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Abstract

Scale-free networks constitute a fast-developing field that has already provided us with

important tools to understand natural and social phenomena. From biological systems to

environmental modifications, from quantum fields to high energy collisions, or from the num-

ber of contacts one person has, on average, to the flux of vehicles in the streets of urban

centres, all these complex, non-linear problems are better understood under the light of the

scale-free network’s properties. A few mechanisms have been found to explain the emer-

gence of scale invariance in complex networks, and here we discuss a mechanism based

on the way information is locally spread among agents in a scale-free network. We show

that the correct description of the information dynamics is given in terms of the q-exponential

function, with the power-law behaviour arising in the asymptotic limit. This result shows that

the best statistical approach to the information dynamics is given by Tsallis Statistics. We

discuss the main properties of the information spreading process in the network and analyse

the role and behaviour of some of the parameters as the number of agents increases. The

different mechanisms for optimization of the information spread are discussed.

1 Introduction

A large number of problems that are common to modern societies can be addressed in the

framework of complex networks. Accurate data and methods were made available by new

technologies that are used worldwide, providing for the first time the adequate conditions to

the development of scientific approaches to those problems. As a consequence, the last decades

witnessed the fast evolution of our knowledge on the behaviour and properties of complex net-

works [1, 2].

In this work, we describe and prove some of the most important characteristics of the flux

of information in a fractal network. Information, here, is considered in a broad sense, and can

refer to pieces of information locally transmitted, or to people or objects that move from one

node to another in the network. We say the information is locally transmitted because we con-

sider only those cases where the information is transmitted from one agent to a limited and

small number of agents in the same network. These characteristics are present in several of our

socioeconomic activities, and in natural systems. We discuss that the variables describing the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0257855 September 29, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Deppman A, Andrade-II EO (2021)

Emergency of Tsallis statistics in fractal networks.

PLoS ONE 16(9): e0257855. https://doi.org/

10.1371/journal.pone.0257855

Editor: Afnizanfaizal Abdullah, University of

Technology Malaysia: Universiti Teknologi

Malaysia, MALAYSIA

Received: June 2, 2021

Accepted: September 12, 2021

Published: September 29, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0257855

Copyright: © 2021 Deppman, Andrade-II. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: AD, grant 304244/2018-0, Conselho

Nacional de Desenvolvimento Cientı́fico e

Tecnológico, http://www.cnpq.br, did not play any

https://orcid.org/0000-0001-9179-6363
https://orcid.org/0000-0001-8470-3683
https://doi.org/10.1371/journal.pone.0257855
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257855&domain=pdf&date_stamp=2021-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257855&domain=pdf&date_stamp=2021-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257855&domain=pdf&date_stamp=2021-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257855&domain=pdf&date_stamp=2021-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257855&domain=pdf&date_stamp=2021-09-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257855&domain=pdf&date_stamp=2021-09-29
https://doi.org/10.1371/journal.pone.0257855
https://doi.org/10.1371/journal.pone.0257855
https://doi.org/10.1371/journal.pone.0257855
http://creativecommons.org/licenses/by/4.0/
http://www.cnpq.br


different quantities in the system must appear in a scale-free form. In particular, we show that

the time spent to share information among agents in the network is proportional to the

squared-root of the number of agents. We argue that the scaling symmetry is broken at some

point, and due to this symmetry break the information spreading follows a q-exponential func-

tion, and the statistical aspects of the network are hereby associated with the Tsallis Statistics

[3].

Scale-free networks are of particular interest [4, 5] since many aspects of physical, biological

and sociological systems [6–10] can be described to a good approximation by networks

belonging to this class [11]. Several mechanisms for the emergence of scaling symmetry in

complex networks have been identified [12] and comprehensive reviews on the subject can be

found in Refs [12, 13]. The self-similarity in complex networks are associated to the observa-

tion of the power-law behaviour of the investigated quantity distribution. Such distributions

are found in many places, as in biological systems [6, 14]; Internet structure [15].

In recent years, the ubiquity of scale-free networks in natural and social environments have

been questioned [16, 17], even in places where it was considered to be frequently found [14].

This happens because other heavy-tailed distributions, different from the simple power-law,

can also fit the data available. It is important to notice that, when referring to self-similarity in

the realms of complex network, one basically mean those that follow a power-law distribution

[18].

Scaling symmetry and a fine complex structure are the main features of fractals, so a fractal

network also presents scale-free distributions and self-similarity [19], with the fractal dimen-

sion being related to topological characteristics of the system [20]. The constraints for fractal

networks are stronger than for scale-free networks, with self-similarity, in the former systems,

involving all relevant aspects of the network [18]. Despite being strongly constrained, fractal

systems can be found in many places, as in high energy collisions in thermodynamics systems

[21], Environmental Science [22, 23] or in Yang-Mills fields theory [24, 25], in the branching

pattern of the circulatory system, in the metabolic rate of mammals [20]; in Epidemics [26–

29]; in socioeconomic aspects of urban life, as in the distribution of wages or traffic of vehicles

[30–32]. In this work, we address the fractal networks and the flux of information spreading

on such class of networks. In particular, we show that the correct distribution to describe the

information dynamics is the q-exponential behavior of the number of informed agents in the

network, while the power-law behaviour appears in the asymptotic limit.

