R_{2}^{2} \ (1 - \cos\theta).2$$

$$S_{23} = 34.000$$

d. Resultados Obtidos

Com a simetria D_{12H} e os parâmetros das células que usamos (item b), usando a distância interatômica experimental C-O de 2.2 a₀ fizemos algumas tentativas para determinar a superfície entre as células. Variamos, por exemplo, o número de pontos de superfície e o $\ell_{máximo}$ para as espécies. Fizemos para diferentes NUSORT (conforme item 1.d para o CO). Obtivemos, entre resultados bem ruins e outros razoáveis, um resultado muito bom:

> $S_{12} = 15.208$ $S_{13} = 30.416$ $S_{23} = 33.993$

para NUSORT = 1 , l_{max} = 4,4,4 , usando 113 pontos de superfície. Se compararmos esses resultados com o cálculo exato feito no item anterior:

	resultado obtido	resultado exato calculado
⁵ 12	15.208	15.205
⁵ 13	30.416	30.411
523	33.993	34.000

vemos que realmente estamos com uma boa geometria.

Com esta simetria e com esta geometria, a partir de um potencial inicial, procuramos os possíveis níveis $\sigma \in \pi$ tirados da simetria da molécula. Para o CO₂ podemos ter $\sigma^+ \in \sigma^-$, $\pi^+ \in \pi^-$ e para facilitar a notação chamamos os níveis da seguinte forma:

σ	^l max	=	3	:	SP3		π +	L	=	3	:	PP3
	lmax	=	4		SP4			max L	=	4		PP4
	lmax	=	5		SP5			l max	=	5		PP5
σ	1 max	=	3	:	SM3		π	0	_	2		DW2
	l max	=	4		SM4			~max l	=	د 4	:	PM3
	l _{max}		5		SM5			max l max	=	5		PM5

Para procurar os possíveis níveis de valência da molécula de CO₂ usamos uma opção que não existia no antigo programa do método celu lar. Esta opção é um parâmetro denominado IMPORTÂNCIA. Com ele po demos mudar a fórmula variacional utilizada. Assim, por exemplo, se temos 3 espécies numa determinada molécula, para atribuir impor tâncias iguais às 3 espécies podemos usar 0,0,0 ou 1,1,1 ou 2, 2,2, etc. Se usamos, por exemplo, 2,2,1 estamos dando importâncias iguais para a espécie 1 e espécie 2 e menor importância para a espécie 3.

Usamos para o CO, duas opções

diferentes: 19 importâncias iguais (0,0,0)

29 importâncias diferentes (3,2,1)

Esta 2ª opção corresponde a dar maior importância para a espêcie 1 (no nosso caso o oxigênio), menor para a espécie 2 (o carbono) e menor ainda para a espécie 3 (externa).

Transcrevemos a seguir os resultados obtidos na procura de níveis no potencial inicial do CO₂ (em Ry):

^{co} 2:	113 pontos;	$x_{\rm max} = 4, 4, 4;$	importância 0,0,0
	SP3	SP4	SP5
2 -0	-2.7 217 -0.9094	-2.8906 -1.7033	-2.7961 -1.5005
	SM3	-0.9382 _SM4	-0.9463 SM5
	-2.5984 -0.9383 	-2.6061 -1.3745	-2.5842 -1.2895
		PP4	
	PM3	PM4	PM5
	-1.9063 -0.6130	-1.8861	-3.3981 -1.9235

2 2	max 1/1/1/	Impol cunola 575
SP3	SP4_	<u>SP5</u>
-2.8809	-2.9000	-2.9010
-1.6343	-1.7786	-1.7789
	-0.9765	-0.9772
SM3	_SM4	SM5
	-2.6248	-2.6741
-1.4119	-1.4084	-1.5329
PP3	PP4	PP5
-1.1000	-1.2115	-1.2118
PM3	PM4	PM5
-2 0523	-2.0000	-1.9393
-0.8345	-0.8327	-0.9218

 CO_2 : 113 pontos; $l_{max} = 4,4,4$; importância 3,2,1

.

Vemos assim que usando importância 3,2,1 temos melhores resultados para os níveis de valência. Na molécula de CO₂ temos 20 elétrons. Desses, 4 estão nos níveis de caroço: O1S(2) e C1S(2). Os outros 16 estão distribuídos nos níveis de valência da seguinte maneira: $\sigma^+(2)$ $\sigma^-(2)$ $\pi^-(4)$ $\sigma^+(2)$ $\sigma^-(2)$

 $\pi^{+}(4)$

Então, a partir da tabela obtida para a importância 3, 2,1, escolhemos os l_{max} de acordo com esses níveis e iniciamos a convergência na distância C-O = 2.2 a_o com os seguintes dados:

Nivel	Energia (Ry)	Ocupação
015	-37.361	2
C1S	-19.916	2
SP3	-2.9	2
SM4	-2.6	.2
PM4	-2.0	4
SP4	-1.8	2
SM3	-1.4	2
PP4	-1.2	4
	Nível O1S C1S SP3 SM4 PM4 SP4 SM3 PP4	NívelEnergia (Ry)O1S-37.361C1S-19.916SP3-2.9SM4-2.6PM4-2.0SP4-1.8SM3-1.4PP4-1.2

Fizemos a convergência, através das iterações autoconsis tentes do método, para essa distância $C-O = 2.2 a_O$, que é a experimental.

Para determinar a distância interatômica de equilibrio da molécula de CO₂ fizemos a convergência para distâncias difere<u>n</u>

Distância (a.u.)	Energia total _(Ry)	∆V (Ry)
2.2 (exp.)	-372.50380	0.0195
2.3	-373.56087	0.0370
2.4	-373.63093	0.0357
2.5	-373.65007	0.0183
2.6	-373.67075	0.0174
2.7	-373.67783	0.0515
2.8	-373.60356	0.2172

tes da experimental, obtendo os seguintes resultados:

Nesta tabela ΔV tem o mesmo significado que na tabela semelhante feita para o CO.

Destes valores da energia molecular total podemos ver que a distância interatômica de equilíbrio que obtivemos é $2.7 a_0$.

Nesta distância calculamos as energias de ionização do mesmo modo que fizemos para a molécula de CO: fizemos as conver gências dos ions e calculamos a diferença entre as energias totais moleculares dos ions moleculares e da molécula neutra.

Obtivemos para os dois níveis de caroço (O1S e C1S) e para os seis de valência $(2\sigma^+, 2\sigma^-, 1\pi^+ e 1\pi^-)$ os resultados que tabelamos a seguir:

IONS		Energia do ion	Energia de :	Ionização
		(Ry)	(Ry)	(eV)
015		-334.6089	39.0689	531.34
C1S	2	-351.8948	21.7830	296.25
1SP4		-371.4782	2.1996	29.91
1SM3		-371.5860	2.0918	28.45
2SP4		-372.3262	1.3516	18.38
PM4		-372.6213	1.0565	14.37
25M 3		-372.6572	1.0206	13.88
PP4		-372.7308	0.9470	12.88

Note-se que usamos para a elaboração desta tabela a energia total da molécula neutra de CO_2 com a distância interatômica C-O de 2.7 a_o que obtivemos, isto é: -373.6778304 Ry (vide tabela anterior).

