LABORATÓRIO ABERTO DE FÍSICA NUCLEAR

\mathbf{N}°

Proposta de Experimento

Período: 1 ano

Título: Excitação Coulombiana do 8Li

Responsável: Marlete Pereira Meira de Assunção

e-mail: massuncao@unifesp.br e marlete.assuncao@gmail.com

Participantes: Marlete Assunção (UNIFESP), Tatiane N. Britos (UNIFESP),

Colaboradores RIBRAS e Pierre Descouvement (ULB -

Bélgica)

Porta Voz: Marlete Pereira Meira de Assunção

e-mail: massuncao@unifesp.br e marlete.assuncao@gmail.com

Número de dias solicitados: 1 período de 6 dias

Datas preferidas: abril/2014

Datas realmente impossíveis: janeiro e fevereiro/2014

Canalização: 45B - RIBRAS

Feixe	Est. Carga	I _{mínima} (alvo)	$\mathbf{V}_{ ext{min}}$	$\mathbf{V}_{ ext{max}}$	Pulsado?
⁷ Li (primário)	3+	300nA	6.93MV	8.00MV	

Alvos: (9Be para produção do 8Li), 208Pb

Pastilhas: 7Li

Características de Feixe Pulsado: -

Continuação da Experiência já Aprovada N°: E-88

Outras informações: este experimento obteve 12 dias no pac/2012, porém houve problemas durante o experimento totalizando 5 dias de medida. Uma nova tentativa não foi feita, pois dependia da compra de ²⁰⁸Pb para a produção do alvo.

Excitação Coulombiana do 8Li

Marlete Pereira Meira de Assunção*, Tatiane Nassar Britos*, colaboradores RIBRAS⁺ e Pierre Descouvemont[&]

*Universidade Federal de São Paulo – UNIFESP – campus Diadema

⁺Instituto de Física da Universidade de São Paulo

[&]Universitè Libre de Bruxelles –Bélgica

I. Resumo

Esta proposta trata-se da continuidade do experimento E-88 realizado em junho/2011. No período do experimento algumas dificuldades em relação à espessura do alvo de ²⁰⁸Pb nos levaram a optar pelo alvo de ¹⁹⁷Au. Em fevereiro/2012 foi realizada uma nova tentativa com o alvo de 208Pb (cerca de 5 dias de máquina), porém problemas eletrônicos impediram a continuidade do período. Deste modo, o planejamento proposto é acumular mais estatística em ângulos traseiros empregando o alvo de ²⁰⁸Pb. O feixe radioativo de ⁸Li será produzido no sistema RIBRAS que utiliza o feixe primário do Acelerador PELLETRON/LINAC. O objetivo do experimento é medir a transição eletromagnética $B(E2, 2^+ \rightarrow 1^+)$ do ⁸Li através das medidas de espalhamento elástico e inelástico na energia de E_{lab}(⁸Li)=25.8MeV, próximas da barreira Coulombiana. O interesse desta medida justifica-se pela discrepância (de aproximadamente uma ordem de grandeza) entre os valores experimentais e teóricos. A confirmação do valor experimental de B(E2) causará impacto nos modelos teóricos que vêm descrevendo com sucesso a Excitação Coulombiana para núcleos leves. Esse experimento envolve os integrantes da colaboração RIBRAS e também o Prof. Dr. Pierre Descouvemont, pesquisador do Laboratoire Physique Nucléaire Théorique et Physique Mathématique – Université Libre de Bruxelles (ULB) Essa medida é uma continuidade do projeto de Mestrado da estudante Tatiane N. Britos matriculada no programa de Pós-Graduação da UNIFESP.

Palavras-chave: excitação coulombiana, feixes radioativos, espalhamento elástico do ⁸Li, espalhamento inelástico do ⁸Li.

II. Introdução e Justificativa

Recentemente, o método de Excitação Coulombiana (COULEX) vem sendo empregado para determinar os valores da transição eletromagnética para núcleos radioativos [1,2]. Por outro lado, os feixes radioativos podem ser utilizados para elucidar problemas de estrutura nuclear e modelos nucleares. Neste trabalho, o sistema RIBRAS (Radioactive Ion Beams in Brazil) [3] produzirá o feixe radioativo de 8 Li para extrair a medida B(E2) na investigação de modelos nucleares.

