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A B S T R A C T

Area-preserving nontwist maps are used to describe a broad range of physical systems. In those systems, the
violation of the twist condition leads to nontwist characteristic phenomena, such as reconnection–collision
sequences and shearless invariant curves that act as transport barriers in the phase space. Although reported
in numerical investigations, the shearless bifurcation, i.e., the emergence scenario of multiple shearless curves,
is not well understood. In this work, we derive an area-preserving map as a local approximation of a particle
transport model for confined plasmas. Multiple shearless curves are found in this area-preserving map, with the
same shearless bifurcation scenario numerically observed in the original model. Due to its symmetry properties
and simple functional form, this map is proposed as a model to study shearless bifurcations.

1. Introduction

In Hamiltonian systems, important results (e.g. KAM theorem,
Aubry–Mather theory and Nekhoroshev theorem) assume that the
orbits have a monotonic frequency profile, known as twist condi-
tion [1–3]. However, many physical systems of physical importance
may not satisfy that requirement, e.g., laboratory and atmospheric
zonal flows [4] and magnetic field lines in tokamaks [5–7]. Those
systems, called nontwist, differ fundamentally from the twist ones.
The degeneracies present in the frequency profile of nontwist systems
originate from twin island chains, whose separatrices can change their
topology in a global bifurcation called reconnection [8].

Hamiltonian flow investigation has an intrinsic difficulty due to
the phase space dimension. For example, time-independent Hamilto-
nians with two degrees of freedom have a four-dimensional phase
space. Fortunately, its dynamical universal behavior is equivalent to
two-dimensional area-preserving maps, which reduces the dimensional-
ity [2]. So, as in nontwist Hamiltonian flows, nontwist area-preserving
maps violate the twist condition in, at least, one orbit. The so-called
standard nontwist map captures the universal behavior of nontwist
systems with a single orbit that violates the twist condition, called
shearless invariant curve [9]. It has a typical phase space of a quasi-
integrable system: there are invariant curves (shearless included) and
periodic orbits are surrounded by resonant islands. Small perturbations
give rise to chaotic orbits around the saddle points, but for strong
enough perturbations, the chaotic orbits spread out through phase
space.
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The transport in nontwist area-preserving maps has great impor-
tance due to its applications, as in fusion plasmas [10] and fluids [4].
The chaotic regions are bounded by invariant curves, acting like trans-
port barriers. Global transport occurs when the last invariant curve
is broken. Numerical investigations indicate that shearless curves are
among the last invariant tori to break up [9]. However, even after their
breakup, an effective transport barrier still persists due to the stickiness
effect [11].

A nontwist area-preserving map model, proposed by Horton et al.
has been used to describe particle trajectories in tokamaks due to
electric field drift, in order to understand the plasma transport in
those devices [12,13]. If the plasma has nonmonotonic profiles, such
as magnetic and electric fields, this model implies phase space with
properties of nontwist systems [13,14].

The emergence of multiple shearless curves in phase space is a topic
under investigation in nontwist systems. One example appears in the
standard nontwist map: the so-called secondary shearless curves arise
in phase space after an odd-period orbit collision, and their breakup
has different properties from the central shearless curve [15]. In fact,
these bifurcations are so general that, locally, they can happen even in
twist systems [16,17]. Moreover, recent works have found more than
one shearless curve in Horton’s map model [14,18].

In this work, we derive an area-preserving nontwist map from
Horton’s map model [13], named Biquadratic Nontwist Map (BNM).
This map has a fourth-degree polynomial twist function that violates
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the twist condition in three regions. The map presents four isochronous
islands and three shearless curves. The reconnection scenarios of main
resonances are presented in this paper, as well as the bifurcation
scenario of the shearless curve. In addition, the map has the same
shearless bifurcation scenario as obtained in the Hamiltonian flow from
which it was derived [18].

This paper is organized as follows. We derive the Biquadratic Non-
twist Map from Horton’s map model in Section 2. Some analytical
results concerning symmetries and fixed points collision and reconnec-
tions are presented in Section 3. The shearless bifurcations in the map
are shown in Section 4. Conclusions are presented in the last section.

2. Derivation of the biquadratic nontwist map

We can derive the Biquadratic Nontwist Map (BNM) from a model
for particle trajectories due to EùB drift, called Horton’s map model [13].
Given a test particle in the plasma, its motion is subjected to the plasma
electric and magnetic fields E and B, respectively. Filtering out the
gyromotion around the magnetic field lines, and the toroidal curvature,
the particle motion is described by the differential equation
dx
dt

= vfl
B
B

+ E ù B
B2 (1)

where x = (r, ✓,') is the position in local cylindrical coordinates and
vfl is the toroidal particle velocity. Waves are present at the plasma
edge and lead to plasma transport. Those waves are represented by a
fluctuating electric field E = *(�, with potential given by

�(✓,', t) =
ÿ
…

p=1
�
p
cos (M✓ * L' * p!0t + ↵p) (2)

where M and L stand for the spatial modes of oscillations, and the
angular frequencies are multiples of !0 [13]. Writing Eq. (1) in com-
ponents, introducing action–angle variables (I , ) given by I = (r_a<)2
and  =M✓*L' and setting �

p
= � and ↵

p
= 0 for all p, the differential

Eq. (1) yields the area-preserving map
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where the constant B is related to the magnetic field, and a< and R
are geometrical constants [13]. The safety factor q is a nonmonotonic
function of the action coordinate and represents the spatial dependence
of the magnetic field.