Comentamos estes resultados comparando-os com resultados experimentais e de outros cálculos no próximo Capítulo.

- IV -COMPARAÇÃO COM RESULTADOS ANTERIORES E EXPERIMENTAIS

IV-1. PARA A MOLÉCULA DE CO

			Energia total (Ry)	Distância interatômica C-O de equilíbrio (a.u.)
Neste	e trab	balho	-225.6082	D = 2.33
Expe	riment	al [16]	-226.7540	D = 2.132
Outro	os cál	culos:		
MCV	Ref.	[3]	-225.667	D = 2.27
MCV	Ref.	[17]	-226.0243	D = 2.132
MCV	Ref.	[17]	-225.9879	D = 2.132
LCAO	Ref.	[16]	-224.6872	D = 2.132
HF	Ref.	[18]	-224.996	

Como obtivemos uma distância interatômica C-O de equil<u>í</u> brio um pouco maior que a experimental, a nossa energia total obt<u>i</u> da fica um pouco diferente da experimental. COMPARAÇÃO DAS ENERGIAS DE IONIZAÇÃO DO ESTADO FUNDAMENTAL DO CO (em eV)

D é a distância interatômica (C-O)

	Nomenclatura	Experimental ^a	MCVP ^b	MCV ^C	RHF ^d	MS ^e
Orbital	deste trabalho	$D = 2.13 a_0$	$D = 2.33 a_0$	D = 2.132 a _o	D = 2.132 a ₀	D = 2.132 a ₀
10	01S	542.1	545.50	509.86	562.2	516.1
2σ	C1S	295.9	299.88	274.99	309.1	276.1
3a	1SP4	38.3	35.77	26.11	41.4	27.2
40	2SP4	20.1	20.67	12.65	21.9	13.5
1π	PP4	17.2	20.13	11.69	17.4	12.8
5α	3SP4	14.5	9.66	7.21	15.1	8.1

- a Referência [19]
 - b Este trabalho c Referência [3]
- d Referência [20]
- e Referência [21]

IV-2. PARA A MOLÉCULA DE CO2

	Energia total (Ry)	Distância interatônica C-O de equilíbrio (a.u.)
Neste trabalho	-373.6778	
Experimental		D = 2.7
Ref. [15]		
		D = 2.196
Outros calculos:	÷	
HF Ref. [22]		
MTO Pef [22]		D = 2.180
MIO Ket. [23]		D = 2.205

COMPARAÇÃO DAS ENERGIAS DE IONIZAÇÃO DO ESTADO

FUNDAMENTAL DO CO₂ (em eV)

D é a distância interatômica (C-O)

Orbital	Nomenclatura neste trabalho	Experimental ^a	MCVP ^b D = 2.7 a _o	$SCF - X\alpha - MS^{C}$ D = 2.17 a _o
¹ _g , ¹ _u	0 - 1S	541.3	531.34	548.6
2°g	C-1S	297.7	296.25	307.7
3°g	1 SP 4		29 .9 1	34.8
² σ _u	1 SM 3		28.45	35.1
40 q	2SP4	19.4	18.38	21.5
1π _u	PM4	17.6	14.37	18.1
³ σ _u	2SM3	18.1	13.88	21.1
1πg	PP4	13.8	12.88	15.5

- a Referências [24,25]
- b Neste trabalho
- c Referência [26]

IV-3. O PROBLEMA DO POTENCIAL

A fonte principal do desvio obtido está no cálculo do p<u>o</u> tencial. Da equação de Poisson

$$\nabla^2 c = -8\pi n \tag{28}$$

temos a solução

c = solução particular +
$$\sum_{\ell,m} \left(A_{\ell} r^{\ell} + \frac{B_{\ell}}{r^{\ell+1}} \right) Y_{\ell m}(\hat{r})$$
 (29)

Estamos porém utilizando a solução de (28) sem levar em conta as correções não esféricas, isto é, as correções de multipolo do potencial. Isto supõe que de (29) usamos apenas o termo com $\ell = 0$, isto é:

$$c = solução particular + A + \frac{B_o}{r}$$
 (30)

Por causa disto, o "teste do próton" dá uma diferença em relação ao valor que seria esperado teoricamente.

$$\frac{V_{3}(r)}{FIGURA 10}, \quad Um próton: (a) no oxigênio, (b) no carbono.$$

Se colocarmos um próton na posição do oxigênio, ou na p<u>o</u> sição do carbono, podemos facilmente calcular o valor exato do potencial gerado por ele numa posição determinada.

Calculemos primeiramente, de acordo com a Figura 10a, o potencial gerado por um próton, localizado na posição do átomo de oxigênio na molécula de CO.

Seja $V_1(r)$ o potencial a uma distância r da posição do átomo de oxigênio, no primeiro ponto da rede considerada. Seja $V_2(r)$ o potencial na posição do átomo de carbono

$$V_{1}(r) = -\frac{2}{r}$$

 $V_{2}(r) = -\frac{2}{d}$

No caso que testamos:

	r	=	0.001
	đ	=	2.33
Deste mo d o	V ₁ (r)	=	-2000.000
	V ₂ (r)	=	- 0.8584

Porém, os valores obtidos para esses potenciais foram:

V¦(r)	=	-19	999.7041
V'2(r)	=	_	1.3030

Analogamente, da Figura 10b, o potencial gerado por um próton loc<u>a</u> lizado na posição do carbono pode ser calculado nessa vizinhança V₃(r), e na posição do oxigênio V₄(r):

V ₃ (r)	=	$-\frac{2}{r}$	V ₃ (r)	=	-2	000.000
V ₄ (r)	Ξ	$-\frac{2}{d}$	V ₄ (r)	-	-	0.8584

Os valores correspondentes que obtivemos foram:

 $V'_{3}(r) = -1999.7041$ $V'_{4}(r) = -1.3030$

Resumindo: para o CO

	potencial teórico (V)	valor obtido (V')	desvio V-V'
1	-2000.0000	-1999.7041	0.2959
2	- 0.8584	- 1.3030	0.4446
3	-2000.0000	-1999.7041	0.2959
4	- 0.8584	- 1.3030	0.4446

Desta comparação vemos que não estamos reproduzindo bem o potencial teórico esperado. Isto era esperado porque usamos só $\ell = 0$ na Eq. (29).