O núcleo de ⁸Li ($T_{1/2}$ =838ms) possui o estado fundamental com spin J^{π} =2⁺ e primeiro estado excitado com spin J^{π} =1⁺ (0,980MeV). A medida de B(E2) dará informações sobre a estrutura nuclear deste núcleo. Os valores experimentais da literatura [4-7] apresentam discrepâncias com a teoria que indicam a necessidade de investigações mais criteriosas dessa transição. Desta forma, a motivação para o experimento provém do valor de $B(E2, 2^+ \rightarrow 1^+)$ medido apresentar-se cerca de 10 vezes maior que aquele previsto por modelos teóricos [7,8].

III.Detalhes Técnicos do Experimento

A medida da Excitação Coulombiana do ⁸Li será realizada empregando o sistema RIBRAS [3] instalado na canalização 45B do Acelerador Pelletron. Este sistema produzirá o feixe radioativo de ⁸Li a partir da reação de produção ⁹Be(⁷Li, ⁸Li) ⁸Be_{gs} com uma energia de ~25,8 MeV na metade do alvo. A ideia é medir no intervalo angular de 30-70 graus empregando um alvo de ²⁰⁸Pb com uma espessura de 2-5 mg/cm². A principal vantagem do alvo de ²⁰⁸Pb reside no fato que seu primeiro estado excitado possui uma energia de 2,6 MeV. A preparação dos alvos será feita no Laboratório de Alvos do Acelerador Pelletron/Linac e suas espessuras serão determinadas com o auxílio de uma fonte alfa de baixa intensidade.

A montagem experimental constará de conjuntos de telescópios ΔE -E com detectores de barreira de superfície de silício de 20 e 1000 microns, respectivamente. Os detectores serão posicionados entre os dois solenoides privilegiando o limite dos ângulos traseiros (sem a que o alvo seja rotacionado). A condição fundamental para medir o B(E2) diz respeito à presença somente da contribuição coulombiana. Neste sentido, o sistema $^8\text{Li}+^{208}\text{Pb}$ ($V_{BC}^{cm}=37,2\,\text{MeV}$) medidos em energias próximos da barreira Coulombiana atendem essa condição perfeitamente. As medidas serão realizadas preferencialmente em ângulos traseiros (acima de $\theta_{lab}=50^\circ$), visando à identificação dos picos correspondentes ao $^8\text{Li}_{gs}$ e $^8\text{Li}^*$. Esses ângulos favorecem o comportamento do B(E2) aliado ao fato da contribuição inelástica aumentar em relação à elástica. A estimativa de 10 dias um único período de medida se deve a baixa estatística nesses ângulos traseiros. No último período, a taxa de produção de ^8Li foi de $\sim 7,0~10^4$ pps para uma corrente entorno de 300nA no copo de Faraday no. 3 do Acelerador Pelletron ($V_T=6,93\,\text{MV}$) [4].

Um problema a ser contornado durante a execução do experimento diz respeito aos contaminantes de 8 Li provenientes do feixe primário de 7 Li. Neste sentido, a utilização de bloqueadores do tipo *lollipops* e de degradadores na linha do feixe deverá diminuir estas contribuições. Adotaremos o mesmo procedimento do último período que consistiu na escolha de uma corrente do solenoide de tal modo que houve a eliminação da contribuição de 8 Li * proveniente do feixe primário. Outras impurezas podem estar presentes durante a medida. Espera-se, entretanto, que grande parte delas possa ser reduzida com a utilização do solenóide supercondutor do sistema RIBRAS. A probabilidade de excitação, $P(\theta)$, em relação ao ângulo no centro de massa, será obtida empregando os programas usuais para análise de espalhamento. Recentemente, F. Delaunay and F. M. Nunes F. Nunes [10] observaram a possibilidade de considerar efeitos de canais acoplados nesse tipo de análise.

