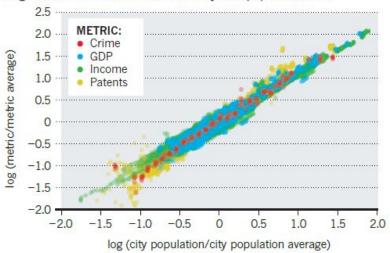
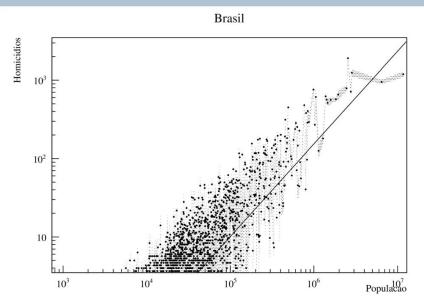
Desenvolvimentos em propriedades de escala em homicídios por arma de fogo

Davi Fiks - GRENAC

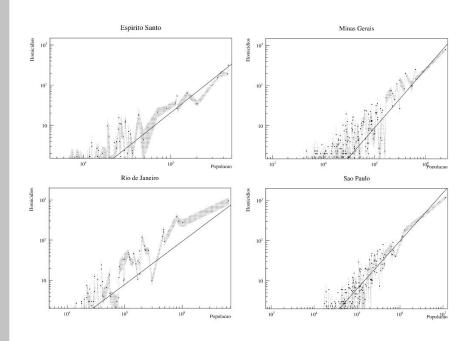

Temas:

- Revisão da lei de potência
- Revisão da comparação entre lei de potência e q-exponencial
- Revisão da estruturação do estudo dos dados de fluxo
- O estudo regional da Lei de potência a partir dos dados de fluxo
- Lei de potência: f(x)=Nx^beta

Lei de potência origem: Leis de potência para cidades


PREDICTABLE CITIES

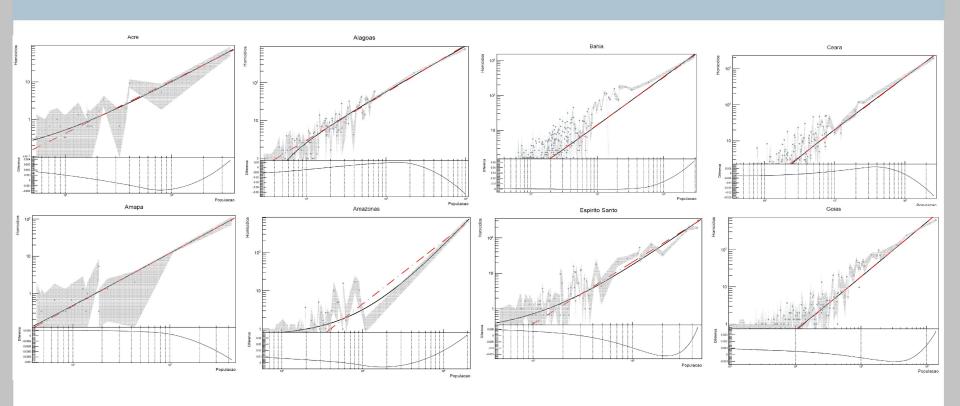
Data from 360 US metropolitan areas show that metrics such as wages and crime scale in the same way with population size.


Fonte: L.M.A. Bettencourt e G. B.West, A United Theory of Urban Living, Nature 467 (2010) 912.

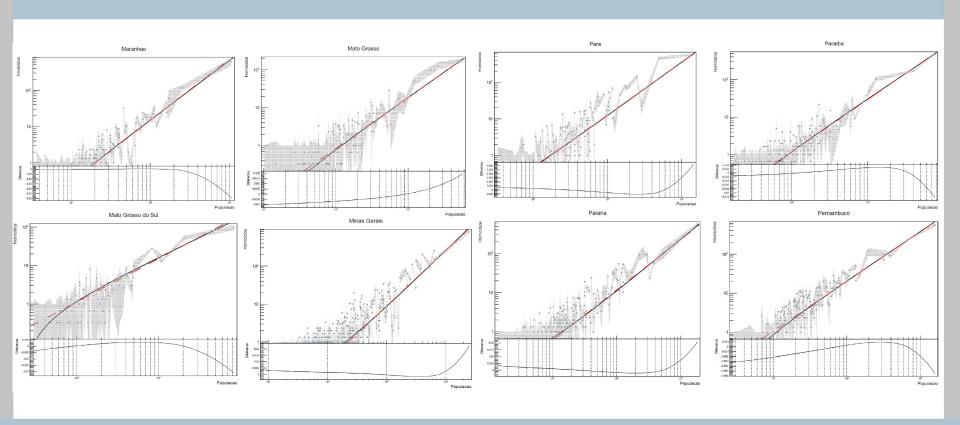
Revisão da lei de potência 1: Aplicação para o Brasil