Important advances in the statistical analysis of the scale-free networks have been made

[12, 33]. On the other hand, the statistical aspects of fractal systems are associated with the

Tsallis Statistics [3], as it was shown in Ref. [21]. The q-exponential is a heavy-tailed function

typical of the Tsallis statistics. The relation between information networks and Tsallis statistics

has been a field of increasing interest in recent years [34, 35]. It is interesting to note that a

fractal thermodynamics system, called thermofractal, presents some mathematical properties

that are very similar to those that will be found in the present study. Recently, it was shown

that the algebra of the group of transformation of thermofractals and the q-algebra [36] associ-

ated to Tsallis statistics, are isomorphic [37]. That conclusion can be applied to fractal net-

works as those studied in the present work. Remarkably, renormalization seems to be an

essential feature in thermofractals [21, 38], Yang-Mills fields [25] (see [39] for a review on the

subject) and in fractal networks [19]. The possibility of finding a common theoretical frame-

work joining fractal networks and Tsallis statistics is an interesting subject of research.

The work is organized as follows: in Section 1 we describe the structure of the scale-free net-

work, the scaling parameter and the break of the scaling symmetry; in Section 2 we describe

the information spreading dynamics over the scale-free network, obtain the q-exponential

behaviour for the spreading and show that any variable must follow a power-law distribution.

PLOS ONE Tsallis in fractal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0257855 September 29, 2021 2 / 19

role in the design, analysis, prepration or

submission of the work. AD, grant 2016/17612-7,

Fundação de Amparo à Pesquisa do Estado de São
Paulo, https://fapesp.br, did not play any role in the

design, analysis, prepration or submission of the

work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0257855
https://fapesp.br


We obtain the differential equations that describe the information spreading dynamics and

duscuss the different forms to increase the spreading efficiency. In Section 3 we discuss the

main results and the possibilities to apply this theory to different problems and in Section 4 we

present our conclusions.

2 Properties of the scale-free network

Fractal networks are represented by sets of nodes, connected among themselves. Each node in

the network is itself a fractal network, similar to the initial one when its parameters are appro-

priately scaled [18]. This hierarchical structure is a prominent characteristic of fractal net-

works, organizing the agents in an undetermined number of levels. It is always possible to find

a scaling parameter which allows describing any node at any level of the fractal structure by

the same mathematical expressions and in terms of scale-free variables.

The structure of the fractal network used in the present work is depicted in Fig 1, where

one individual, in red, has a piece of information that can be tranferred to other individuals in

the same group, or agent. The dynamics of the information spreading in a small group can be

scaled-up to larger groups using the renormalization properties of the fractal network [19].

These constraints on the network structure can be relaxed by the inclusion of probability

distributions to determine some of the network features, but the distributions must be scale-

free to preserve the scaling invariance. We will argue, in Section 4, that the results obtained

here are very general and apply even in the case the constraints used here are relaxed.

In the following, we give definitions and derive some properties of a fractal network.

Definition 1.1 The fractal network is a set of N nodes, also called agents, totally or partially
connected to the other nodes in the set. This network of N agents will be called main network.

Definition 1.2 A scale-free, or fractal, network is a totally connected network. Each node is a
fractal network similar to the main network, differing only by a scale parameter, forming an hier-
archical structure. In this particular network, each agent is always comprised by N agents in the
next level. For simplicity we will refer to the fractal network also by fnet.

Definition 1.3 If an agent B is a component of an agent A, we say B is an internal agent of A,
and that A is the parent agent of B.

Axiom 1.1 The agents of a fractal network are connected exclusively to the agents in the same
network and to their parent agents.

Axiom 1.2 All the properties of the agents are constrained to keep the similarity of the fractal
network.

Theorem 1.1 The fractal network has a natural scale, λ, associated with the total number of
agents in the fractal network.

Lemma 1.1.1 The fractal network presents a hierarchical structure.
Proof: From Definition 1.2 we observe that the fnet is composed of N agents interconnected,

and each one is itself a fnet, therefore each agent has its own internal structure. Due to Axiom

1.1, the internal structure of each internal agent is not connected to any other agent outside its

network. This property establishes a level structure in the fractal network ranked according to

the number of internal structures one needs to consider until a specific node is reached.

Definition 1.4 We say an agent is at a level l of the fractal structure if one needs to look into
the internal structure of l agents, starting from one of the agents in the main fractal network, in
order to find that agent. Agents at the mainfnetare at the level l = 1.

Corollary 1.1.1 The total number of agents at the level l is Nl.

Proof: Due to Definition 1.1 thefnethas N agents at its first level. Due to Definition 1.2 each

of those agents have N internal agents, so at the second level, one has N2. At each new level the

number of agents is multiplied by N, so at the level l the number of agents is Nl.
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Fig 1. Schematic view of the fractal network. The individual represented by a red circle seeds the spread of information in the close contact group, or

agent, represented by the smallest circle in which the individual is included. The spreading of information among larger groups, as indicated by letters

a and b, scales according to the renormalization property of the fractal network. The same applies to still larger groups, as A and B.

https://doi.org/10.1371/journal.pone.0257855.g001
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Definition 1.5 The quantities that characterize the agents are of two types: or they are con-
stant and are called parameters, or they are variables.

