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ABSTRACT

We show that, in strongly chaotic dynamical systems, the average particle velocity can be calculated analytically by consideration of Brownian
dynamics in a phase space, the method of images, and the use of the classical di�usion equation. The method is demonstrated on the simpli�ed
Fermi-Ulam accelerator model, which has a mixed phase space with chaotic seas, invariant tori, and Kolmogorov-Arnold-Moser islands. The
calculated average velocities agree well with numerical simulations and with an earlier empirical theory.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5100607

We present a part-empirical, part-analytical approach to the
analysis of di�usion in chaotic dynamical systems. It relies on
the application of a fundamental idea from classical continuum
physics (probabilistic di�usion) to chaotic systems that are, of
course, inherently deterministic. In particular, we consider di�u-
sion andBrowniandynamics in thephase space of a chaotic system
and show how the di�usion equation, applied in this context, can
provide an accurate description of the average velocity and its
evolution, even when the model presents anomalous e�ects. To
demonstrate and validate the formalism, we take a well-known
example from astrophysics—the simpli�ed Fermi-Ulammodel.

I. INTRODUCTION

The evolution of systems described by Hamiltonians with non-
linear terms in their dynamical equations may exhibit either regu-
larity or chaos. The result is often a mixed phase space containing
chaotic seas, invariant tori, and Kolmogorov-Arnold-Moser (KAM)
islands.1Dynamical systemswith strong chaoticmotion often exhibit
di�usive behavior.2,3 An intuitive example of this is to drop colored
ink into water, observing how the particles of ink move away from
each other, spreading out into the liquid. For a mixed phase space,
however, an initial condition, e.g., around a KAM island may lead to
very complicated behavior. The stability structures in�uence directly
the transport properties of chaotic orbits,4 often generating so-called
anomalous di�usion.5,6

There are many scenarios where rather than analyzing the
individual behavior of a single particle starting from a particular

initial condition, it is more interesting to consider the average prop-
erties of the system, taking into account an ensemble of particles.
Statistical methods can then be used to describe the dynamical
phenomena.7–9 Correspondingly, the properties and construction of
the phase space can lead to what are e�ectively di�usion processes:
as the dynamics evolves, there is di�usion of the action, usually
associated with the velocity of the particles, through the phase space.

In this work, we show that the classical di�usion equation10–14

can be solved via a procedure well known in electrostatics, namely,
themethod of images, and used to describe the evolution of the aver-
age velocity for a system characterized by a mixed phase space. We
will demonstrate the e�ectiveness and utility of this idea by applying
it to the well-known and widely-studied Fermi-Ulam model (FUM).
The results here are closely connected to a prior result shown in
Ref. 15; however, in the present case, we use an approach that is
part-analytical and part-empirical.

This paper is organized as follows. In Sec. II, we describe the
FUM, showing the nonlinear map associated with the dynamics and
introducing a picture of a di�usion process occurring within its char-
acteristic phase space. Section III develops a theoretical framework
yielding analytical results for normal di�usion in a mixed phase
space. In Sec. IV, we compare these analytical results with numerical
data. Conclusions are drawn in Sec. V.

II. MODEL AND PHASE SPACE

The FUM16 is a version of the Fermi accelerator, which was
originally introduced by Fermi17 as a possible explanation for
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FIG. 1. Illustration of the Fermi-Ulam model. The geometrical parameter ` is the
distance between the two walls, and the direction of the vectors denotes the sign
of the particle’s velocity. Usually, the time-dependent function Z(t) is chosen as
cos(ωt), with ω being the frequency of oscillation.

the production of very high energy cosmic rays. Its acceleration
mechanism involves the repulsion of an electrically charged particle
by strong oscillatory magnetic �elds, a process that is analogous to a
classical particle colliding with an oscillating physical boundary. The
model consists of a particle bouncing back and forth between two
rigid walls, one of which is �xed, whereas the other moves periodi-
cally in time with a normalized amplitude ε, as shown schematically
in Fig. 1.