Plot	N(E-05)	Beta	chi²(reduzido)
Brasil	1,233(61)	1,183(41)	4,6

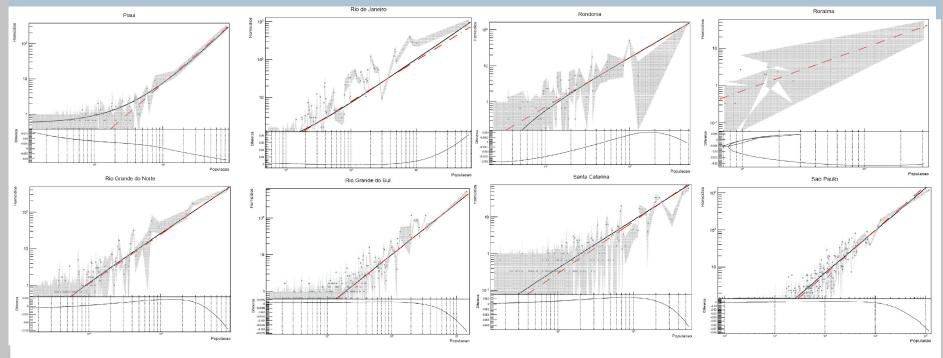
Revisão da lei de potência 2: Expansão para os estados.

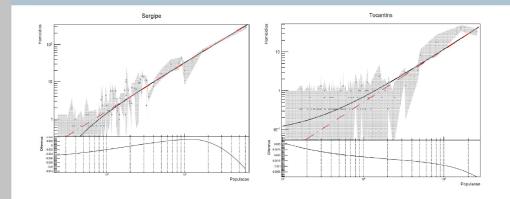


Estado	N(E-6)	Beta	Chi²(reduzido)
Espírito Santo	0,044(25)	1,734(44)	3,3
Minas Gerais	0,431(98)	1,462(19)	2,1
Rio de Janeiro	34(21)	1,072(53)	4,7
São Paulo	6,63(82)	1,1948(96)	3,5


Revisão da lei de potência 3 - Considerações

- Foi possível aplicar a Lei de potência para quase todos os estados
- O parâmetro Beta divergiu do esperado em boa parte dos estados
- Seguiu-se para uma comparação da Lei de potência e da q-exponencial
- q-exponencial: $f(x) = (1+A(1-q))^1/(1-q)$ (continuo preto)
- Lei de potência: f(x)=Nx^beta (traçado vermelho)


Revisão da comparação entre lei de potência e q-exponencial 1 - Resultados


Revisão da comparação entre lei de potência e q-exponencial 2 - Resultados

Revisão da comparação entre lei de potência e q-exponencial 3 - Resultados

Revisão da comparação entre lei de potência e q-exponencial 4 - Resultados e Resultados parâmetros

Região e	N/E C)	A/E 5)	Data	a/E 4)	Chi2(Redu
Função	N(E-6)	A(E-5)	Beta	q(E-1)	zido)
Acre (Lei					
de	0.0(40)		4.40(45)		0.00
potência)	0,9(16)	-	1,40(15)	-	0,86
Acre(q-exp					
onencial)	-	6,6(25)	-	3,4(15)	0,84
Alagoas					
(Lei de					
potência)	29,0(46)	-	1,254(13)	-	2,8
Alagoas(q-					
exponencia					
1)	-	36,2(14)	-	1,63(12)	2,6
Amapá(Lei					
de					
potência)	0,9(16)	-	1,42(14)	-	0,30
Amapá					
(q-exponen					
cial)	-	8,2(15)	-	2,94(94)	0,30
Amazonas(
Lei de					
potência)	0,028(29)	-	1,639(79)	-	1,5
Amazonas(
q-exponenc					
ial)	-	1,90(55)	-	5,61(66)	1,4

Revisão da comparação entre lei de potência e q-exponencial 5 - Resultados parâmetros

Região e					Chi2(Reduzi
Função	N(E-6)	A(E-5)	Beta	q(E-1)	do)
Bahia(Lei de Potência)	2,33(63)	-	1,357(24)	-	7,8
Bahia(q-exp onencial)	-	9,22(49)	-	2,78(16)	7,8
Brasil(Lei de potência)	1,233(61)	-	1,183(41)	-	4,6
Brasil(q-exp onencial)	-	8,764(94)	-	1,403(36)	4,6
Ceará(Lei de potência)	0,98(22)	-	1,461(19)	-	3,7
Ceará (q-exponenci al)	-	12,27(56)	-	3,01(12)	3,7
Espírito Santo(Lei de potência)	0,044(25)	-	1,734(44)	-	3,3
Espírito Santo(q-exp onencial)	-	7,49(72)	-	4,92(25)	3,2

Goiás(Lei de Potência)	0,93(24)	-	1,461(21)	-	1,3
Goiás(q-exp onencial)	-	10,64(52)	-	3,20(12)	1,3
Maranhão(L ei de					
potência)	0,058(33)	-	1,681(51)	-	1,8
Maranhão(q-					
exponencial)	-	8,70(53)	-	3,87(28)	1,8
Mato Crasso(Loi					
Grosso(Lei de potência)	3,9(19)	-	1,332(43)	-	0,99
Mato					
Grosso(q-ex ponencial)	-	11,7(11)	-	2,49(35)	0,99
Mato Grosso do Sul(Lei					
de potência)	36(10)	-	1,124(26)	-	4,7
Mato Grosso					
do Sul/a ovnon					
Sul(q-expon encial)	-	15,5(12)	-	0,28(33)	4,6

