Exploring the $f_{7/2}p_{1/2}$ shell Using the Magnetic Moments of the Radioactive ${}^{48}_{24}$ Cr Nucleus

D. A. Torres,* F. Cristancho, S. Veloza, F. Moreno, W. Rodriguez, and E. Fajardo[†] Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia.

> J.R.B. Oliveira[‡] and N.H. Medina, R.V. Ribas, V. Zaggatto Instituto de Física da Universidade de São Paulo

Abstract

In this proposal the study of the magnetic moments of the excited states of the radioactive ${}^{48}_{24}$ Cr nucleus (Z = N), $T_{1/2} = 21.56$ h, using the Transient Field technique and the fusion-evaporation reaction 24 Mg+ 27 Al at a beam energy of 70 MeV, with the Pelletron accelerator at São Paulo University is presented. The results could confirm the nucleus 48 Cr as one of the best examples of a perfect quantum rotor.

^{*}Spokesperson; Electronic address: datorresg@unal.edu.co

[†]Also at: Centro Internacional de Física, Bogotá, Colombia.

[‡]Contact person at USP

Introduction and Justification

The systematic experimental and theoretical study of the $f_{7/2}p_{1/2}$ shell has given us a deep understanding of the evolution of the microscopic behavior of nuclei from collective to single particle. By $f_{7/2}$ -shell one denotes those nuclei with proton numbers between the magic numbers 20 and 28; the extremes of the shell is characterized by single-particle effects, but moving to the middle of the region large collective effects are dominant. The study of N = Z nuclei allows the calibration of nuclear models to include effects such as proton-neutron pairing, and to predict the behavior of heavier N = Z nuclei [8].

The ⁴⁸Cr isotope, with its position right at the middle of the $f_{7/2}$ shell, and its four valence protons and four valence neutrons, is considered one of the best examples of a good rotor [6]. Low spin states have been theoretically investigated using several approaches such as large scale shell model calculations [7] with realistic interactions, as for example the GXPF1 [9], molecular models using the ⁴⁰Ca+ α + α configuration[4], the interacting boson model with isospin (IBM-3) [1], and the Cranked Nilsson-Strutinsky model [5].

Model-independent magnetic moment measurements provide one of the most outstanding tools to discriminate between nuclear models. For the case of the N = Z ⁴⁸Cr nucleus, while an extensive experimental work has been performed to obtain B(E2)'s, there is a lack of experimental information on g factors. In the single-j shell model a value of $g = \frac{g_{j\pi}+g_{j\nu}}{2} = 0.55$ in the $f_{7/2}$ -shell is expected [10]. Large-Scale Shell-Model calculations, using the GXPF1 and the FPD6 interactions, have been performed putting special attention to predict B(E2)'s and g factors, these results are summarized in Fig. 1. The predicted gfactors are all consistent with the collective g = Z/A = 0.5 for ⁴⁸Cr, i.e., an average value of $\langle g \rangle \sim 0.5$ over the states of the yrast band can be expected, thus, producing a complete confirmation of the collective behavior of the nucleus.

Experimental details

The so-called Transient Field (TF) technique, for the measuring of nuclear Magnetic Moments, will be utilized in conjunction with a fusion-evaporation reaction to populate the yrast states of ⁴⁸Cr. The TF technique allows to measure magnetic moments of states with lifetimes of the order of picoseconds or less, making use of the spin-orbit interaction

Figure 1: Left: $B(E2;\downarrow)$ for the yrast states of ⁴⁸Cr, the experimental values were taken from Ref. [3]. Right: predicted g factors for the yrast states of ⁴⁸Cr using Large-Scale Shell-Model calculations for two realistic interactions, the GXPF1 and the FDP6 from Ref. [11]. No experimental g-factor values has been measured to date.

produced by fast moving ions in ferromagnetic environments [2]. The fusion-evaporation reaction ${}^{24}\text{Mg}+{}^{27}\text{Al}$ will be utilized at a beam energy of 70 MeV, the use of a symmetric system ensure a large recoil velocity for the ions, as requested for the TF technique. The accelerator Pelletron in conjunction with the *g*-factor Sao Paulo setup will be used. Pace calculations predict the p2n (${}^{48}\text{Cr}$) evaporation channel as one of the strongest channels with a cross section of 105.8 mb. The strongest channel, ${}^{48}_{23}\text{V}$, has a 4⁺ isomeric state of 16 days. The daughter nucleus, ${}^{48}\text{V}$ has no coincident γ -ray lines with ${}^{48}\text{Cr}$. A total of 6 days + 1 day of preparation is required.

- Falih H. Al-Khudair and Long Gui-Lu. Isospin and f -spin symmetry structure in low-lying levels of 48,50 cr isotopes. *Chinese Physics*, 13(8):1230, 2004.
- [2] N Benczer-Koller and G J Kumbartzki. Magnetic moments of short-lived excited nuclear states: measurements and challenges. *Journal of Physics G: Nuclear and Particle Physics*, 34(9):R321, 2007.
- [3] F. Brandolini, S.M. Lenzi, D.R. Napoli, R.V. Ribas, H. Somacal, C.A. Ur, D. Bazzacco, J.A.

Cameron, G. de Angelis, M. De Poli, C. Fahlander, A. Gadea, S. Lunardi, G. MartÂnez-Pinedo, N.H. Medina, C. Rossi Alvarez, J. Sanchez-Solano, and C.E. Svensson. Precise DSAM lifetime measurements in ⁴⁸cr and ⁵⁰cr as a test of large scale shell model calculations. *Nuclear Physics A*, 642(3-4):387–406, 1998.

- [4] P. Descouvemont. Microscopic study of alpha clustering in 12c, 24mg and 48cr. Nuclear Physics A, 709(1-4):275–286, 2002.
- [5] Andrius Juodagalvis, Ingemar Ragnarsson, and Sven Åberg. Cranked nilsson-strutinsky vs the spherical shell model: A comparative study of *pf*-shell nuclei. *Phys. Rev. C*, 73:044327, Apr 2006.
- [6] Alfredo Poves. Deformation and superdeformation: The shell model way. Nuclear Physics A, 731(0):339 - 346, 2004.
- [7] Y Tsunoda, T Otsuka, N Shimizu, M Honma, and Y Utsuno. Study of nuclei around z = 28 by large-scale shell model calculations. *Journal of Physics: Conference Series*, 445(1):012028, 2013.
- [8] C.A. Ur. The N = Z f_{7/2}-shell nuclei: Experimental highlights. The European Physical Journal A - Hadrons and Nuclei, 20(1):113–118, 2003.
- [9] J.P. Vary, O.V. Atramentov, B.R. Barrett, M. Hasan, A.C. Hayes, R. Lloyd, A.I. Mazur, P. Navratil, A.G. Negoita, A. Nogga, W.E. Ormand, S. Popescu, B. Shehadeh, A.M. Shirokov, J.R. Spence, I. Stetcu, S. Stoica, T.A. Weber, and S.A. Zaytsev. Ab initio no-core shell model –recent results and future prospects. *The European Physical Journal A - Hadrons and Nuclei*, 25(1):475–480, 2005.
- [10] S. Yeager, S. J. Q. Robinson, L. Zamick, and Y. Y. Sharon. Isoscalar g-factors of odd-odd n
 z nuclei. EPL (Europhysics Letters), 88(5):52001, 2009.
- [11] L. Zamick. personal communication, http://xxx.lanl.gov/pdf/1307.5735.pdf.