The system is described by a two-dimensional, nonlinear, area-
preserving map T(Vn,φn) = (Vn+1,φn+1). The velocity of the parti-
cle is the action variable and the phase, related to the time-dependent
boundary, is the angle variable. Taking into account that the abso-
lute value of the velocity changes at the moment of each collision, the
mapping for the simpli�ed version can be obtained if we approximate
the oscillating wall as �xed. When the particle su�ers a collision, it
exchanges momentum appropriate to a moving wall. This simpli�ed
version is valid when the nonlinear parameter ε is relatively small.
Hence, the simpli�ed map of the FUM is

T :

{

Vn+1 = |Vn − 2ε sin(φn+1)|,
φn+1 = [φn + 2

Vn
] mod (2π).

(1)

The term 2
Vn

corresponds to the time between collisions and

−2ε sin(φn+1) gives the gain or loss of velocity/energy in each
collision.

The phase spaceV × φ for the FUM is composed of chaotic seas
andKAM islands and is accordingly classi�ed as amixed phase space.
In addition, it is bounded by an invariant spanning curve, which plays
the role of a boundary: trajectories of lower velocity will never visit a
region above this curve, no matter how many times the trajectory is
iterated.

The average velocity of an ensemble of particles inside the FUM
grows initially18 and then �attens o� toward a plateau. This veloc-
ity growth and saturation can be interpreted as involving a di�usion
process, albeit di�usion not in the physical space of the FUM, but
rather in its phase space. Figure 2 shows how this phase-space dif-
fusion behaves for di�erent numbers of iterations n. At n = 0, we
have the initial Gaussian-shaped distribution centered at V0 = 0.01
and φ0 = π ; then, one iteration later, the distribution seems to have
become spread out uniformly along the phase axis, a fact that will

be used later in the analytic approach. However, di�usion also starts
on the action axis. After 10 and then 100 iterations of the mapping
[Eq. (1)], the action/velocity still continues its di�usion through the
phase space. For all panels of Fig. 2, ε = 0.001.

It is important to bear in mind that the phase-space di�usion is
limited down by null velocity and up by the �rst invariant spanning
curve. Its position is approximated by Vf ≈ 2

√
ε. The localization of

such a curve can be obtained by using a connection with the standard
mapping,1,19 which is written as

T :

{

In+1 = In + K sin(θn),

θn+1 = [θn + In], mod (2π),
(2)

where the parameter K controls the intensity of the nonlinearity of
the mapping. There are two transitions in the standard mapping:
(i) integrability when K = 0 to nonintegrability for any K 6= 0 and
(ii) a transition from local chaos when K < Kc to global chaos for
K > Kc. The parameter Kc = 0.9716 . . . identi�es the critical value
of the control parameter where all of the invariant spanning curves
are destroyed, letting the dynamics di�use unbounded in the I direc-
tion. This is exactly the transition we want to use in connection with
the FUM as an attempt to describe the localization of the �rst invari-
ant spanning curve. Above the curve in the FUM, one observes local
chaos, an in�nity of other invariant spanning curves, and eventually
periodic orbits. Below the �rst invariant spanning curve, only chaos,
periodic, and quasiperiodic dynamics coexist, each one of thembeing
visited as determined by the initial conditions. The procedure to
obtain Vf consists of describing the position of the �rst invariant
spanning curve in the FUM through a local description of the stan-
dard mapping. Then, a Taylor expansion (see Ref. 19 for more details
in a family of area preserving mappings) is made in the �rst equation
of mapping (1) by using the fact that the invariant spanning curve
is written as Vn = Vf + 1Vn, where 1Vn � Vf is a small perturba-
tion of the typical value Vf. A �rst order approximation leads to the
expression Vf ≈ 2

√
ε.

III. ANALYTICAL PROCEDURE

Essentially, the action variable V is undergoing a di�usion pro-
cess within the bounded space V ∈ [0,Vf]. This can be described
by the di�usion equation with no �ux through its boundaries ∂ρ(0,t)

∂V

= ∂ρ(Vf ,t)

∂V
= 0, ∀t > 0. Thus, the problem may be reduced to that

of solving the di�usion equation to obtain the probability density
function ρ(V , t); once this has been integrated along the bounded

space 〈V〉 =
∫ Vf
0

Vρ(V , t)dV , it yields a theoretical prediction for the
average velocity of 〈V〉 of particles inside the FUM.