Revisão da comparação entre lei de potência e q-exponencial 6 - Resultados parâmetros

Região e Função	N(E-6)	A(E-5)	Beta	q(E-1)	Chi2(Reduzi do)
Minas Gerais(Lei de potência)	0,431(98)	-	1,462(19)	-	2,1
Minas Gerais(q-exp onencial)	-	6,05(18)	-	3,331(95)	2,1
Paraíba(Lei de potência)	3,27(59)	-	1,390(15)	-	1,7
Paraíba(q-ex ponencial)	-	16,76(66)	-	2,65(11)	1,7
Para(Lei de potência)	0,76(21)	-	1,443(23)	-	5,3
Para(q-expo nencial)	-	8,06(41)	-	3,15(15)	5,3
Paraná(Lei de potência)	4,2(11)	-	1,288(20)	-	1,8
Paraná (q-exponenci al)	-	7,81(42)	-	2,52(16)	1,8

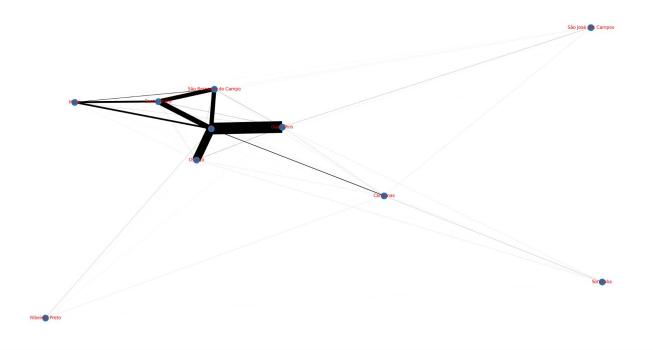
Pernambuco(L ei de potência)	8,9(14)	-	1,271(13)	-	2,7
Pernambuco(q -exponencial)	-	14,04(58)	-	2,04(11)	2,7
Piauí(Lei de potência)	0,026(28)	-	1,689(89)	-	0,18
Piauí (q-exponencial	-	4,19(57)	-	4,65(57)	0,56
Rio Grande do Norte(Lei de potência)	4,3(14)	-	1,353(30)	-	1,0
Rio Grande do Norte(q-expon encial)	-	15,9(14)	-	2,37(26)	1,0
Rio Grande do Sul(Lei de potência)	1,00(30)	-	1,399(24)	-	1,4
Rio Grande do Sul(q-exponen cial)	-	7,26(32)	-	2,82(16)	1,4

Revisão da comparação entre lei de potência e q-exponencial 7 - Resultados parâmetros

Região e Função	N(E-6)	A(E-5)	Beta	q(E-1)	Chi2(Reduzi do)
Rio de Janeiro(Lei de potência)	34(21)	-	1,072(53)	-	4,7
Rio de Janeiro(q-ex ponencial)	-	6,01(71)	-	1,46(50)	4,7
Rondônia(Le i de potência)	2,6(1,8)	-	1,361(57)	-	1.3
Rondônia(q- exponencial)	-	11,3(19)	-	2,52(53)	1,3
Roraima(Lei de potência)	16(32)	-	1,15(18)	-	0,69
Roraima(q-e xponencial)	-	-	-	-	-
Santa Catarina(Lei de potência)	0,68(29)	-	1,409(35)	-	1,3
Santa Catarina(q-e xponencial)	-	6,57(40)	-	2,32(27)	1,3

Sergipe(Lei de potência)	11,1(35)	-	1,291(27)	-	2,2
Sergipe(q-exp onencial)	-	20,7(15)	-	1,99(23)	2,2
São Paulo(Lei de potência)	6,63(82)	-	1,1948(96)	-	3,5
São Paulo(q-expon encial)	-	6,25(16)	-	1,23(92)	3,6
Tocantins(Lei de potência)	1,9(21)	-	1,355(98)	-	0,23
Tocantins(q-ex ponencial)	-	8,2(10)	-	2,56(66)	0,23

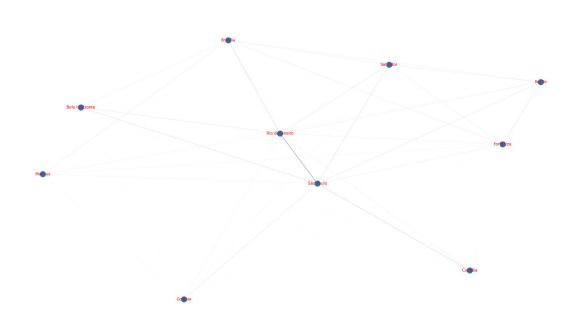
Revisão da comparação entre lei de potência e q-exponencial 8 - Resumo