Teste do próton para o CO₂:

Primeiramente calculemos, de acordo com a Figura 11a, os potenciais gerados por 2 prótons, localizados um em cada posição de um átomo de oxigênio na molécula de CO_2 . Seja $V_1(r)$ o poten cial a uma distância r da posição do átomo de oxigênio, no primeiro ponto da rede considerada. Seja $V_2(r)$ o potencial na pos<u>i</u> ção do átomo de carbono.

$$V_2(r) = 2 \times \left(-\frac{2}{2.5}\right) = -1.6$$

Entretanto os valores obtidos para esses potenciais fo-

ram:

$$V'_1(r) = -1760.065$$

 $V'_2(r) = -1.628$

De acordo com a Figura 11b, o potencial gerado na posição do oxigênio V₃(r) e o potencial gerado a uma distância r da posição do carbono V₄(r) são dados por:

$$V_3(r) = -\frac{2}{d}$$
$$V_4(r) = -\frac{2}{r}$$

que calculados dão

 $V_3(r) = -0.8$ $V_4(r) = -1760.0$

Entretanto os valores obtidos para esses potenciais fo-

ram:

$V_3'(r)$	=	-	0.814	1
V'4(r)	=	-17	59.862	2

Resumindo: para o CO2

	potencial teórico (V)	valor obtido (V')	desvio v-v'
1	-1760.4	-1760.065	0.335
2	- 1.6	- 1.628	0.028
3	- 0.8	- 0.814	0.014
4	-1760.0	-1759.862	0.138

Vemos que em 2 e 3 o desvio é pequeno, entretanto, em 4 e, principalmente, em 1, é considerável. Isto significa que não estamos reproduzindo bem o potencial teórico esperado na vizinhança do oxigênio devido a suas cargas (V_1) e o potencial teórico esperado na vizinhança do carbono, devido a suas cargas (V_4). Esta diferença era esperada pois usamos só $\ell = 0$ na equação (29).

CONCLUSÕES

- V -

É muito gratificante trabalhar num tema, ou área, onde se pode ir avançando com segurança, pelos trabalhos já desenvolvidos e pelas perspectivas futuras do que estamos estudando. Se por um lado os temas totalmente originais podem ser muito interessantes, nem sempre - ou quase nunca - sua dificuldade é maior que o <u>a</u> profundamento e exploração dos temas básicos da Física, onde já mu<u>i</u> ta coisa foi feita. Assim nos sentimos, concluindo este trabalho.

A utilização para estas duas moléculas lineares das sime trias $C_{12v} e D_{12H}$ em substituição a $C_{ov} e D_{oH}$ simplificou seu estudo e os cálculos computacionais. São bons os resultados obtidos para o CO: são melhores que os publicados, usando a versão an tiga do MCV. Os resultados para o CO₂ são comparáveis aos obtidos por outros métodos: esta molécula ainda não havia sido calcul<u>a</u> da pelo método celular, pois a antiga versão do MCV era aplicável somente a moléculas diatômicas.

O estudo do problema do potencial, comentado em IV-3, já está desenvolvido e sua aplicação para outras moléculas foi aprova da. Sabemos assim que, essa complementação na expansão do poten cial, poderá dar resultados melhores ainda [7].

Desse modo, fica concluído este trabalho. Fica também aberta a possibilidade de usar essa correção do potencial, para serem obtidos resultados ainda mais satisfatórios.

- APÊNDICE A -<u>CÁLCULO DA DENSIDADE ELETRÔNICA</u>

Na antiga versão do método celular [2,13], a densidade <u>e</u> letrônica era calculada de uma maneira diferente da atual [27,4], embora lá esta também fosse discutida. Este modo atual pode ser bem compreendido através da Figura 12, notando que serão usados m<u>é</u> todos diferentes para a região dentro da esfera inscrita ($r_0 < R_1$) e para a região dentro da célula i, mas fora da esfera inscrita ($r_0 > R_1$).

<u>FIGURA 12.</u> Célula i, esfera inscrita de raio R_i e partes da esfera de raio r_o.

Definindo: $n_i(r_o) = média da densidade eletrônica na es$ $fera de raio <math>r_o$ (se $r_o < R_i$) ou nas seções de cascas esféricas (se $r_o > R_i$); $S_i(r_o) = área dessa esfera ou das seções de cascas$ esféricas. No caso da função ser contínua, com derivada contínuana superfície da célula, temos

$$S_{i}(r_{o}) n_{i}(r_{o}) = \int d\tau \, \delta(r - r_{o}) \psi_{i}^{*}(\vec{r}) \psi_{i}(\vec{r}) \qquad (A1)$$

(a) Dentro da esfera inscrita

Para r < R , temos simplesmente

$$4\pi r_{0}^{2} n_{1}(r_{0}) = \int d\tau' \delta(r - r_{0}) \psi_{1}^{*}(\vec{r}) \psi_{1}^{*}(\vec{r}) \qquad (A2)$$

onde $S_i(r_0) = 4\pi r_0^2$ é a superfície da esfera de raio r_0 e o la do direito da igualdade corresponde à média de $\psi_i^* \psi_i^*$ sobre essa esfera.

Usando em (A2) as equações (1) e (2), temos

$$4\pi r_0^2 n_i(r_0) =$$

$$= r_0^2 \int d(\cos\theta) d\phi \sum_{\lambda\lambda'} B_{i\lambda}^* R_{\ell}(r_0) B_{i\lambda'} R_{\ell'}(r_0) Y_{\lambda}(\hat{r}) Y_{\lambda'}(\hat{r})$$
(A3)

que desenvolvida, utilizando-se as condições de contorno do item II-3, fornece:

$$4\pi r_{0}^{2} n_{i}(r_{0}) = \sum_{\lambda} A_{i\lambda}^{(1)*} A_{i\lambda}^{(1)} \frac{r_{0}^{2} R_{\ell}(r_{0})^{2}}{R_{\ell}(R_{i})^{2}}$$
(A4)

Assim, dentro da esfera inscrita, podemos tirar de (A3)

$$n_{i}(r_{o}) = \frac{1}{4\pi} \sum_{\lambda} B_{i\lambda}^{*} B_{i\lambda} R_{i\lambda} (r_{o})^{2}$$
(A5)

ou, de (A4), o que é o mesmo

$$n_{i}(r_{0}) = \frac{1}{4\pi} \sum_{\lambda} A_{i\lambda}^{(1)*} A_{i\lambda}^{(1)} \frac{R_{\ell}(r_{0})^{2}}{R_{\ell}(R_{i})^{2}}$$
(A6)

2

(b) Fora da esfera inscrita

Para r_o > R_i, isto é, a região entre a esfera inscrita

e as fronteiras da célula i, a dedução é bem mais trabalhosa pois envolve médias sobre seções de cascas esféricas que não são fáceis de definir analiticamente. Seguiremos o procedimento de W.V.M. Ma chado [28], explicitando Ferreira e De Siqueira [4].