Corollary 1.1.2 Any variable, ν of thefnetmust appear in the form ν/Nl and this ratio have to
be scale invariant.

Proof: Due to Axiom 1.2, the variables must scale according to some quantity that character-

izes the agent size. The number of internal agents is a natural quantity to be used as a scaling

parameter.

Definition 1.6 The size of the agents of afnetcan be unequivocally set by defining a level L at
which the internal structure of the agents do not exist or can be disregarded in all relevant aspects
of the fnet. The agents at this level are called individuals, and we refer to this level as the individ-
ual level.

Definition 1.7 The scaling parameter, λl, that unequivocally determines the size of all agents
in afnetcan be defined as λl = NL−l, where L is the level of the individuals.

Lemma 1.1.2 At the individual level the scaling symmetry is broken.

Proof: This result follows immediately from Definition 1.6, since the individual agents do

not have an internal structure.

Corollary 1.1.3 The number of internal individuals in an agent at the level l − 1 is given by
sll ¼ Nll.

Proof: It follows immediately from Definition 1.7.

Corollary 1.1.4 Since the scaling symmetry is valid at any level, aside from the individual
level, the wholefnetcan be seen as a single agent. Attributing the level l = 0 to thefnetallows one to
represent the wholefnetas a single agent with NL internal individuals.

Proof: It follows from Definition 1.7 and from Corollary 1.1.3.

This last result shows that there is a natural scale parameter, λ, that can be used to character-

ize the fnet, proving the Theorem 1.1.

3 Flux of information in a fractal network

In this section, we define what is meant by information and how it flows in the fractal network.

The information is spread in the network from one initial agent that possess that piece of infor-

mation, which is called an informed agent and transmits it or to the agents that are connected

to it, or to its internal agents. When the piece of information reaches an uninformed agent it

has a probability τ to received by that agent, and when it happens the uninformed agent

becomes an informed one.

Information can be transmitted only by informed agents, and only uninformed agents can

receive it. When an agent receives the piece of information, its first action is to transmit that

piece of information to one of its internal agents. In the case of individual agents, it has a prob-

ability τ to change its state from uninformed to informed. When a fraction φ of the internal

agents are informed, the parent agent is considered informed.

Below we provide a formal description of the form of information spread in a fractal net-

work and prove some of its characteristics. We also discuss some essential aspects of the scaling

symmetry break, which will give rise to the q-exponential function and ultimately to the

power-law behaviour.

Definition 2.1 Information is considered here in a broad sense, what includes pieces of infor-
mation that can be shared among agents but also objects and people moving from one node to
another.

Definition 2.2 When an agent obtains the information, we say his states changes from unin-
formed to informed. The states of an agent are just informed or uninformed.
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Axiom 2.1 Agents can obtain the information only from informed agents with which they are
connected, or from their parent agent. We say that, in this case, information is locally
transmitted.

Axiom 2.2 When an informed agent has a connection with an uninformed agent, we say that
the information has reached the uninformed agent.

Axiom 2.3 When a piece of information reaches an uninformed agent, it is passed to its inter-
nal agents aleatory chosen.

Axiom 2.4 When a piece of information reaches an individual agent, it has a probability τ to
accept that information. Upon acceptance, the individual becomes informed. The elapse of time
to inform one individual is Δto.

Axiom 2.5 An agent that is not an individual becomes informed when a fraction τ of its inter-
nal agents are informed.

Axiom 2.6 Uninformed agents cannot transmit information. Informed agents necessarily
transmit information.

Theorem 2.1 If λL is the scale at the individual level and σ is the total number of individuals
in the fnet, the number of informed agents, ν, after the start of information transmission is given
in terms of a q-exponential function of σ as

nðsÞ ¼ eqðtsÞ ; ð1Þ

where

eqðtsÞ ¼ 1þ ð1 � qÞ
ts

lL

� � 1
1� q

; ð2Þ

with

1 � q ¼ 1=N : ð3Þ

The parameter q is called q-index, and is completely determined by N.

Lemma 2.1.1 The number of informed agents after a period of information transmission at a
level of the fractal network is given by

nðtÞ ¼ ð1þ tÞ
a
; ð4Þ

Proof: According to Axiom 2.1 and to Axiom 2.4 the information is exchanged by N agents

where, initially, one of the agents is informed and all others are uninformed. An uninformed

agent can get the information by different modes: it can get it directly from the first informed

agent in the network, or it can get it from other agents that got the information from the initial

agent, or even by more indirect ways. Mathematically, the number of informed agents after a

period of information transmission is given by

nðtÞ ¼ 1þ a tþ ð1=2Þ aða � 1Þt2 þ � � � þ Cða; kÞtk þ � � � þ ta ; ð5Þ

where α is the number of modes for the transmission of the information in the network. As

one agent cannot transfer information to itself, we have that α = N − 1.

The combinatorial factor

Cða; kÞ ¼
a!