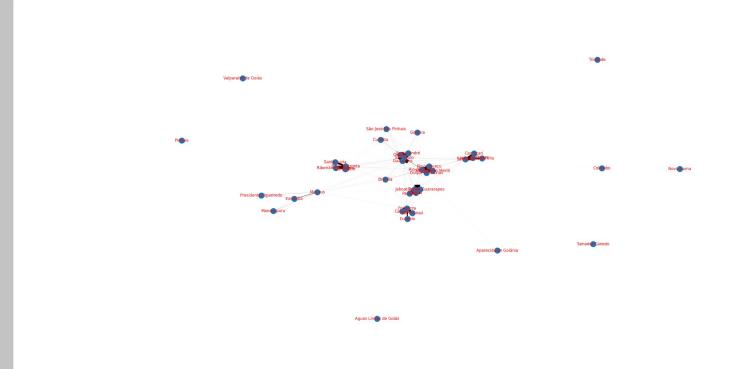

- Resultados não mostraram uma diferença significativa em dados entre a lei de potência e q-exponencial na região de aplicação estudada
- A maior diferença está em populações menores, onde a q-exponencial tem um comportamento assintótico diferentemente da lei de potência

Revisão da estruturação do estudo dos dados de fluxo 1 - Desenvolvimento do programa de leitura de dados

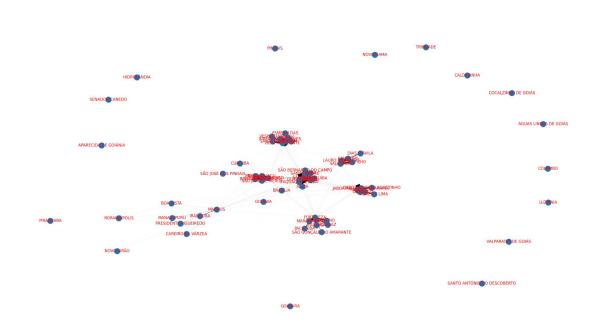
- O programa foi desenvolvido da forma em que pode-se selecionar um conjunto de cidades e formar uma rede com elas
- Em uma segunda parte o programa vasculha as idas e vindas entre as cidades e faz uma média delas
- Essas médias são utilizadas para determinar a largura das linhas na rede
- Estes resultados são usados para realizar uma figura da rede

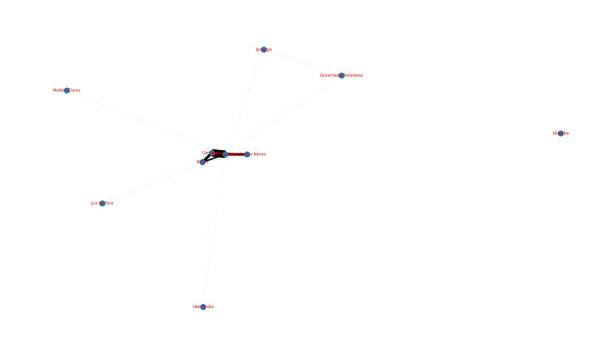
Revisão da estruturação do estudo dos dados de fluxo 2 - Exemplo de aplicação

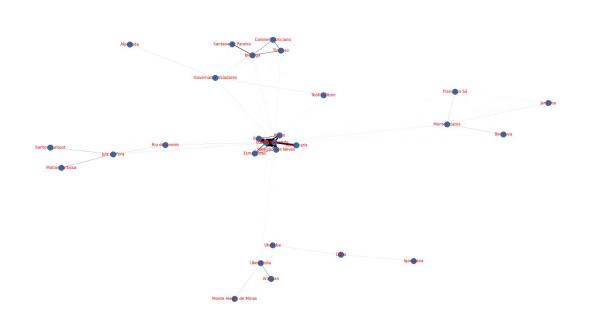

Gráfico de rede com as 10 maiores cidades do estado de São Paulo

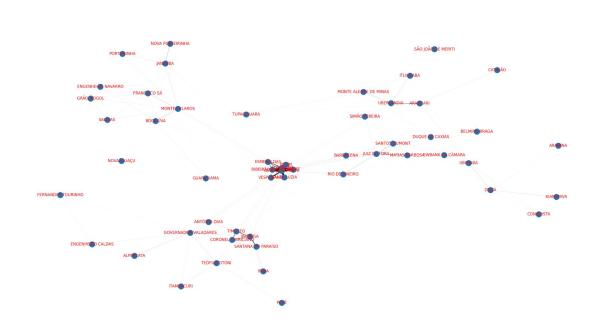

Revisão da estruturação do estudo dos dados de fluxo 3 - Determinação de níveis

- Foi desenvolvido um programa para acrescentar cidades a rede criando níveis baseado nas interações de fluxo entre as cidades
- As 3 cidades com maior saída das cidades já presentes na rede são incluídas em cada nível, se não já estiverem presentes na rede
- O programa foi utilizado para determinar 3 níveis de todos os estados e no Brasil