$$S_{i}(r_{o}) n_{i}(r_{o}) = \sum_{\substack{II'\\\lambda\lambda'}} A_{i\lambda}^{I*} A_{i\lambda'}^{I'} \int d\tau \, \delta(r - r_{o}) f_{i\lambda}^{*I} f_{i\lambda'}^{I'}, \quad (A7)$$

A referência [4] sugere, para resolver essa integral,que consideremos a equação diferencial para a função definida pela equação (4)

$$\left[-\nabla^{2} + V(r)\right] f_{i\lambda}^{I} = \varepsilon f_{i\lambda}^{I}$$
(A8)

e outra equação semelhante obtida quando o potencial é variado de uma função delta em r

$$\left[-\nabla^{2} + V(\mathbf{r}) + \Delta\delta(\mathbf{r} - \mathbf{r}_{0})\right] \mathbf{f}_{i\lambda,\Delta}^{I} = \varepsilon \mathbf{f}_{i\lambda,\Delta}^{I}$$
(A9)

De (A8) e (A9) podemos escrever

$$f_{i\lambda}^{I*} \nabla^2 f_{i\lambda',\Delta}^{I'} - f_{i\lambda',\Delta}^{I'} \nabla f_{i\lambda}^{I*} = \Delta \delta (r - r_0) f_{i\lambda',\Delta}^{I'} f_{i\lambda}^{I*}$$

e integrando no volume (região fora) e usando o teorema de Green, temos

$$\oint \left[f_{i\lambda}^{I*} \partial_n f_{i\lambda',\Delta}^{I'} - f_{i\lambda',\Delta}^{I'} \partial_n f_{i\lambda}^{I*} \right] dS = \Delta d\tau \delta(r - r_0) f_{i\lambda}^{I} f_{i\lambda',\Delta}^{I'}$$
(A10)
$$(A10)$$

Repetindo o raciocínio para $\Delta = 0$

$$\phi \left(f_{i\lambda}^{I*} \partial_n f_{i\lambda}^{I'} - f_{i\lambda}^{I'} \partial_n f_{i\lambda}^{I*} \right) dS = 0$$
(A11)
$$S_{ii}^{I*} \sigma_i$$

Definindo a derivada funcional como

$$\frac{\delta f_{i\lambda}^{I}}{\delta V(r_{o})} = \lim_{\Delta \to 0} \frac{f_{i\lambda,\Delta}^{I} - f_{i\lambda}^{I}}{\Delta}$$
(A12)

obtemos de (A10) e (A11)

$$\oint \left(f_{i\lambda}^{I*} \partial_{n} \frac{\delta f_{i\lambda'}^{I'}}{\delta V(r_{o})} - \frac{\delta f_{i\lambda'}^{I'}}{\delta V(r_{o})} \partial_{n} f_{i\lambda}^{I*} \right) dS = \int f_{i\lambda}^{I*} f_{i\lambda'}^{I}, \ \delta(r - r_{o}) d\tau$$
(A13)

Como uma perturbação no potencial em pontos $r_0 > R_i$ não modificará a solução do problema em pontos internos a r_0 , na superfície σ (onde $r = R_i$) teremos a derivada funcional de $f_{i\lambda}^I$ nula, isto é

$$\frac{\delta f_{i\lambda}^{I}(\vec{r})}{\delta V(r_{o})} \bigg|_{r=R_{i}} = 0 \quad \text{se} \quad r_{o} > R_{i}$$

então temos

$$\sum_{j} \int_{S_{ij}} dS_{ij} \left(f_{i\lambda}^{I*} \partial_{n} \frac{\delta f_{i\lambda'}^{I'}}{\delta V(r_{o})} - \frac{\delta f_{i\lambda'}^{I'}}{\delta V(r_{o})} \partial_{n} f_{i\lambda}^{I*} \right) = \int_{S_{ij}} \delta (r - r_{o}) f_{i\lambda}^{I*} f_{i\lambda'}^{I'} d\tau$$
(A14)

sendo a integração feita somente na superfície da célula.

Das equações (3) e (4), para $\psi_i(\vec{r})$ em função de $f_{i\lambda}^{I}(\vec{r})$, podemos escrever

$$\sum_{j} \int_{S_{ij}} dS_{ij} \left[\psi_{i}^{*} \partial_{n} \frac{\delta \psi_{i}}{\delta V(r_{o})} - \frac{\delta \psi_{i}}{\delta V(r_{o})} \partial_{n} \psi_{i}^{*} \right] = \int_{S_{ij}} \delta(r - r_{o}) \psi_{i}^{*} \psi_{i} d\tau \qquad (A15)$$

De (A1) com (A15), temos

$$S_{i}(r_{o}) n_{i}(r_{o}) = \sum_{j} \int_{s_{ij}} dS_{ij} \left(\psi_{i}^{\star} \partial_{n} \frac{\delta \psi_{i}}{\delta V(r_{o})} - \partial_{n} \psi_{i}^{\star} \frac{\delta \psi_{i}}{\delta V(r_{o})} \right)$$
(A16)

que é a equação (22) da referência [4].

Nesta altura, em vez de determinar diretamente a densida de $n_i(r_0)$ em cada ponto r_0 a partir de (A16), podemos aproximá -la através de uma série de potências em r:

$$n_{i}(r) \cong \sum_{k=1}^{M} \alpha_{ik} r^{k-2}$$
(A17)

A esta expansão nos referimos no item II-4. Para determinar os coeficientes α_{ik} de (A17) impomos a condição

$$\int dr S_{i}(r) \left(n_{i}(r) - \sum_{k=1}^{M} \alpha_{ik} r^{k-2} \right)^{2} = \text{minimo}$$
fora da
esfera inscrita
(f.e.i.)

ou

$$\int dr S_{i}(r) \frac{d}{d\alpha_{il}} \left(n_{i}(r) - \sum_{k=1}^{M} \alpha_{ik} r^{k-2} \right)^{2} = 0$$

f.e.i.

que leva a

$$\int d\mathbf{r} \, \mathbf{S}_{i}(\mathbf{r}) \left(\begin{array}{c} \mathbf{n}_{i}(\mathbf{r}) - \sum_{k=1}^{M} \alpha_{ik} \, \mathbf{r}^{k-2} \\ \mathbf{f.e.i.} \end{array} \right) \mathbf{r}^{\ell-3} = 0$$

ou, o que é o mesmo

dr S_i(r) n_i(r) r^{l-3} =
$$\sum_{k} \int dr S_{i}(r) \alpha_{ik} r^{k-2+l-3}$$

E.e.i.

 \mathbf{ou}

$$\sum_{i} \alpha_{i\ell} \int S_{i}(r) r^{k+\ell-4} dr = \int S_{i}(r) n_{i}(r) r^{k-2} dr \quad (A18)$$

f.e.i. f.e.i.