IV. Resultados Preliminares e Expectativas

O experimento E-88 necessita uma boa resolução em energia e também uma estratégia em relação ao fundo ("background") onde a quantidade de partículas de ⁸Li* na região esperada torna-se relevante. As primeiras medidas da Excitação Coulombiana do ⁸Li em alvo de ²⁰⁸Pb juntamente com uma medida de ¹⁹⁷Au foram realizadas em junho/2011. No caso das medidas com ¹⁹⁷Au esbarramos com o problema da quantificação da contribuição dos estados excitados desse alvo. No caso do sistema ⁸Li+²⁰⁸Pb, a medida não tem esse problema, pois o primeiro estado excitado do ²⁰⁸Pb é de 2614,2 MeV. Nessa medida o alvo de ¹⁹⁷Au servirá para normalizar a seção de choque. A Figura 1 mostra os espectro calibrados para o sistema ⁸Li+²⁰⁸Pb.

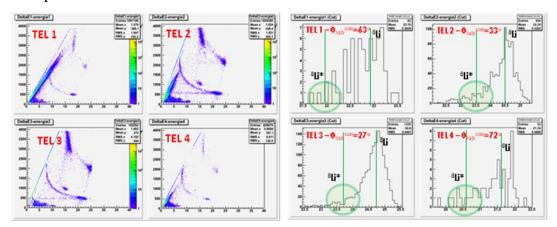


Figura 3 - Espectros ΔE-Etotal obtidos na primeira medida – sistema ⁸Li+²⁰⁸Pb.

O problema desse procedimento reside no comportamento da seção de choque no canal inelástico. Se o pico elástico nos ângulos traseiros possui uma boa definição é possível obter a posição do pico elástico e daí adotar o mesmo procedimento para quantificar as contagens no pico do ⁸Li*. As seções de choque calculadas nessas condições admitem erros grandes devido a incerteza na posição do ⁸Li e também em relação a estimativa do fundo. Para resolver esse problema, estamos tentando fazer um ajuste que considera a correlação entre os picos elásticos e inelásticos e também as calhas do "background".

V. Equipe Executora (Colaboradores)

A proposta de medir a Excitação Coulombiana do 8Li foi discutida com o Prof. Descouvement na ocasião da Escola de Física Nuclear "XIV Escola de Verão Jorge André Swieca de Física Nuclear Teórica" de 2009. Aspectos experimentais foram discutidos com a Profa. Dra. Alinka Lépine-Szily do Laboratório Pelletron/Linac. A preparação do experimento e execução da medida foi feita com a ajuda do grupo de "Núcleos Exóticos e Reações Diretas" do IFUSP. Deste modo, as etapas seguintes contam com a mesma equipe executora. A discussão dos resultados está sendo feita juntamente com o Prof. Dr. Pierre Descouvement, grupo da UNIFESP e os colaboradores do IFUSP.

VI. Cronograma

A continuidade do experimento E-88 se faz necessário para que possamos obter uma melhor estatística no pico inelástico do ⁸Li nos ângulos traseiros empregando o sistema ⁸Li+ ²⁰⁸Pb (proposta original). Isso confere a medida de melhor qualidade em termos de prováveis contaminantes. Neste sentido, a solicitação de 6 dias em um único período.

Referências

- [1] F. Delaunay and F. M. Nunes, J. Phys. G: Nucl. Part. Phys, 34, 2207-2213, 2007.
- [2] K. Alder and A. Winther, Eletromagnetic Excitation, North-Holland, New York, 1975.
- [3] R. Lichtenthäler et al. A. Lépine-Szily, V. Guimarães, G. F. Lima and M. S. Hussein, *Braz. J. Phys.*, 33, 2, 2003, *Nucl. Instrum. Meth. in Phys.*, *Res* A505,612-615, 2003.
- [4] F. Ajzenberg-Selove, *Nucl. Phys.*, A413,1,1984.
- [5] T. Glasmacher, Annu. Rev. Nucl. Part. Sci, 48, 1, 1998.
- [6] J. A. Brown et al., *Phys. Rev. Letts.*, 66, 19, 1991.
- [7] R. J. Smith et al., *Phys. Rev. C*, 43, 5, 1991.
- [8] P. Descouvemont and D. Baye, *Phys. Letts. B* 292, 235-238, 1992.