ða � kÞ!k!
ð6Þ

arises because when the information is transferred to an uninformed agent, the order in which
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the informed agent obtained the information is not important. Eq 5 can be written as the

power-law in Eq 4, proving this Lemma.

Definition 2.3 We denominate sl;ll0 , with l
0 > l, the number of internal agents with size, or

scale, λl0 that an agent at the level l has.
Corollary 2.1.1 The number of informed agents can be expressed in terms of the scale param-

eter, λl.
Proof: According to Corollary 1.1.3, each agent in a level l − 1 has exactly sl� 1;ll

¼ Nll inter-

nal agents with size λl. Therefore we can write t ¼ tsl� 1;ll
=ðNllÞ. It follows immediately from

Eq 4 that

nðtÞ ¼ 1þ t
sl� 1;ll

Nll

� �N� 1

: ð7Þ

Corollary 2.1.2 The ratio σl, λl0/λl0 is scale invariant.
Proof: If you multiply λl0 by any positive, finite factor, due to Corollary 1.1.3 the number of

agents at any level l< l0 is multiplied by the same factor, hence the ratio above remains

invariant.

Corollary 2.1.3 The symbols σL and λL+1 are meaningless.
Proof: According to Definition 1.7, the level L corresponds to that where agents are individ-

uals, so they do not present an internal structure, hence there is no meaning in asking about its

internal population. The individual size is the minimum size and determines the fundamental

scale of the fnet, thereby there is no meaning in asking about scales below λL.

Definition 2.4 When the scale is set to the individual size, that is, λl0 = λL, we use the simpli-
fied notation sl ¼ sl;lL . Accordingly, we denote by σ the population of individuals in the fnet,
that is, σ = σ0.

Corollary 2.1.4 At the individual level we have λL = 1, the scale symmetry is broken and the
q-exponential function is obtained.

Proof: Adopting λl = λL, Eq 7 becomes

nðtÞ ¼ 1þ t
s

N lL

� �N� 1

; ð8Þ

where we used, for the sake of clarity, s ¼ s0;lL
as the total population of the network, recog-

nized as a multiple the number of individuals in the network. Using the q-index defined by Eq

(3) results that

nðsÞ ¼ 1þ ð1 � qÞ
ts

lL

� � q
1� q

: ð9Þ

The expression above is not scale invariant, because now λl = λL is fixed, and any variation

of thefnetpopulation, σ, results in a q-exponential behaviour.

This result proves the Theorem 2.1. Notice that with the introduction of the individual

level, indicated by the scale λL, the scale invariance disappears and we obtain according to the

q-exponential function.

An additional comment is necessary at this point. Observe that the argument of the func-

tions in Eqs 8 and 9 are different. This results from the transition from a scale-free network to

a fixed scale network. In the first case, the population increases according to the size of λl0 and

the Corollary 1.1.3 is satisfied. In the second case, due to the symmetry break, the population

increases while the scale is fixed. The number of close contacts agent is also fixed, as well as the
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parameter q. This means that the number of degrees of freedom for the information spread is

independent of the population size. This is the main aspect of network for the emergence of

non-extensivity, as will be discussed in Section 4.

3.1 The dynamics of the information spread

In this section, we describe how to describe the dynamics of the information spread by includ-

ing the time evolution of the number of informed agents.

Definition 2.5 We define the information spread time interval, Δtλ, and the rate of transmis-
sion of information, κλ, such that τ = κλΔtλ.

Theorem 2.2 The time interval Δtλ depends on the population size, σλ as a power-law func-
tion, that is, Dtl ¼ sbDtlL , and the transmission rate depends on the population size according
to kl ¼ s

� b

l klL .

Lemma 2.2.1 The time interval of an agent, Dtll , is related to the internal agents time inter-
val, Dtllþ1

by Dtll ¼ NbDtllþ1
, with 0� β� 1. The rate of information transmission are related

by kll ¼ N � bkllþ1
.

Proof: Consider an agent at the scale λl 6¼ λL. According to Definition 1.1 this agent has N
internal agents. The elapsed time for the information transmission to an agent, Dtll , depends

on the time its internal agents will demand to get the information, Dtllþ1
.

Due to Axiom 1.2 all agents at the same hierarchic level corresponding to λl+1 have similar

values for Dtllþ1
, so the maximum value for interval for the parent agent is Dtll ¼ NDtllþ1

in

the case of the information is spread among the internal agents sequentially. The minimum

value is Dtll ¼ Dtllþ1
, in the case of simultaneous transmission of the information among the

internal agents. In the gernal case we write Dtll ¼ NbDtllþ1
, with 0� β� 1. The equalities cor-

respond to the two special cases mentioned above. As τ is a parameter, according to Definition

1.6 we must have κλ = N−β κλ0.
Corollary 2.2.1 The parameter β is independent of the agent level.
Proof: It follows from the Axiom 1.2.

Corollary 2.2.2 The variables Dtl1
of an agent at level l1 is related to the variable Dtl2

at the

level l2 > l1 by Dtl1
¼ Nbðl2 � l1ÞDtl2

, and the variable kl1
is related to kl2

by kl1
¼ N � bðl2 � l1Þkl2

.