Revisão da estruturação do estudo dos dados de fluxo 4 - Mapa do Brasil nível 1


Revisão da estruturação do estudo dos dados de fluxo 5 - Mapa do Brasil nível 2


Revisão da estruturação do estudo dos dados de fluxo 6 - Mapa do Brasil nível 3


Revisão da estruturação do estudo dos dados de fluxo 7 - Mapa de Minas nível 1

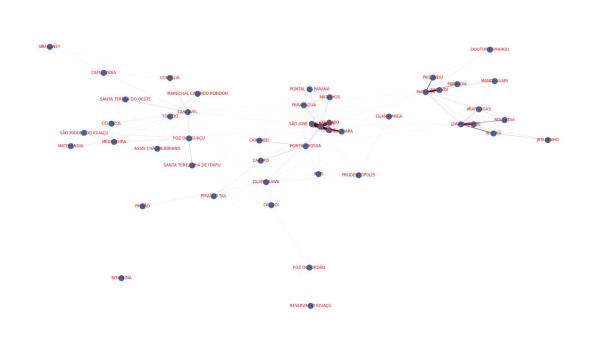
Revisão da estruturação do estudo dos dados de fluxo 8 - Mapa de Minas nível 2

Revisão da estruturação do estudo dos dados de fluxo 9 - Mapa de Minas nível 3

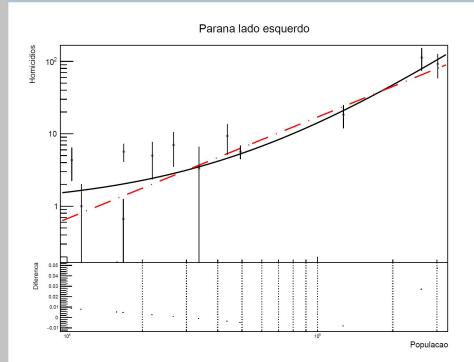
Revisão da estruturação do estudo dos dados de fluxo 10 - Resumo

Foi possível construir mapas de rede

Esses mapas apresentaram clusters de cidades

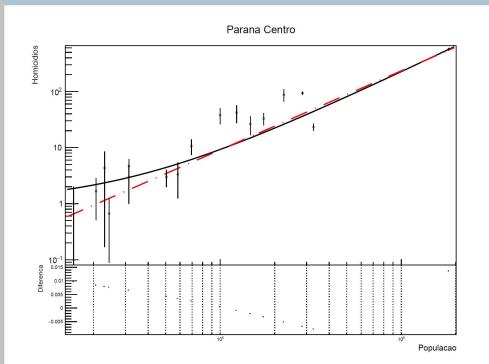

Alguns apresentaram separações regionais

O estudo regional da Lei de potência a partir dos dados de fluxo 1 - Método

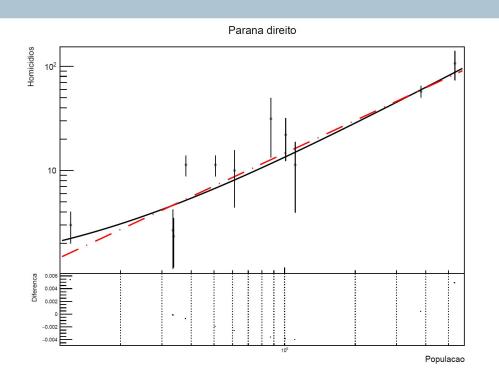

 Os dados de fluxo então foram utilizados para estudar a lei de potência de forma regional

Os primeiros estados estudados foram o Paraná e o Espírito Santo

O estudo regional da Lei de potência a partir dos dados de fluxo 2 - Mapa do Paraná nível 3

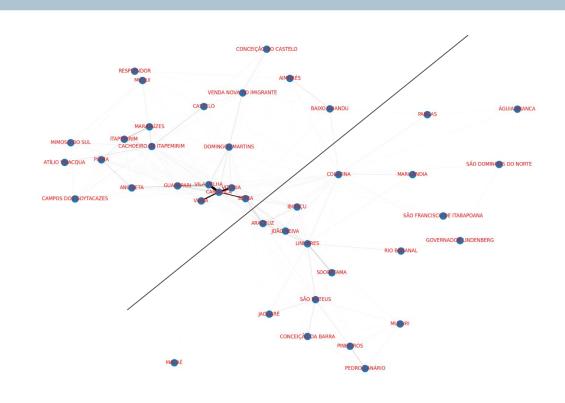


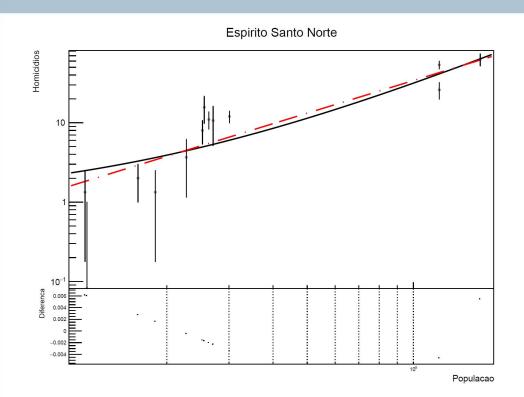
O estudo regional da Lei de potência a partir dos dados de fluxo 3 - Paraná lado esquerdo