The solution of the di�usion equation with no �ux through the
boundaries can be obtained analytically by the method of images, as
in electrostatics.20Basically, the idea is to treat the initialGaussian dis-
tribution as a point charge and the boundaries as conducting planes.
The solution will then be an in�nite sum of Gaussian functions, or
normal distributions, centered at V0, due to the in�nity of images
of the initial pro�le. Normal distributions are characterized by their
mean value µ ≡ 〈V〉 and variance σ 2 ≡ 〈V2〉 − 〈V〉2. Likewise, the
di�usion coe�cient can be written as a function of the time deriva-
tive of the variance D = 1

2
dσ 2

dt
→ σ 2 = 2Dt. The solution can then
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FIG. 2. Phase-space diffusion in the FUM, as sketched in Fig. 1 and described by the mapping (1). It is illustrated by the probability density in a chaotic region of the FUM’s
phase space, for different numbers of iterations n. The color scale shows how likely it is to find an orbit at that area of the phase space. The initial distribution, centered at
φ0 = π , V0 = 0.01 with a standard deviation σφ0

= 0.05 and σV0
= 0.001, was plotted overlaying the phase space generated for the same parameter. As n increases, the

distribution instantly spreads out uniformly along the φ axis and also diffuses, albeit more slowly, toward smaller and larger V .

be rewritten in terms of µ and σ 2 as

ρ(V ;µ, σ 2) =
1

√
2πσ 2

e
−(V−µ)2

2σ2 . (3)

Knowing the fundamental solution and applying the principle of
superposition as in the method of images, we known that a sum of
Gaussian functions is a solution to the problem. Hence, the solution

when V ∈ [0,Vf] with
∂ρ(0,t)

∂V
= ∂ρ(Vf ,t)

∂V
= 0 is given by21

ρ(V ;µ, σ 2) =
1

√
2πσ 2

∞
∑

m=−∞

[

exp

(

−(V − 2mVf − µ)2

2σ 2

)

+ exp

(

−(V − 2mVf + µ)2

2σ 2

)]

. (4)

As it stands, however, this solution is not normalized for the space
interval V ∈ [0,Vf]. To e�ect normalization, it is necessary that

A
∫ Vf
0

ρ(V ;µ, σ 2)dV = 1, with A equal to a normalization con-
stant. Considering the error function property erf(−x) = −erf(x),
the normalized solution is given by

ρ(V ;µ, σ 2) =
1

2A
√
2πσ 2

∞
∑

m=−∞

[

exp

(

−(V − 2mVf − µ)2

2σ 2

)

+ exp

(

−(V − 2mVf + µ)2

2σ 2

)]

, (5)

with A =
∑∞

m=−∞ erf
(

µ−2mVf√
2σ 2

)

− erf
(

µ−Vf−2mVf√
2σ 2

)

− erf
(

µ+2mVf√
2σ 2

)

+ erf
(

µ+Vf+2mVf√
2σ 2

)

.

Figure 3 shows how the analytical solution for the probabil-
ity density given by Eq. (5) �ts the numerical simulation data for
the FUM. The initial conditions for the analytic curve are the same
as those used in constructing Fig. 2, with V0 = 0.01, σV0 = 0.001,
and ε = 0.001. This comparison22 provides a convincing veri�cation
of the analytical solution. The good �t indicates that the solution
is suitable when considering an initial pro�le in a chaotic region

and neglecting the anomalous di�usion phenomena around KAM
islands.