Proof: Applying recursively the result of Lemma 2.2.1 we get

Dtl1
¼

Yl2

i¼l1

Nb

i

 !

Dtl2
¼ Nbðl2 � l1ÞDtl2

: ð10Þ

The result for kl1
can be obtained in the same way or by considering that τ is constant, as

done in Section 3.1.

Considering the result of Corollary 2.2.2 for an agent at level l1 = l and another agent at

level l2 = L, we get

Dtll ¼ NbðL� lÞDtlL

kll ¼ N � bðL� lÞklL

8
<

:
: ð11Þ

Setting l = 0 we have NL = σ, that is the number of individuals in the fnet, these results prove

Theorem 2.2.

Theorem 2.3 For a randomfnetβ = 0.5.
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Proof: The time interval, Δt, for the information spread for an agent with a number σ of

internal agents if δt, is formed by the superposition of the intervals δt for the information

transmission to each of the internal agents.

If the interval of transmission for n − 1 of the agents is Δtn−1, the inclusion of an additional

agent might increase the total time spent for information transmission only if the transmission

in the nth agent starts at the instant t such that Δt − δt< t< Δt. This condition is satisfied with

a probability δt/Δtn, and when it happens the increase in the total interval of time is δt/2, on

average, otherwise, the increase is null. Therefore we have, for σ sufficiently large,

s
dDt
dn
¼

1

2
s
dt
Dt
dt : ð12Þ

If η = n/σ, we have 0� η� 1, and the equation above becomes

dDt
dZ
¼

1

2
s
dt
Dt
dt : ð13Þ

Integrating from η = 0 to η = 1 we have

Dt ¼ s0:5dt ; ð14Þ

what proves that β = 0.5.

3.2 Differential equations for the information spread

In this section we derive the differential equations governing the dynamics of the information

spreading. In what follows we assume that, at any time, the number of agents being informed

is much smaller than the total population, therefore the variation of the uninformed popula-

tion during the elapse of time necessary to the newly informed agents change their states from

uninformed to informed is negligible. This can be expressed mathematically by assuming that

_ut � u at any time.

Definition 2.6 The number of uninformed individuals in a population of individuals, u(t),
varies along time as more individuals receive the information and become informed agents. The
uninformed population at any time is given by u(t) = σ − ν(t), where σ is the population in the
fnet, which is considered constant.

Theorem 2.4 Given a small time interval Δt, it is always possible to find an agent for which
the elapsed time to spread the information is dt< Δt.

Proof: Consider an arbitrary agent at a level l1 whose spreading time is Dtl1
. If Dtl1

< dt,
the condition is satisfied and the theorem is proved. If Dtl1

> dt, using Eq (10), one can find a

level l2 > l1 at which the agents have a spreading time interval Dtl2
such that

Dtl2
¼ N � bðl2 � l1ÞDtl1

< dt : ð15Þ

Definition 2.7 We call smooth information spreading dynamics the process for which the
individual spreading time is sufficiently small, so that for any reasonably small time interval Δt,
the elapsed time for an individual receive a piece of information, once the individual is reached
by the spreading dynamics, is DtlL < dt.

In what follows we assume the spreading dynamics is smooth.

Theorem 2.5 If at time t, measured in an appropriate scale for the dynamics of information
at the individual level, afnethas u(t) uninformed individuals, the rate of increase in the number
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of informed individuals, i(t), is represented by Eq 7, which we write as

di
dt
¼ k

uðtÞ
lL

1þ ð1 � qÞ
tu
lL

� � q
1� q

: ð16Þ

Proof: When a piece of information reaches an agent at the level L − 1, it is passed to its N
internal individuals. In a population, u, of uninformed individuals, the number of agents at

this level is

M ¼
u
lL
; ð17Þ

because of Corollary 1.1.3. The number of those groups that receive the piece of information

in the interval dt is

dM ¼ kMdt : ð18Þ

For each group reached by the information, the number of individuals turning to the state

informed is given by Eq 4, thus the number of individuals changing their state fron unin-

formed to informed is given by

di ¼ kMdtð1þ tÞN� 1
: ð19Þ

Using Eq (3) and Definition 2.6 we obtain Eq (16), proving the theorem.

Corollary 2.5.1 The number of informed individuals in the network as a function of time is

iðtÞ ¼ 1þ ð1 � qÞ
kuðtÞt
lL

� � 1
1� q

: ð20Þ

Proof: Deriving Eq (20) and using the assumption €ut � u, we obtain the differential equa-

tion given in Eq (16), proving the theorem.

Corollary 2.5.2 If a network is formed by N fnets with independent spreading dynamics, the
number of informed individuals is

iðtÞ ¼
X

j

ijðtÞ : ð21Þ

where

ijðtÞ ¼ 1þ ð1 � qÞ
kjujðt � tojÞt

lL

� � 1
1� q

: ð22Þ

if t> toj and ij(t) = 0 if t< toj. Here, toj is the time when the information is received by the agent.
Proof: It follows directly form Corollary 2.5.1.