Região e Função	N(E-6)	A(E-5)	Beta	q(E-1)	Chi2(Re duzido)
Paraná- CE(Lei de potência	1,6(35)	-	1,40(19)	-	1,9
Paraná- CE(q-ex ponenci al)	-	4,9(10)	-	5,71(92)	1,8

O estudo regional da Lei de potência a partir dos dados de fluxo 4 - Paraná parte central

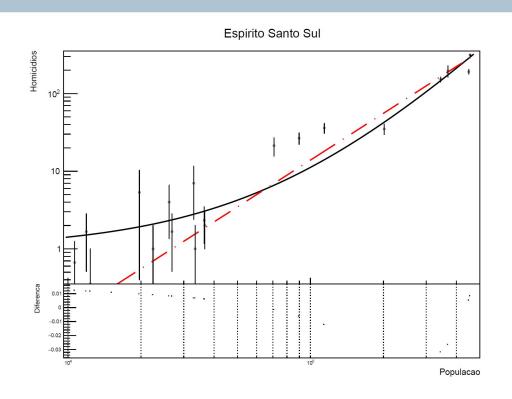
Região e Função	N(E-6)	A(E-5)	Beta	q(E-1)	Chi2(Re duzido)
Paraná- CC(Lei de					
potência			1,411(4		
)	0,81(47)	-	3)	-	14,1
Paraná-					
CC(q-ex					
ponencia					
l)	-	4,97(43)	-	3,55(21)	14,5


O estudo regional da Lei de potência a partir dos dados de fluxo 5 - Paraná lado direito


Região e Função	N(E-6)	A(E-5)	Beta	q(E-1)	Chi2(Red uzido)
Paraná- CD(Lei de potência)	8,6(86)	-	1,05(83)	ı	1,1
Paraná- CD(q-ex ponencia I)	-	9,3(23)	-	1,61(93)	1,1

O estudo regional da Lei de potência a partir dos dados de fluxo 6 - Mapa de fluxo Espírito Santo nível 3

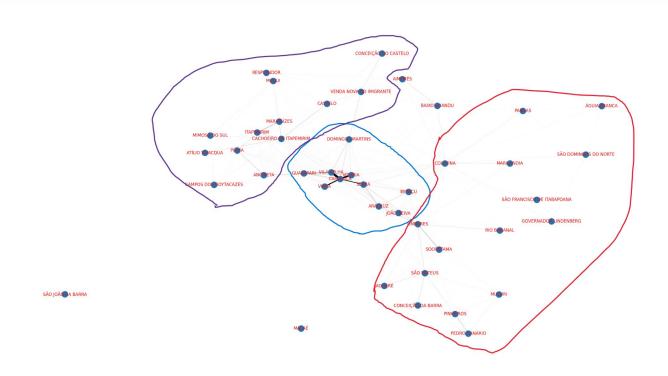
SÃO JOÃO A BARRA



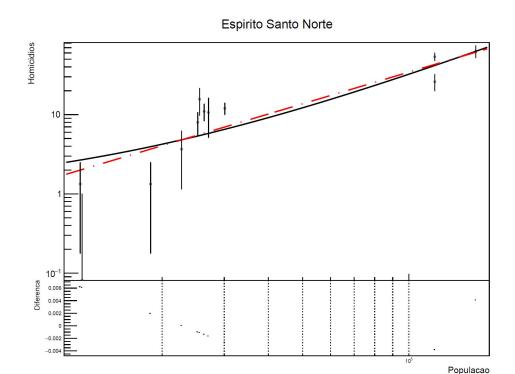
O estudo regional da Lei de potência a partir dos dados de fluxo 7 - Espírito Santo norte

Região e Função	N(E-6)	A(E-5)	Beta	q(E-1)	Chi2(Red uzido)
Espírito Santo-N(Lei de potência)	5,1(55)	-	1,366(9 6)	-	3,2
Espírito Santo-N(q-expone ncial)	-	10,1(19)	-	4,62(80)	3,9

O estudo regional da Lei de potência a partir dos dados de fluxo 8 - Espírito Santo sul

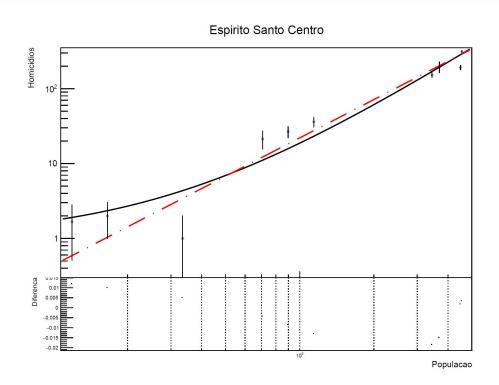


Região e Função	N(E-9)	A(E-5)	Beta	q(E-1)	Chi2(Red uzido)
Espírito Santo-S(Lei de potência)			2,002(9 7)	-	6,2
Espírito Santo-S(q-expone ncial)	-	3,70(37)	-	6,68(28)	6,1