The aim is to obtain a map valid in the region near the minimum
of the safety factor profile, also the location of the shearless transport
barrier. In this situation, expanding the safety factor profile in the
vicinity of a local minimum at I = Im, and considering up to second
order terms, we obtain the q(I) profile

q(I) = qm +
q
®®
m
2 (I * Im)2, (4)

wherein qm and q
®®
m stand for the value of the safety factor and its

second derivative at the minimum of the profile. Applying this profile
on Eq. (3b), we obtain
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where � =M*Lqm, ✏ = �_(Lqm) and y =
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we obtain the map

x
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that has a biquadratic polynomial, which can be factorized (provided
the roots are real) as

a
⌅

1 * (1 + ✏)y2 + ✏(1 + ✏)y4
⇧

= a✏(1 + ✏)rs(1 * y2_r)(1 * y2_s) (9)

where r and s are the roots in the y2 variable. Finally, defining y® =
y_

˘

r, b® = b

˘

r, a® = a✏(1 + ✏)rs, ✏® = r_s, we obtain the BNM in the
form

x
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(mod 1) (10a)

y
n+1 = y

n
* b sin (2⇡x

n
), (10b)

where we omitted the primes in y, ✏, a and b, for simplicity of notation.
The map (10) models the particle drift motion in a tokamak plasma

near the minimum of the safety factor profile (4). It is a three-parameter
family of nontwist area-preserving maps in (x, y) variables, where x À
[0, 1) and y À R are the angle and action variables, respectively. The
parameters a À [0, 1] and ✏ À R+ modulate the twist function of the
map, and b À [0, 1] is the perturbation parameter. In the limit ✏ ô 0,
the Biquadratic Nontwist Map (10) reduces to the standard nontwist
map [9].

The BNM has the twist function

!(y) = a
�

1 * y2
� �

1 * ✏y2
�

. (11)

The twist condition of an area-preserving map reads [2]
)x

n+1
)y

n

= )!

)y
ë 0, ≈(x, y). (12)

Applying the definition (12) to the twist function of the Biquadratic
Nontwist Map (11), it violates the twist condition, for b = 0, at

y = 0 and y = ±
u

1 + ✏
2✏ .

In the integrable limit (b ô 0), the map has three shearless curves,
C1,C2 and C3, defined by

C1 : y = b sin (2⇡x), (13a)

C2,3 : y = ±
u

1 + ✏
2✏ + b sin (2⇡x). (13b)

Fig. 1 shows the twist function of the standard (dashed line) and
biquadratic (continuous line) nontwist maps. The three extrema present
in BNM are marked in red, blue and green. The red point, representing
the central shearless curve C1, is common to both maps, but the
biquadratic map has two other shearless points, corresponding to C2,3.
The standard nontwist map also has scenarios with more than one
shearless curve, but they are consequences of bifurcations in periodic
orbits [8]. In contrast, the BNM has three shearless curves even in the
integrable limit, for b = 0.

For b ë 0, the map is nonintegrable, and the shearless curves are
calculated numerically by finding the extrema in the rotation number
profile. For a regular (nonchaotic) orbit with initial condition (x0, y0),
we define its rotation number ⌦ by the limit

⌦(x0, y0) = lim
nôÿ

x
n
* x0
n

, (14)

wherein the modulus operation is not applied. If the initial condition
belongs to a chaotic orbit, this limit does not exist, and we cannot
define its rotation number.

In addition, a similar map, called the quartic nontwist map, was
proposed in Ref. [19] to study the influence of symmetries in the shear-
less breakup. The quartic nontwist map has a fourth-degree polynomial
twist function equivalent to Eq. (11), but considers ✏ < 0. Therefore, the
quartic nontwist map has only one shearless point and its dynamical
behavior departs from the Biquadratic Nontwist Map introduced in this
article.
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Fig. 1. Twist function of the Biquadratic Nontwist Map [Eq. (11)] for the parameters
a = 1 and ✏ = 0 (dashed line) and ✏ = 0.6 (filled line). There are three points violating
the twist condition marked in red, blue and green. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

3. Some results concerning the biquadratic nontwist map

Simple nontwist area-preserving maps, like the standard nontwist
map, have spatial and time-reversal symmetries that make some nu-
merical analysis tractable, like the search for periodic orbits [9,20].
The Biquadratic Nontwist Map (BNM) has the same spatial symmetry
as the standard nontwist map [9]. Let M be the BNM and S the
transformation