Theorem 2.6 The spread of information in an agent can be described by the two coupled dif-
ferential equations below (For the sake of clarity, we do not use the index j when we refer to the
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process in a single agent):

diðtlLÞ
dtlL

¼
k

lL
iqðtlLÞ uðtlLÞ þ

k

lL
iqðtlLÞðtlL � toÞ _uðtlLÞ

duðtlLÞ
dtlL

¼ �
k

lL
iqðtlLÞ uðtlLÞ

8
>>>>>><

>>>>>>:

ð23Þ

where to is the instant when the spread of information starts.
Proof: By differentiating Eq (21) we obtain the first equation above. Considering that the

uninformed population is determined according to Definition 2.6, the second equation is

obtained.

Theorem 2.7 The set coupled differential equations can be written in terms of constant
parameters in the case where the function u(t) can be linearized, that is, the coupled equation
can be written as

diðtlLÞ
dtlL

¼
k

lL
iqðtlLÞ uðtlLÞ �

ky

lL
iqðtlLÞ

duðtlLÞ
dtlL

¼ �
k

lL
iqðtlLÞ uðtlLÞ

8
>>>>>><

>>>>>>:

ð24Þ

where

ky ¼
t

2
jh _uij ; ð25Þ

with jh _uij being the modulus of the average rate of decrease of the uninformed population during
the information spreading. is the instant when the spread of information starts.

Proof: Considering the second term on the righ-hand side of the first equation, we have

kðt � toÞkiqðtÞuðtÞ ¼ � kðt � toÞ _uðtÞ � � hkðt � toÞ _ui : ð26Þ

We also have

hkðt � toÞi ¼ hkDti
ht � toi
Dt

; ð27Þ

and we identify τ = κΔt. Considering that the distribution of new informed agents is practia-

cally symmetric with respect to the peak position, we also can approximate

ht � toi
Dt

�
1

2
: ð28Þ

Using these results we prove the theorem.

Theorem 2.8 When the variation in the total population can be disregarded, the spread of
information in a scale-free network can be approximately described by the two coupled
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differential equations below:

diðtlLÞ
dtlL

¼
k

lL
iqðtlLÞ uðtlLÞ

duðtlLÞ
dtlL

¼ �
k

lL
iqðtlLÞ uðtlLÞ

8
>>>>>><

>>>>>>:

ð29Þ

where to is the instant when the spread of information starts.
Proof: If jh _uij � 0, then κ† = 0, and the result is evident from the last theorem.

Theorem 2.9 The solution to the coupled equations are

iðtlLÞ ¼ 1þ ð1 � qÞ
kuðtÞðtlL � toÞÞ

lL
ðtlL � toÞ

� �1=ð1� qÞ

uðtlLÞ ¼ uðtoÞ � iðtlL � toÞ

8
>><

>>:

ð30Þ

Theorem 2.10 An approximate analytical solution for u(t) can be obtained, resulting in

uðtÞðylLÞ ¼ uðtoÞ 1þ ð1 � q0Þ
ylL � yo

l
0

� �� 1=ð1� q0Þ

; ð31Þ

with

1 � q0 ¼
q

1 � q

ylL ¼ ðktlLÞ
2� q0u1� q0

o

l
0
¼ ð2 � q0Þl :

8
>>>>><

>>>>>:

ð32Þ

Proof:
An approximate solution can be easily obtained by noticing that, in most cases of interest,

we have u(t)/λ� 1. In this case we can approximate the equation for u(t) by

duðtÞ
dtlL

¼ �
k

lL
ð1 � qÞ

kðtlL � toÞ
lL

� �q=ð1� qÞ

u1=ð1� qÞ ð33Þ

that is a separable equation resulting in

duðtlLÞ
u1=ð1� qÞ

¼ �
1

1 � q
ð1 � qÞ

ktlL
lL

� �1=ð1� qÞ

dtlL : ð34Þ

Integrating both sides we get

Z u

uo

du0

u01=ð1� qÞ
¼ �

1

1 � q
ð1 � qÞ

k

lL

� �1=ð1� qÞ Z tlL

to

t01=ð1� qÞdt0 : ð35Þ

This equation results in

uðtlLÞ
� q=ð1� qÞ

¼ u� q=ð1� qÞo þ
q

1 � q
ð1 � qÞktlL

lL

� �1=ð1� qÞ

�
ð1 � qÞkto

lL

� �1=ð1� qÞ
" #

; ð36Þ
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and can be rearranged to obtain

uðtlLÞ ¼ uo 1þ
q

ð1 � qÞ
ð1 � qÞkuq

otlL
lL

� �1=ð1� qÞ

�
ð1 � qÞkuq

oto
lL

� �1=ð1� qÞ
" #( )� 1� q

q

: ð37Þ

Observe that with the definitions given in the Eq (32) the equation above can be conve-

niently written as Eq (31), proving the theorem.

3.3 Strategies for optimization of the information diffusion

One of the most important results of the investigation of flux of information through networks

is the possibility to understand the optimization of the information spread dynamics, what is

important both for increasing the efficiency of communication and for formulating the best

methods to avoid the information spread.

The main characteristic of the dynamics of information spread in the fractal network stud-

ied here is the local transmission of information by a small number of agents with close con-

tact. The question that arises is the following: what is the best way to increase the efficiency of

the information spread?