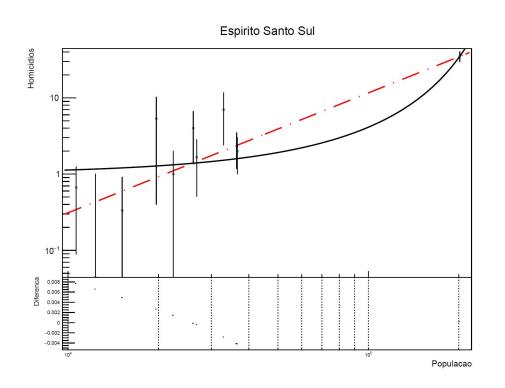

O estudo regional da Lei de potência a partir dos dados de fluxo 9 - Considerações

- Era esperado que o Beta fosse perto de 1,15 quando as separações regionais fossem feitas
- A análise então foi expandida para poder compreender melhor os resultados
- Espírito Santo foi redividido em nova análise

O estudo regional da Lei de potência a partir dos dados de fluxo 10 - Espírito Santo nível 3 redivisão



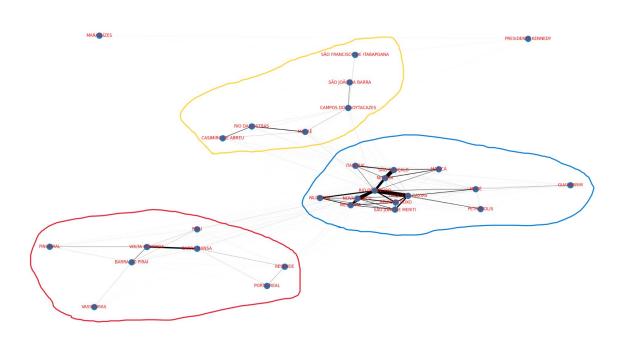
O estudo regional da Lei de potência a partir dos dados de fluxo 11 - Espírito Santo norte 2


N(E-6)	Beta	Chi²(norm)
7,9(90)	1,33(10)	3,5

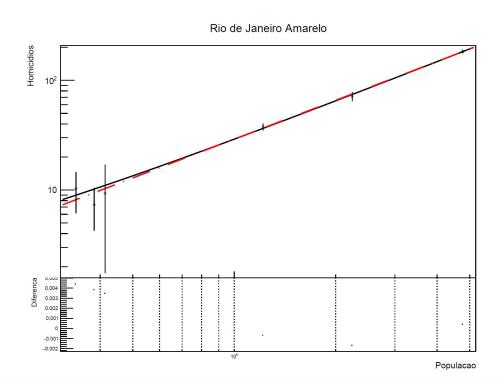
O estudo regional da Lei de potência a partir dos dados de fluxo 12 - Espírito Santo Centro

N(E-8)	Beta	Chi²(norm)
6,9(62)	1,699(68)	9,9

O estudo regional da Lei de potência a partir dos dados de fluxo 13 - Espírito Santo sul 2

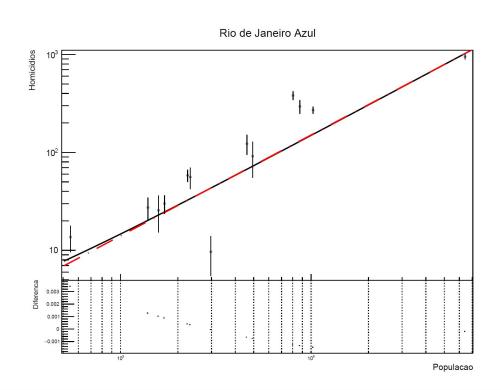


N(E-7)	Beta	Chi²(norm)
1,5(31)	1,57(17)	0,43

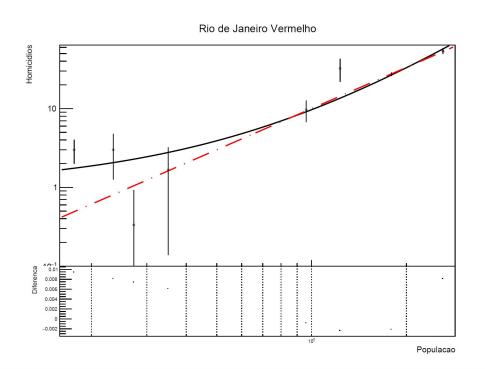

O estado como um todo:

Estado	N(E-6)	Beta	Chi² (reduzid o)
Espírito Santo	0,044(25	1,734(4 4)	3,3

O estudo regional da Lei de potência a partir dos dados de fluxo 14 - Mapa de fluxo Rio de Janeiro nível 3