Having obtained this solution, we need to calculate the aver-

age as 〈V〉 =
∫ Vf
0

Vρ(V ;µ, σ 2)dV in order to be able to predict
analytically the average behavior of the velocity. Because of the
lack of symmetry, this calculation is nontrivial, but, integrating
between the upper and lower limits using the Jacobi theta function
representation,23 we �nd that the solution, in terms of an important
auxiliary variable z = µ√

2σ 2
and a new parameter ṽ = Vf√

2σ 2
, can be

written as

〈V〉 =
µ

2A

∞
∑

m=−∞

1

z
√

π
(1(1)exp + 1(2)exp)

+
1

µ

[(

2mVf√
2σ 2

− µ

)

1(1)erf +
(

2mVf√
2σ 2

+ µ

)

1(2)erf

]

, (6)

withA=
∑∞

m=−∞ erf
(

z− 2mVf√
2σ 2

)

−erf
(

z− ṽ− 2mVf√
2σ 2

)

−erf
(

z+ 2mVf√
2σ 2

)

+ erf
(

z + ṽ + 2mVf√
2σ 2

)

and

1(1)exp = e
−

(

z− 2mVf√
2σ2

)2

− e
−

(

z− 2mVf√
2σ2

+ṽ

)2

,

1(2)exp = e
−

(

z+ 2mVf√
2σ2

)2

− e
−

(

z+ 2mVf√
2σ2

−ṽ

)2

,

1(1)erf = erf

(

z −
2mVf√
2σ 2

+ ṽ

)

− erf

(

z −
2mVf√
2σ 2

)

,

1(2)erf = erf

(

z +
2mVf√
2σ 2

)

− erf

(

z +
2mVf√
2σ 2

+ ṽ

)

.

Furthermore, the mean µ and variance σ 2 are calculated, by
construction, over the point charge, which is characterized by an
unbounded di�usion process. According to our initial mapping,
Eq. (1), the point chargemapping is given byVn+1 = Vn − 2ε sin(φ),
where φ is a uniform random variable; as observed in Fig. 2, it is then
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FIG. 3. Comparison between the analytical solution and the
experimental/numerical probability distribution of the diffusion
process depicted in Fig. 2. This is the behavior after 100
iterations.

possible to write the mean and variance for the point charge as

µn+1 = 〈Vn+1〉 = 〈Vn〉 ⇒ µ = µ0 = V0,

σ 2
n+1 = 〈V2

n+1〉 − 〈Vn+1〉2 = 〈V2
n〉 + 2ε2 − 〈Vn〉2

⇒ σ 2
n+1 = σ 2

n + 2ε2.

Following the theory of di�erence equations,24 assuming a large num-
ber of iterations and small values of ε, it is then possible to write σ as
a function of n,

σ 2
n+1 − σ 2

n =
dσ 2

dn
⇒ σ 2(n) = σ 2

0 + 2ε2n. (7)

This result is important because it carries the information that the
variance is a function of the number of iterations σ 2 = σ 2(n), con-
necting the solution of the di�usion equation to the discretemapping
of the FUM.Moreover, the initial variance σ0 is zero if the initial pro-
�le is considered a perfect Dirac delta function. This also tells us that
the di�usion is normal, since σ ∝

√
n. In addition, it is also possible

to calculate the di�usion coe�cient, which is a constant and quite
intuitive with our suppositions for this case so that D = ε2. Then, z
is also a function of the number of iterations n such that

z =
µ

√
2σ(n)

⇒ z(n) =
V0

2ε
√
n
. (8)

Substituting Eq. (8) into Eq. (6), we can calculate how the average
velocity behaves as a function of the number of iterations for the
dynamics of the FUM. However, of course, we now need to check
whether, or not, this theory really describes the actual behavior of
the average velocity.

IV. ANALYTICAL × NUMERICAL RESULTS

Figure 4 compares the numerical simulation data with the ana-
lytic predictions of Eqs. (6) and (8). The expression for 〈V〉, given by
Eq. (6), represents a continuous competition between the exponen-
tial and error functions, so it is interesting to study their arguments.