Essa é a equação (25) na referência [4]. As duas integrais, que nela aparecem, são ali calculadas. A integral do lado esquerdo, que é composta de fatores geométricos, desenvolvida com as correspondentes condições de contorno, fica

$$\int S_{i}(r) r^{k} dr = \sum_{j} \int dS_{ij} \frac{\partial_{n} r_{i}}{r_{i}^{2}} \frac{r_{i}^{k+3} - R_{i}^{k+3}}{k+3}$$
(A19)
f.e.i.

A integral do lado direito é calculada assim:

$$\int S_{i}(r) n_{i}(r) r^{k-2} dr = \sum_{j} \int dS_{ij} \left(\psi_{i}^{\star} \partial_{n} \psi_{i,k} - \partial_{n} \psi_{i}^{\star} \psi_{i,k} \right) (A20)$$

onde

$$\psi_{i,k} = \int r^{k-2} \frac{\delta \psi_{i}}{\delta V(r)} dr = \sum_{I=1,2} \sum_{\lambda} A_{i\lambda}^{(I)} f_{i\lambda,k}^{(I)} (\vec{r})$$

f.e.i.
onde $f_{i\lambda,k}^{(I)}(\vec{r}) = R_{\lambda,k}^{(I)}(r_{i}) Y_{\lambda}(\hat{r}_{i})$

e onde $R_{\ell,k}^{(I)}$ é tal que fazendo

$$P_{\ell,k}^{(I)}(r) = r R_{\ell,k}^{(I)}(r)$$

ele satisfaz a equação de Schroedinger radial não homogênea $-\frac{d^2 P_{\ell,k}^{(I)}}{dr^2} + \frac{\ell(\ell+1)}{r^2} P_{\ell,k}^{(I)} + V(r) P_{\ell,k}^{(I)} + r^{k-2} P_{\ell}^{(I)} = \varepsilon P_{\ell,k}^{(I)}$

com as seguintes condições de contorno:

$$P_{\ell,k}^{(I)}(R_{i}) = 0$$
$$\partial_{n}P_{\ell,k}^{(I)} = 0$$

Assim, se calculamos as duas integrais de (A18), determinamos os coeficientes α_{il} . Estes, por sua vez, na expansão em série de potências (A17) fornecem a aproximação escolhida para a den sidade eletrônica $n_i(r)$.

- APÊNDICE B -

CÁLCULO DA ENERGIA TOTAL E DO POTENCIAL

Pretendemos neste Apêndice explicitar um pouco mais o que foi dito no Capítulo II. Em referências citadas, especialmente em [3,4,7 e 27], podem ser encontrados maiores detalhes. Utilizamos também algumas passagens de [28], neste desenvolvimento.

Estes dois cálculos abordados por este Apêndice: definir o potencial e calcular a energia total, são, de fato, um único pro blema. Realmente, a energia total será calculada de acordo com uma expressão variacional cujo extremo define o potencial [3]. Por isto, nesta referência, parte-se de uma expressão variacional para a energia. Não há uma resposta única para este problema: a expres são variacional escolhida por Ferreira e Leite [3] foi

$$E = \sum_{i}^{\infty} K[\psi_{i}, \psi_{i}^{*}] + E_{x}[n] + U[n-p,c]$$

- S[p] + $\int V(\rho-n) d\tau$ (B1)

Verifica-se que essa expressão para a energia total é estacionária para variações arbitrárias em ψ_i , ψ_i^* , n, V e c [3].

Como é comentado na referência [6], se nós pensarmos em termos da aproximação de Born-Oppenheimer [29] para a energia total de um sistema de N elétrons, submetidos a um potencial eletrostático devido à presença de M núcleos fixos, teríamos para es sa energia total um funcional do tipo de (B1):

$$E[\rho,p] = K[\rho] + U[\rho-p] - S[p] + E_{xc}[\rho]$$
 (B2)

- onde $\rho(\vec{r}) = densidade eletrônica$
 - $p(\vec{r}) = densidade de núcleos$
 - K[ρ] = energia cinética dos elétrons

U[ρ-p] = energia eletrostática da densidade de carga $- e \left[\rho(\vec{r}) - p(\vec{r}) \right]$

S[p] = autoenergia dos núcleos (contida em U)

 $E_{xc}[\rho] = energia de "exchange"-correlação dos elétrons$ (que também deve anular a autoenergia dos elétrons).

Notamos que (B1) tem um termo a mais que (B2):

 $V(\rho-n) d\tau$.

Vamos falar dele a seguir, ao comentarmos brevemente cada um dos termos da expressão variacional (B1) escolhida.

O primeiro termo de (B1)

 $\sum_{i} K[\psi_{i}, \psi_{i}^{\star}] \quad \text{ou } K[\psi] \quad \text{ou } K[\rho]$

é o funcional da energia cinética dos elétrons que depende das fun ções de onda ψ , ou de ρ , pois

$$\rho(\vec{r}) = \sum_{i} \psi_{i}^{*} \psi_{i}$$
(B3)

é a densidade eletrônica de carga real.

O segundo termo de (B1)

$E_{x}[n]$

é a energia de "exchange"-correlação. A existência deste funcio nal foi provada por Hohenberg e Kohn [30]. Embora a expressão exa ta para esse funcional seja desconhecida, algumas aproximações for necem resultados notavelmente precisos, especialmente para sistemas com altas densidades eletrônicas [4,12,31]. Como já dissemos no Capítulo II, temos usado a expressão de Gunnarsson e Lundqvist [12].

O terceiro termo de (B1)

U[n-p,c]

é um funcional energia coulombiana eletrostática.

O potencial coulombiano, c, pode ser escrito

$$c(\vec{r}) = 2 \int \frac{q(\vec{r})}{|\vec{r} - \vec{r}'|} d\vec{r}$$
(B4)

onde

$$q(\vec{r}) = n(\vec{r}) - p(\vec{r})$$
 (B5)

sendo $n(\vec{r})$ a densidade eletrônica de carga assumida pelo modelo $p(\vec{r}) = densidade de prótons.$

Nos métodos de cálculo da estrutura eletrônica, ao integrarmos a <u>e</u> quação de Poisson, não podemos deixar de aproximar a densidade de carga. Esta é a razão pela qual estamos considerando uma densidade de carga $n(\vec{r})$ possivelmente diferente da densidade de cargas reais $\rho(\vec{r})$ (Eq.(B3)).

O funcional energia eletrostática pode ser escrito como

$$U[n-p,c] = \frac{1}{2} \int \left[n(\vec{r}) - p(\vec{r}) \right] c(\vec{r}) d\vec{r} \qquad (B6)$$

Entretanto, será tomado um funcional diferente de (B6) e que contém termos superficiais convenientemente escolhidos a fim de que sejam satisfeitas as condições de contorno peculiares ao mé todo celular. Logo adiante voltaremos a ele.