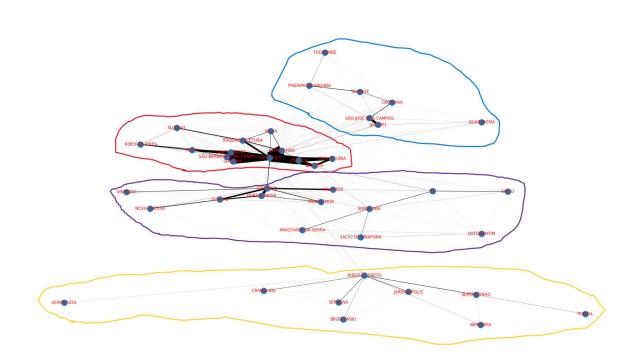
O estudo regional da Lei de potência a partir dos dados de fluxo 14 - Rio de Janeiro cluster amarelo


N(E-5)	Beta	Chi ² (norm)
3,8(25)	1,175(50)	0,31

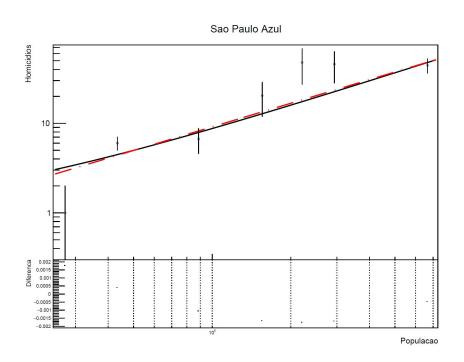
O estudo regional da Lei de potência a partir dos dados de fluxo 15 - Rio de Janeiro cluster azul

N(E-5)	Beta	Chi²(norm)
9,9(42)	1,029(29)	16,5

O estudo regional da Lei de potência a partir dos dados de fluxo 16 - Rio de Janeiro cluster vermelho

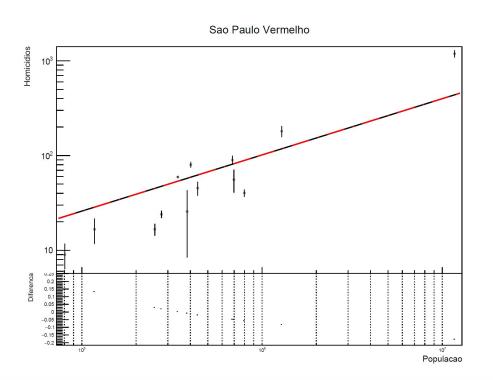


N(E-8)	Beta	Chi²(norm)
2,08(20)	1,73(78)	2,1

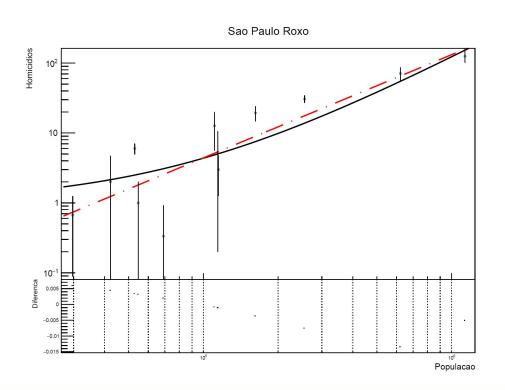

O estado como um todo:

Estado	N(E-6)	Beta	Chi² (reduzido)
Rio de Janeiro	34(21)	1,072(53)	4,7

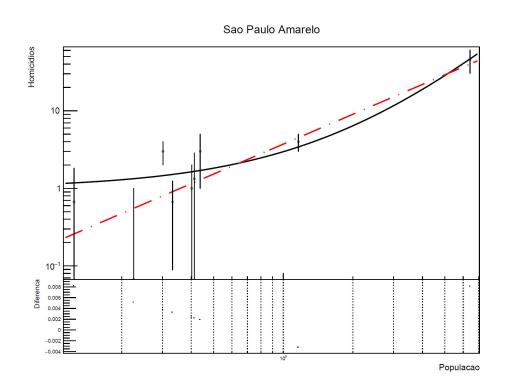
O estudo regional da Lei de potência a partir dos dados de fluxo 17 - Mapa de fluxo São Paulo nível 3



O estudo regional da Lei de potência a partir dos dados de fluxo 18 - São Paulo cluster azul


N(E-4)	Beta	Chi²(norm)
3,8(3,9)	0,876(85)	2,4

O estudo regional da Lei de potência a partir dos dados de fluxo 19 - São Paulo cluster vermelho


N(E-2)	Beta	Chi²(norm)
2,7(12)	0,594(33)	67,7

O estudo regional da Lei de potência a partir dos dados de fluxo 20 - São Paulo cluster roxo

N(E-7)	Beta	Chi²(norm)
1,8(17)	1,476(75)	5,82

O estudo regional da Lei de potência a partir dos dados de fluxo 21 - São Paulo cluster amarelo

N(E-6)	Beta	Chi²(norm)
1,5(41)	1,28(23)	0,94

O estado como um todo:

Estado	N(E-6)	Beta	Chi² (reduzido)
São Paulo	6,63(82)	1,1948(96)	3,5

Discussões finais

- A subdivisão do Espírito Santo não contrasta com o resultado anterior
- As cidades de São Paulo e Rio de Janeiro podem estar influenciando nos gráficos
- A subdivisão do estado de São Paulo precisa ser repensada
- Não se tem uma explicação clara da divergência do valor de beta de 1,15