Two mechanisms could be devised to increase the efficiency: improve the probability of

transmission, described by the parameters τ or by κ, or increasing the number of contacts

between agents, given by q. We will see that the second option, when available, is the most

effective.

Theorem 2.11 The increase of the rate of information transmission by increasing the effi-
ciency of transmission is given by

iqðtþ dtÞ ¼ 1þ
u=lL

1þ ð1 � qÞtu=lL
dt

� �

iqðtÞ ð38Þ

Proof: Using Definition 2.5 in Eq (20) and deriving with respect to τ we have

diq
dt
ðtÞ ¼ iqqðtÞ ; ð39Þ

therefore the infinitesimal variation in the number of informed agents when the transmission

probability varies from τ to τ+Δτ is

diqðtÞ ¼ iqðtÞ
u=lL

1þ ð1 � qÞtu=lL
dt ð40Þ

Hence, when the transformation τ! τ0 = τ + δτ is performed, the number of informed

agents transformation is

iqðtÞ ! iqðtþ dtuÞ ¼ 1þ
u=lL

1þ ð1 � qÞtu=lL
dt

� �

iqðtÞ : ð41Þ

Corollary 2.11.1 In the limit τu/λL� 1/(1 − q), the transformation of τ leads to a logarith-
mic increase in the number of informed agents.

Proof: In this limit we have

u=lL
1þ ð1 � qÞtu=lL

dt �
dt

1þ ð1 � qÞt
¼

1

1 � q
d log t : ð42Þ
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Substituting the result above in Eq (41) we obtain the logarithmic increase of the number of

informed agents, i.e.,

iqðtÞ ! iqðtþ dtÞ ¼ 1þ
1

1 � q
d log t

� �

iqðtÞ : ð43Þ

Theorem 2.12 The increase of the rate of information transmission by increasing the number
of links per agent is

iq� dqðtÞ ¼ 1þ
q

ð1 � qÞ3
dq

 !

iq� dqðtÞ ð44Þ

Proof: Using Definition 2.5 in Eq (20), and deriving with respect to N we have

diNðtÞ
dN

¼ ð1þ NÞdN iNðtÞ : ð45Þ

From Eq (3) it follows that

diqðtÞ
dq
¼ �

q
ð1 � qÞ3

iqðtÞ ð46Þ

From the results above we obtain that, under the transformation q! q − δq, the number of

informed agents transforms as

iqðtÞ ! iq� dqðtÞ ¼ 1þ
q

ð1 � qÞ3
dq

" #

iqðtÞ : ð47Þ

Corollary 2.12.1 The increase in the number of informed agents increases with N2.

Proof: Using Theorem 2.1 for the relation between N and q, and the Theorem 2.12 we

obtain

iNðtÞ ! iNþdNðtÞ ¼ ½1þ NdN�iqðtÞ : ð48Þ

4 Discussion of the results

The characteristics of the network presented in Section 1 lead to the formation of a hierarchical

scale-free structure typical of scale-free, or fractal, networks. The scaling parameter, λ, is given

in terms of the number of internal agents. At some points the agents are considered as individ-

uals with no internal structure, and at this point the scaling symmetry is broken.

The locally transmitted information and its spreading dynamics is defined in Section 2. The

information is always shared among a number of connected agents in the same network or

with the parent agent. This number is limited and constant throughout the network. This char-

acteristic of the information spread dynamics and the broken scaling symmetry of the network

structure give rise to a q-exponential function that describes the flux of information in the net-

work. The power-law behaviour is obtained asymptotically, as the number of agents in the net-

work increases. The results obtained here contributes to the discussion about the ubiquity of

scale-free networks, since we obtain a heavy-tailed distribution that is not, in general, a power-

law.

The fact that the number of informed agents is described in terms of a q-exponential func-

tion, with the power-law behaviour obtained in the asymptotic limit, is an interesting result
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and deserves some additional comments. The q-exponential function results from the fact that

the number of degrees of freedom of the spreading dynamics [5] is uncorrelated to the number

of agents in the network. This aspect of the fractal structure allows the number of individuals

increase without any change in the number of modes by which an arbitrary agent can

exchange information with another in the fnet. It is easy to understand, from the results

obtained here, why fnets can describe so many aspects of natural and social systems: in many

cases the information is transmitted locally among a small group of agents, and this number

will be the same, no matter how many individuals one are in that population of the network.

The Theorems proved in Section 2 show that any variable describing some quantity related

to the information spread must appear in a scale-free form. The time interval for the spread of

information in the network, for instance, increases with the squared-root of the number of

individuals in the network. This result is in agreement with the works in Refs. [12, 13], where

the close connections between power-law distributions and scale-free networks is observed. In

the present case, we show that any fractal network will depend only on power-law variables.

The rate of information spread given by the q-exponential function shows that the spread

dynamics results in a slower transmission of information than one would expect in an expo-

nential spread. But as q! 1 the number of links among agents increases and the exponential

behaviour is recovered. This corresponds to broadcast information, with chaotic transmission

of information to all the individuals in the network. We verified that the most efficient way to

increase the number of informed agents is not by increasing the transmission probability, but

by increasing the number of connections among agents.