O quarto termo de (B1)

S[p]

é a autoenergia dos núcleos, que deve ser descontada da energia eletrostática da distribuição n-p

$$S[p] = \int \frac{p(\vec{r}) p(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r} d\vec{r}' \qquad (B7)$$

O quinto e último termo de (B1)

$$\int V(\rho-n) d\tau$$
(B8)

é introduzido para tornar possível trabalharmos com duas densida – des diferentes: a real $\rho(\vec{r})$ e a assumida pelo modelo $n(\vec{r})$. Em vez de satisfazer

$$n(\vec{r}) = \rho(\vec{r}) \tag{B9}$$

em todos os pontos, introduzimos o multiplicador de Lagrange $V(\vec{r})$ e incluímos o termo (B8) na expressão da energia total.

Vale notar que, ao verificar que (B1) é estacionária para arbitrárias variações em ψ_i , chegamos à equação de Schroedinger, isto é: em cada célula a função de onda que torna E estacio nária $\left(\frac{\delta E}{\delta \psi_i} = 0\right)$ deve satisfazer $-\nabla^2 \psi_i + \nabla(r) \psi_i = \varepsilon_i \psi_i$. Em outras palavras, o multiplicador de Lagrange $\nabla(\vec{r})$ é o poten cial do modelo de um elétron usado na equação de Schroedinger.

Este último termo de (B1) parece ter sido incluído pela primeira vez no funcional da energia por Ferreira e outros na refe rência [32].

Em relação ao potencial escalar pretendemos destacar algumas considerações da referência [7]. No funcional U[n-p,c] de

(B1), correspondente à energia eletrostática, c é o potencial de Coulomb definido pelas equações diferenciais

$$\frac{\delta U}{\delta q} = c \tag{B10}$$

$$\frac{\delta U}{\delta c} = 0$$
(B11)

No espaço não dividido por células, o funcional U teria a seguinte forma

$$U[q,c] = \int d\Omega \ qc - \frac{1}{16\pi} \int d\Omega \ \nabla_c \cdot \nabla_c$$
(B12)

e a equação (B11) levaria a

$$\nabla^2 \mathbf{c} = -8\pi \mathbf{q} \tag{B13}$$

que é a equação de Poisson. No espaço dividido em células, o funcional (B12) deve ser completado com integrais de superfície [3]. A forma que (B12) assume com estas integrais e que está sendo usada é a seguinte:

$$U[q,c] = \sum_{i} \int d\Omega \ q \ c_{i} + \sum_{i} \int d\Omega' \ q \ c_{i}' +$$

$$- \frac{1}{16\pi} \sum_{i} \int d\Omega \ \nabla_{c_{i}} \cdot \nabla_{c_{i}} - \frac{1}{16\pi} \sum_{i} \int d\Omega' \ \nabla_{c_{i}'} \cdot \nabla_{c_{i}'} +$$

$$+ \frac{1}{16\pi} \sum_{ij} \int dS \ (c_{i} - c_{j}) \left(\partial_{n}c_{i} - \partial_{n}c_{j}\right) +$$

$$+ \frac{1}{8\pi} \sum_{i} \int d\sigma \ (c_{i}' - c_{i}) \ \partial_{n}c_{i}'$$
(B14)

onde c'é o potencial dentro da esfera inscrita da célula i e

c_i é o potencial no espaco entre a esfera inscrita e a fro<u>n</u> teira da célula.

Assim sendo, a equação (B11) implica derivadas funcionais em relação a ambos, c' e c_i, isto é: $\frac{\delta U}{\delta c_i} = 0$ e $\frac{\delta U}{\delta c_i^2} = 0$.

Efetuando essas derivadas, obtemos:

$$\nabla^2 c_i = -8\pi q$$
 (B15)

$$\nabla^2 c'_i = -8\pi q \tag{B16}$$

 $c_i - c'_i = 0$ (na superfície da esfera inscrita) (B17) $\partial_n c_i + \partial_n c'_i = 0$ (na superfície da esfera inscrita) (B18)

$$c_i - c_j = 0$$
 (na superfície da célula) (B19)

 $\partial_n c_i + \partial_n c_j = 0$ (na superfície da célula) (B20) o que significa que a solução variacional satisfaz a equação de Pois son em todos os pontos, é contínua e possui derivada normal contínua.

Voltemos ao funcional para a energia total (B1). Se igua lamos a zero, as derivadas funcionais em relação a c, obtemos (B11); em relação a n, obtemos

$$c + \frac{\delta E_{x}}{\delta n} - V = 0 \qquad (B21);$$

em relação a V, obtemos (B9); e em relação a ψ_i , como vimos ant<u>e</u> riormente, chegamos à equação de Schroedinger. Assim sendo, vemos que o funcional para a energia total (B1) é estacionário para variações nas funções de onda ψ_i , potencial coulombiano c, densid<u>a</u> de eletrônica admitida n, e potencial V usado na equação de Schro<u>e</u> dinger. Deste modo, pequenos erros nestas funções produzem erros de segunda ordem na energia [7].

- APÊNDICE C -USO DAS SIMETRIAS C_{12V} E D<u>12H</u>

Para justificar o uso dessas simetrias, em vez de $C_{\infty V}$ e $D_{\infty H}$, para as moléculas de CO e CO₂, respectivamente, seguimos o desenvolvimento e a conclusão de Ferreira [33].

No grupo C_{nv} temos operações de

rotação: c_{i} rotações de $\frac{2\pi}{n}$ i $0 \le i \le n-1$ (C1) planos de espelho:

 σ_i planos de espelho formando ângulos $\phi = i \frac{\pi}{n}$ (C2) Por exemplo, para n = 4:

FIGURA 13. Exemplo C_{4v}. Se queremos aplicar uma rotação c_i num par de funções (cos m ϕ ; sen m ϕ), fazemos:

$$c_{i} (\cos m \phi; \operatorname{sen} m \phi) = \left[\cos m \left(\phi - i \frac{2\pi}{n} \right); \operatorname{sen} m \left(\phi - i \frac{2\pi}{n} \right) \right]$$
(C3)

Pois rodar uma função de ponto é a mesma coisa que "rodar o ponto para traz":

 $\hat{\mathbf{R}} \mathbf{f}(\mathbf{\vec{r}}) = \mathbf{f}(\hat{\mathbf{R}}^{-1} \mathbf{\vec{r}})$ (C4)

Por isto,

$$c_{i} f(\phi) = f\left[\phi - i \frac{2\pi}{n}\right]$$
(C5)

е

$$\sigma_{i} f(\phi) = f\left[i \frac{\pi}{n} - \left[\phi - i \frac{\pi}{n}\right]\right] = f\left[i \frac{2\pi}{n} - \phi\right]$$
(C6)