Based on a graphical analysis, we conclude that there are two changes
of behavior: at z = 1 and at ṽ = 1. First, taking z = 1,

z = 1 ⇒
V0

2ε
√
n

= 1 ⇒ n =
(

V0

2ε

)2

⇒ n =
V2

0

4ε2
,

but in this case, n = nx marking the �rst crossover.25 Thus,

nx =
V2

0

4ε2
. (9)

Second, taking ṽ = 1,

ṽ = 1 ⇒
Vf

2ε
√
n

= 1 ⇒ n ≈
(

2
√

ε

2ε

)2

⇒ n ≈
1

ε
,

but now, n = n′
x marking the second crossover. Thus,

n′
x ≈

1

ε
. (10)

Another important result is the limit,

lim
σ→∞

〈V〉 = lim
n→∞

〈V〉 =
Vf

2
≈

√
ε, (11)

which provides the saturation valueVsat . Then, Fig. 4 shows the aver-
age velocity for an ensemble of 103 particles, all with initial velocity
V0 = 2 × 10−3, taken within the interval φ0 ∈ [0, 2π]. The analyti-
cal predictions for the �rst crossover nx, Eq. (9); the second crossover
n′
x, Eq. (10); and the saturation plateau when n → ∞, Eq. (11), are

shown by the dashed lines.
The analytical approach, yielding Eq. (6), clearly agreeswell with

the numerical simulation data. The correspondence might have been
even closer if it were not for the fact that the di�usion is not normal
for higher values of V , due to the e�ect of the islands in this region
of the phase space. This also explains the �uctuation for n > n′

x. The
di�usion around stability structures such as KAM islands leads to the
very complicated behavior known as anomalous di�usion. However,
the associated stickiness of the dynamics near the islands, though
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FIG. 4. The average velocity 〈V〉 of particles in the FUM
showing its evolution with the number of iterations n. With
parameter ε = 4 × 10−4, an ensemble of 103 particles, each
with V0 = 2 × 10−3, was iterated until there had been 106

collisions. The numerical simulations (rough black line) are
compared with the analytic theory (smooth red line). Note the
saturation of 〈V〉 toward

√
ε that occurs at large n in both the-

ory and simulation. The discrepancies are due to the effect of
anomalous diffusion around KAM islands.

real, is a relativelyminor e�ect given the size of thewhole phase space:
Harsoula et al.26 conclude that, for a long enough interval, averaging
over the ensemble smoothes the observables so that the stickiness can
largely be neglected.

Figure 5 compares numerical data with the corresponding ana-
lytical predictions for three di�erent initial velocities V0 and val-
ues of the control parameter ε. It is important to remember that
the position of the upper boundary in the phase space, which is

the �rst invariant spanning curve, is approximated by Vf ≈ 2
√

ε.
Then, for each value of the parameter ε, a di�erent bounded phase
space is considered. Again, it is evident that the analytic curves pro-
vide an excellent �t to the numerical data, even for relatively large
values of ε.

We emphasize that Eqs. (9)–(11) represent the �rst analytic
predictions to be made for the Fermi-Ulam model. They agree well
with what was proposed on purely empirical grounds15 more than a
decade ago. Three hypotheses were then proposed, based on a scaling

analysis: (i) nx ∝ V2
0

ε2
, which agrees perfectly with Eq. (9), and we now

also obtain the proportionality constant 1
4
; in addition, (ii) n′

x ∝ 1
ε
,

which agrees with Eq. (10); and �nally, (iii) Vsat ∝ εα , with α ≈ 1
2
,

which agrees with Eq. (11).

V. CONCLUSION

We conclude that a combination of the theory of di�usive
processes with dynamical systems theory, plus the method of images

FIG. 5. The average velocity 〈V〉 of particles in the FUM
showing how it evolves with the number of iterations n, under
different conditions. The analytic theory (dashed lines) is com-
pared with numerical simulations (data points) for three dif-
ferent initial velocities V0 and values of the control parameter
ε, as listed in the inset. In each case, the simulations involved
an ensemble of 104 particles iterated up to 107 collisions.
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from electrostatics, provides a di�erent method for treating systems
described by nonlinear mappings. The method can be expected
to work for mixed phase spaces that are delimited by boundaries
through which there are no �uxes. Application to the Fermi-Ulam
model, taken as an example, has yielded some interesting features
and good agreement both with numerical simulations and with ear-
lier empirically-based theoretical considerations. We expect that, for
larger values of the control parameter, the results would not hold
because the e�ect of the islands and, therefore, of anomalous dif-
fusion could not then be neglected. Extension of the procedure dis-
cussed here to time-dependent billiards27 is an interesting possibility
for future work.
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