This result is interesting in many aspects, but here we would like to emphasize one of them

with an example of application in an epidemic spread of a virus. The piece of information

being transmitted is the virus, and the transmission happens in close contact between an

infected individual and a susceptible individual, that is, one that does not carry that piece of

information, the virus. Observe that the coupled equations in Theorem 2.7 are very similar to

those found in the standard SI and SIR models [40], except that we did not consider in those

equations the recovered population, what can be straightforward done by considering that the

total population is the sum of each kid of population, infected, susceptible and recovered, and

that this population is constant. In Fig 2 we show plots of the informed and uninformed popu-

lation along time, as well as the number of individual that receives the information at each

instant.

We can understand the aspects related to the best strategies for the spreading dynamics also

in the context of contagious diseases. A virus undergoes random mutation, and the dominant

strain will be more likely the one that can be transmitted more effectively. The way mutagene-

sis of virus can lead to a more effective spread is not by increasing its probability of transmis-

sion, which we associate with the parameter τ, but by increasing the number of susceptible

individuals in contact with the infected individuals, which we associate with N. Those strains

that succeed to increase N will be more effective in transmission, and therefore will be domi-

nant. Thus, viruses will increase the multiplication factor more efficiently if they succeed to

provide a longer transmission time before the symptoms of its associated disease become

evident.

As mentioned in the introduction, the definitions given in Section 1 and in Section 2 can be

relaxed in many ways. For instance, the number of internal agents can be set as variable, but

must follow the same distribution whatever is the fractal level of the parent agent, and the cor-

responding variable must be scale-free, i.e., it must appear as fractions of the scaling parameter.

The same reasoning applies to the number of edges linking the agents. The information spread

can follow an arbitrary distribution instead of being completely random, as far as the distribu-

tion is scale-free. Even the number of modes, or degrees of freedom, by which the agents can
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obtain information from the others in the same network do not need to be constant. If these

modifications are introduced in the scale-free network presented here, as far as the scale sym-

metry is preserved, our conclusions should hold. Even if different numbers of edges among

the nodes are used throughout the network, a multifractal network may be obtained. In all

these cases, however, the general results obtained here will remain valid.

5 Conclusion

In this work we studied the spreading dynamics of information locally transmitted through

nodes, or agents, in self-similar, or fractal, network. The fractal network is defined by its fine

internal structure that is scale-free. The self-similarity is a consequence of the the scaling prop-

erty of the network and of its fine internal structure. However, at some point the scale symme-

try is broken, and as a result the flux of information follows a q-exponential function, typical

of the Tsallis’ statistics. The pure power-law behavior results in the asymptotic limit, when the

number of informed agents in the network is large. The exponential behavior, on the other

hand, is obtained in the asymptotic limit of the number of connection of each agent increasing

indefinitely.

The locally transmitted information, which goes from one agent to its neighbours and

involves a limited number of nodes, independent of the total number of agents in the network,

was studied. Its spreading dynamics reveal that the number of informed agents increases

according to a q-exponential function. From the statistical point of view, this result indicates

that the Tsallis Statistics is the correct framework to investigate the scale-free network. The

constraint on the number of contact of each agent implies in an increasing number of levels in

Fig 2. Plots of the uninformed (dotted blue line), informed (dashed green line) and newly informed populations (continuous red line), according

to the fractal dynamics for the information spread.

https://doi.org/10.1371/journal.pone.0257855.g002

PLOS ONE Tsallis in fractal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0257855 September 29, 2021 16 / 19

https://doi.org/10.1371/journal.pone.0257855.g002
https://doi.org/10.1371/journal.pone.0257855


the network as the population increases. This is contrary to the small-word hypothesis [1, 2],

where the number of levels in the network is fixed and the number of contacts increases.

The time interval for the transmission increases as the squared-root of the number of indi-

viduals in the network. The scaling properties, establishes a power-law condition to the proba-

bility of transmission of a piece of information by agent in the network. Our results can be

easily tested in real or simulated data by checking the characteristics of the distributions.

Differential equations describing the information spread are derived. We discussed the dif-

ferent strategies one can take to increase the information spread efficiency. These strategies

can be formulated by increasing the transmission efficiency or by the number of connected

agents. We show that the most effective strategy is the second one.

The results obtained in the present work have an impact on the formulation of the best

strategies for the information spread. In practice, it may have implications on Environment

Sciences [41], since modifications in the local environment may evolve by locally transmitted

effects to larger and distant areas [42–44]; Epidemiology, since viruses may evolve, by muta-

genesis, to variants that optimize its transmission, a track that would prefer increasing the

number of degrees of freedom by extending the period of virus transmission rather than

increasing its transmission rate [45, 46]; Sociology [8], since communication among individu-

als in the society can be made more or less effective by controlling the mechanisms of spread-

ing, what may have an impact in policies and strategies to, e.g., combat fake-news and other

irrational behaviours in social media [47–50]. In Computer Sciences [15, 33], Biology [14],

Physics [21], Economics [9], and Machine Learning [51], to name just a few.

The model of fractal network studied here can be modified in some aspects without chang-

ing the conclusions.
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