Todas Notícias

Procura por decaimento duplo beta sem neutrino com o detector EXO-200

Data: 
sexta-feira, 16 Agosto, 2019 - 12:00
Palestrante: 
Prof. Caio Licciardi (Laurentian University; nEXO and EXO-200 Collaborations)
Resumo: 

O programa EXO (Enriched Xenon Observatory) investiga a natureza dos neutrinos através do decaimento duplo beta sem neutrinos (0vBB) usando uma câmara de projeção temporal com Xenônio líquido enriquecido. O detector EXO-200 terminou com sucesso duas fases de tomada de dados em dezembro de 2018 na mina de sal e lixos nucleares Waste Isolated Pilot Plant, em Carlsbad NM, nos Estados Unidos. Na primeira fase, o detector foi o primeiro a observar o decaimento beta duplo com neutrinos (2vBB) em 136Xe, e hoje ainda possui a medida mais precisa de sua meia vida: 2.165 ± 0.016 ± 0.059 x 10^21 anos. Além de vários outros resultados, a colaboração possui os melhores limites do mundo nos processos de 2vBB e 0vBB em 134Xe. Usando a exposição total do detector, a procura por 0vBB em 136Xe foi atualizada em 2019 na qual a resolução de energia foi melhorada e a discriminação entre sinal e ruído aprimorado com métodos de inteligência artificial. Desta forma, essa procura alcançou uma sensibilidade de 5.0 x 10^25 anos para a meia-vida do processo com nível de confiança de 90%, comparável à procura mais sensível do mundo. Esta apresentação cobrirá brevemente o detector EXO-200 e seus principais resultados, além de ressaltar os trabalhos do grupo da Laurentian University envolvido nesse projeto que inclui: a coordenação das análises de dados deste detector e o potencial de sua próxima geração, o detector nEXO que será aproximadamente 25 vezes maior; pesquisa e desenvolvimento para detectação de cargas do nEXO; e investigação de enriquecimento de 136Xe através de destilação criogênica.

Local: Sala Jayme Tiomno

Cosmic Photons from Mass Splitting in the Dark Sector

Data: 
terça-feira, 27 Novembro, 2018 - 11:00
Palestrante: 
Francesco D'Eramo (University of Padova)
Resumo: 

In this talk, I will present two dark matter frameworks where a mass splitting in the dark sector dramatically alters the expectations for indirect detection rates. In the first case, the presence of a quasi-degenerate metastable state, where the dark matter number is stored, allows for sub-GeV relics with large s-wave annihilation cross section and not excluded by CMB bounds. In the second case, dark matter particles inelastically up-scatter in the interstellar plasma to a quasi-degenerate heavier partner, whose subsequent decays generate X-ray lines with unique spectrum and morphology.

From the Largest Spectroscopic Galaxy Survey to the Lightest Neutrino Mass

Data: 
quarta-feira, 21 Novembro, 2018 - 11:00
Palestrante: 
Arthur Loureiro
Resumo: 

Since the late 90's we have known that neutrinos oscillate between their three leptonian flavours, which lead to the 2015 Nobel Prize conclusion that these particles are massive. However, particle physics experiments can only tell us about the mass difference between some neutrino species and, consequently, their minimum mass. The neutrino mass hierarchy and the maximum value for the sum of their masses are still unknown. Cosmology, on the other hand, is sensitive to different aspects of neutrino physics since the number of massive neutrino species and the total sum of neutrino masses influence the evolution and formation of structure in the Universe. In this talk, I will present how a spherical harmonic analysis of the Baryon Oscillation Spectroscopic Survey (BOSS) large-scale structure galaxy sample can help set constraints on the sum of neutrino masses, their mass hierarchy and the mass of the lightest neutrino family. When combining the BOSS sample with Cosmic Microwave Background data from the Planck Satellite, Big Bang Nucleosynthesis constraints, and the latest SNe Type Ia data from the Pantheon compilation, we are able to obtain reliable neutrino mass constraints using physically motivated prior models.

 

Páginas

Desenvolvido por IFUSP