De (C3) temos:

$$c_{i} (\cos m \phi; \operatorname{sen} m \phi) = \left[\cos m \phi \cos \frac{mi}{n} 2\pi + \operatorname{sen} m \phi \operatorname{sen} \frac{mi}{n} 2\pi; \operatorname{sen} m \phi \cos \frac{mi2\pi}{n} - \cos m \phi \operatorname{sen} \frac{mi2\pi}{n} \right]$$
$$= \left[\cos m \phi; \operatorname{sen} m \phi \right] \left[\begin{array}{c} \cos \frac{mi2\pi}{n} & - \operatorname{sen} \frac{mi2\pi}{n} \\ \sin \frac{mi2\pi}{n} & \cos \frac{mi2\pi}{n} \end{array} \right] (C7)$$

$$\sigma_{i} (\cos m \phi; \sin m \phi) = \left[\cos m \left[i \frac{\pi}{n} - \left(\phi - i \frac{\pi}{n} \right) \right]; \sin m \left[i \frac{\pi}{n} - \left(\phi - i \frac{\pi}{n} \right) \right] \right]$$

$$= \left[\cos\left(\frac{mi}{n} 2\pi - m\phi\right) ; \sin\left(\frac{mi}{n} 2\pi - m\phi\right) \right]$$

$$= \left[\cos m\phi ; \operatorname{sen} m\phi \right] \left[\begin{array}{c} \cos \frac{mi}{n} 2\pi & \operatorname{sen} \frac{mi2\pi}{n} \\ \sin \frac{mi}{n} 2\pi & -\cos \frac{mi2\pi}{n} \\ \sin \frac{mi}{n} 2\pi & -\cos \frac{mi2\pi}{n} \end{array} \right] (C8)$$

Do chamado Grande Teorema da Ortogonalidade [34]

$$\sum_{R} \left[\Gamma_{i}(R)_{mn} \right] \left[\Gamma_{j}(R)_{m'n'} \right]^{*} = \frac{h}{\sqrt{\ell_{i}\ell_{j}}} \delta_{ij} \delta_{mm'} \delta_{nn'}$$
(C9)

onde h é a ordem do grupo, uma de suas consequências, que é bem conhecida, é a seguinte: "a soma dos quadrados dos caracteres em qualquer representação irredutível é igual a h", isto é

$$\sum_{R} [\chi_{i}(R)]^{2} = h$$
 (C10)

A demonstração do teorema (C9), que não é trivial, pode ser encontrada, por exemplo, na referência [35]. A demonstração de (C10) é feita em [34].

No caso do grupo C_{nv} temos h = 2n.

Vamos calcular, a partir de (C7) e (C8), $\chi^{(m)}[c_i]$, $\chi^{(m)}[\sigma_i] = \sum_R \chi^{(m)}(R)^2$ para usar depois a afirmativa (C10).

Assim, temos

χ

$$(m)[c_i] = 2 \cos \frac{mi}{n} 2\pi$$
 (C11)

$$\chi^{(m)}[\sigma_1] = 0 \tag{C12}$$

então

$$\sum_{R} \chi^{(m)}(R)^{2} = 4 \sum_{k=0}^{n-1} \cos^{2} \frac{mk}{n} 2\pi$$
(C13)

Mas

$$\frac{n-1}{\sum_{k=0}^{n-1} \cos \frac{mk}{n} 2\pi \cos \frac{m'k}{n} 2\pi =$$

$$= \frac{1}{4} \sum_{k=0}^{n-1} \left[\frac{i - 2\pi}{n} (m+m')k + \exp(m-m') + \exp(-m+m') + \exp(-m-m') \right]$$

$$= \frac{1}{4} \frac{1 - e^{i 2\pi (m+m')}}{+ i \frac{2\pi}{n} (m+m')} + \text{Termo}(m-m') + T(-m+m') + T(-m-m')$$

$$= \frac{1}{2} \frac{\text{sen } \pi (m+m')}{\text{sen } \frac{\pi}{n} (m+m')} + \frac{1}{2} \frac{\text{sen } \pi (m-m')}{\text{sen } \frac{\pi}{n} (m-m')}$$

então

$$\sum_{k=0}^{n-1} \cos^2 \frac{mk}{n} 2\pi = \frac{1}{2} \frac{\operatorname{sen} 2\pi m}{\operatorname{sen} \frac{2\pi m}{n}} + \frac{n}{2}$$

e (C13) fica

$$\sum_{R} \chi^{(m)}(R)^{2} = 2 \left(\frac{\operatorname{sen} 2\pi m}{\operatorname{sen} \frac{2\pi m}{n}} + n \right)$$
(C14)

Se m≠0

1) 2m ≠ in

$$\sum_{R} \chi^{(m)}(R)^2 = 2n$$

ou seja, <u>m</u> é uma representação irredutível.

 $2) \quad 2m = in$

Neste caso

$$\sum_{R}^{n} \chi^{(m)}(R)^{2} = 4n$$

e há duas representações irredutiveis.

Sem≠m'em+m'<n

$$\sum_{R} \chi^{(m)}(R) \chi^{(m')}(R) = 0$$

e as representações irredutíveis são diferentes.

Quanto ao número de classes temos $c_{i} c_{j} c_{i}^{-1} = c_{j}$ $\sigma_{i} c_{j} \sigma_{i}^{-1} f(\phi) = \sigma_{i} c_{j} f\left[i \frac{\pi}{n} - \left[\phi - i \frac{\pi}{n}\right]\right]$ $= \sigma_{i} c_{j} f\left[i \frac{2\pi}{n} - \phi\right]$ $= \sigma_{i} f\left[i \frac{2\pi}{n} - \left[\phi - j \frac{2\pi}{n}\right]\right]$ $= \sigma_{i} f\left[(i+j) \frac{2\pi}{n} - \phi\right]$ $= f\left[(i+j) \frac{2\pi}{n} - i \frac{2\pi}{n} + \phi\right]$ $= c_{j}^{-1} f(\phi)$ Assim $c_{j} \in c_{j}^{-1}$ pertencem à mesma classe

 $c_{i} \sigma_{j} c_{i}^{-1} f(\phi) = c_{i} \sigma_{j} f\left(\phi + i \frac{2\pi}{n}\right)$ $= c_{i} f\left(j \frac{2\pi}{n} + i \frac{2\pi}{n} - \phi\right) = f\left(j \frac{2\pi}{n} + i \frac{4\pi}{n} - \phi\right)$ $= \sigma_{j+2i} f(\phi)$

Assim
$$\sigma_{j} = \sigma_{j+2i}$$
 pertencem à mesma classe
 $\sigma_{i} \sigma_{j} \sigma_{i}^{-1} f(\phi) = \sigma_{i} \sigma_{j} f\left(i \frac{2\pi}{n} - \phi\right)$
 $= \sigma_{i} f\left(i \frac{2\pi}{n} - j \frac{2\pi}{n} + \phi\right) = f\left(-j \frac{2\pi}{n} + i \frac{4\pi}{n} - \phi\right)$
 $= \sigma_{2i-j} f(\phi)$

e σ_j e σ_{-j} pertencem à mesma classe.

Assim sendo, <u>se n é par</u> temos as seguintes <u>classes</u>:

$$m = 1$$

$$m = 2$$

$$m = \frac{n}{2} - 1$$

$$m = \frac{n^{+}}{2}$$

$$m = \frac{n^{-}}{2}$$

 $\begin{array}{c|c} \underline{Se \ n \ \acute{e} \ impar}, \ temos \ as \ seguintes \ \underline{classes}: \\ \hline c_{0} \\ c_{1}, \ c_{n-1} \\ \vdots \\ c_{1} \\ \vdots \\ c_{n-1} \\ \vdots \\ c_{n-1} \\ 2 \end{array} + 1 \ classes \\ \hline c_{1} \\ c_{n-1} \\ 2 \\ c_{n-1} \\ 2 \end{array} + 1 \ classes \\ \hline c_{1} \\ c_{n-1} \\ c_{n-1}$

O total é de $\frac{n-1}{2}$ + 2 classes. As representações são

$$m = 0^{+}$$

$$m = 0^{-}$$

$$m = 1$$

$$m = 2$$

$$\vdots$$

$$m = \frac{n-1}{2}$$
duplamente degeneradas

<u>Conclusão</u> - Se queremos usar C_{nv} em vez de C_{ov} e não queremos misturar m, sendo l_{max} o máximo l, devemos usar
$$n > 2 l_{max} + 1$$
 (C15)

Por isto, de acordo com esta conclusão, no caso da molécula de CO, que tem simetria C_{my} , como fomos até l = 5 de acor do com (C15)

$$2 l_{max} + 1 = 11$$

e assim usamos n = 12: usamos por isto a simetria C_{12v} . Ela já é suficiente, com $l_{max} = 5$, para não misturarmos m. É fácil no tar que neste caso as rotações são de múltiplos de $\pi/6$ e os planos de espelho formam um ângulo ϕ múltiplo de $\pi/12$.

Para a molécula de CO₂, que tem simetria $D_{\infty H}$, usamos D_{12H} pois também usamos $l_{max} = 5$ e

$$D_{12H} = C_{12v} \times J$$

onde J é o operador de inversão.

65

Republication of the second of the labor date of

REFERÊNCIAS

- 1. L.G. FERREIRA e J.R. LEITE, Phys. Rev. Lett. 40, 49 (1978).
- 2. L.G. FERREIRA e J.R. LEITE, Phys. Rev. A 18, 335 (1978).
- 3. L.G. FERREIRA e J.R. LEITE, Phys. Rev. A 20, 689 (1979).
- 4. L.G. FERREIRA e M.L. DE SIQUEIRA, J. Phys. B: At. Mol. Phys. <u>16</u>, 3111 (1983).
- 5. W.V.M. MACHADO, L.G. FERREIRA e M.L. DE SIQUEIRA, J. Chem. Phys. <u>79</u>, 4392 (1983).
- 6. H. CHACHAM, "Estudo de Propriedades Eletrônicas do Íon BH₄ pelo Método Celular Variacional", Dissertação de Mestrado, UFMG (1984).
- D.L. KINOSHITA, L.G. FERREIRA e M.L. DE SIQUEIRA, Int. J. Quant. Chem. (a ser publicado).
- 8. J.C. SLATER, Phys. Rev. <u>45</u>, 794 (1934).
- 9. S.L. ALTMAN, "Orbital Theories of Molecules and Solids" (Clarendon, Oxford, 1974).
- 10. S. ANTOCI, J. Chem. Phys. <u>63</u>, 697 (1975).
- 11. R.S. LEIGH, Proc. Phys. Soc. London Sect. A 69, 388 (1956).
- 12. O. GUNNARSSON e B.I. LUNDQVIST, Phys. Rev. B <u>13</u>, 4274 (1976), citado em [4].
- 13. L.G. FERREIRA, "Método Celular Autoconsistente para Moléculas Diatômicas". Apostila de circulação interna, USP, 1979.
- 14. D.H. RANK, J. Opt. Soc. Am. <u>47</u>, 686 (1957), citado em [3].
- 15. G. HERZBERG, "Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules" (Van Nostrand Reinhold, N. York, 1966).

66

16. B.J. RANSIL, Rev. Mod. Phys. <u>32</u>, 239 (1960), citado em [17].
17. A. ROSATO, Revista Brasileira de Física <u>13</u>, 551 (1983).

18. E. CLEMENTI, IBM J. Res. Dev. 9, 2 (1965), citado em [3].

- 19. K. SIEGBAHN, C. NORDLING, G. JOHANSSON, J. HEDMAN, P.F. HEDEN, K. HAMRIN, U. GELIUS, T. BERGMARK, L.O. WERME, R. MANNE, Y. BAER, "Esca Applied to Free Molecules" (North-Holland Publish ing Co. - Amsterdam, 1971).
- 20. D.B. NEUMANN e J.W. MOSKOWITZ, J. Chem. Phys. <u>49</u>, 2056 (1968), citado em [3].
- 21. J.W.D. CONNOLLY, H. SIEGBAHN, U. GELIUS e C. NORDLING, J. Chem. Phys. <u>58</u>, 4265 (1973).
- 22. J. PACANSKY, U. WAHLGREN e P.S. BAGUS, J. Chem. Phys. <u>62</u>, 2740 (1975).
- 23. J.E. MÜLLER, R.O. JONES e J. HARRIS, J. Chem. Phys. <u>79</u>, 1874 (1983).
- 24. T.D. THOMAS & R.W. SHAW JR., J. Electron Spectrosc. Relat. Phenom. 5, 1081 (1974).
- 25. D.T. CLARK e J. MILLER, Chem. Phys. 23, 429 (1977).
- 26. G.E. LARAMORE, Phys. Rev. A 29, 23 (1984).
- 27. L.G. FERREIRA, "Teoria e Programa do Método Celular Variacional para Moléculas Poliatômicas". Apostila de circulação inter na, USP, 1982.
- 28. W.V.M. MACHADO, Comunicação particular.
- 29. M. TINKHAM, "Group Theory and Quantum Mechanics". McGraw-Hill, 1978.
- 30. P. HOHENBERG e W. KOHN, Phys. Rev. <u>136</u>, B864 (1964), citado em [3].

67

- 31. K. SCHWARZ, Phys. Rev. B 5, 2466 (1972), citado em [4].
- 32. L.G. FERREIRA, A. FAZZIO, H. CLOSS e L.M. BRESCANSIN, Int. J. Quantum Chem. <u>16</u>, 1021 (1979), citado em [7].
- 33. L.G. FERREIRA, Comunicação particular.
- 34. F.A. COTTON, "Chemical Applications of Group Theory". Wiley-Interscience, N. York, 27 edição (1963).
- 35. H. EYRING, J. WALTER e G.E. KIMBALL, "Quantum Chemistry". John Wiley, N. York (1944), citado em [34].