S(x, y) = (x + 1_2, *y) , (15)

the map M is invariant under S, so M = S
*1
MS. Another property of

the BNM, analogous to the standard nontwist map, is the time-reversal
symmetry [9]. We can decompose the map (10) as a product of two
involutions

M = R1R0 (16)

where

R0(x, y) = (*x, y * b sin (2⇡x)) , (17a)

R1(x, y) =
�

*x + a(1 * y2)(1 * ✏y2), y
�

. (17b)

Each involution (17) has an invariant set of points, defined by

I
j
=
�

z  R
j
z = z

�

, j = 0, 1, (18)

which are one-dimensional sets called symmetry sets of the map. The
set I0 is formed by the union S1 ‰S2, and I1 = S3 ‰S4, where S

i
is the

ith symmetry line given by

S1 = { (x, y)  x = 0 } , (19a)

S2 = { (x, y)  x = 1_2 } , (19b)

S3 =
�

(x, y)  x = a(1 * y2)(1 * ✏y2)_2
�

, (19c)

S4 =
�

(x, y)  x = a(1 * y2)(1 * ✏y2)_2 + 1_2
�

. (19d)

3.1. Fixed points

The Biquadratic Nontwist Map has eight fixed points. Using the
notation z = (x, y), those points are:

z±1 = (0,±1), z±2 =
H

0,± 1̆
✏

I

, z±3 =
⇠1
2 , ±1

⇡

, z±4 =
H

1
2 , ± 1̆

✏

I

. (20)

Fig. 2. The fixed points position is controlled by the parameter ✏. Plot of y coordinate
of the fixed points: z+1,3 (magenta dashed), z

*
1,3 (green dashed), z

+
2,4 (gold) and z*2,4 (cyan)

as a function of the parameter ✏. For ✏ = 1 the points z±1 and z±3 collide with z±2 and
z±4 . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Four of the fixed points in Eq. (20), z±1,3, are equivalent to those
in the standard nontwist map [9]. The rest of them are introduced by
the new term in the twist function, controlled by the parameter ✏. For
small ✏, those points go to infinity, and we recover the phase space of
the standard nontwist map. Fig. 2 displays the y coordinate of the fixed
points in BNM. In the critical value ✏ = 1, the fixed points collide in a
bifurcation [see Fig. 5b].

The perturbation in the map generates primary resonances in the
fixed points. As a result, the phase space contains four isochronous
islands, shown in Fig. 3, together with the symmetry lines. In Fig. 3a,
the phase space of the standard nontwist map is plotted for a = 0.3 and
b = 0.05. It contains two resonances and four fixed points. Using the
same parameters a and b, and ✏ = 0.4, the Biquadratic Nontwist Map
shows its four resonances, marked in magenta, cyan, green and gold [
Fig. 3b]. We observe that symmetric fixed points in the same symmetry
line have opposite stability, like all periodic orbits in the even scenario
on standard nontwist map [9]. The rotation number profile for Fig. 3b
is plotted in Fig. 4, using the initial condition x0 = 0.25. We see the
four plateaus in the rotation profile, corresponding to the isochronous
islands, and the three extreme points related to the shearless curves in
the system.

The stability of a fixed point is determined by the eigenvalues of
the tangent map evaluated at that point [2]. For area-preserving maps,
these eigenvalues are a pair {�, 1_�}, and if they are real (complex),
the point is unstable (stable) [2]. For area-preserving maps, one way
to write the criterion for the stability of a fixed point z is by its residue

R = 1
4 [2 * Tr (J (z))] , (21)

where Tr (J (z)) is the trace of the Jacobian matrix at the fixed point [21].
If 0 < R < 1 the periodic orbit is elliptic (stable), if R < 0 or R > 1 it
is hyperbolic (unstable) and it is parabolic in the critical values R = 0
and R = 1 [21]. For the map (10), the residues of the fixed points are

R
�

z±1
�

= ±⇡ab(✏ * 1), (22a)

R
�

z±2
�

= -⇡ab(✏ * 1)_
˘

✏, (22b)

R
�

z±3
�

= -⇡ab(✏ * 1), (22c)

R
�

z±4
�

= ±⇡ab(✏ * 1)_
˘

✏ (22d)

It is easy to verify that the stability of symmetric fixed points in the
same symmetry line is opposite. For example, z+2 is hyperbolic and z*2
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Fig. 3. Comparison between (a) standard nontwist map and (b) Biquadratic Nontwist
Map. The phase space of the standard nontwist map is plotted for parameters a = 0.3
and b = 0.05. For the biquadratic map, those parameters are the same and ✏ = 0.4. The
symmetry lines S3 and S4 are drawn in purple. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Rotation number profile of the map in Fig. 3b calculated for x0 = 0.25. The
three extreme points, one maximum (in red) and two minimum (in blue and green) give
the y initial conditions for the shearless curves. The four isochronous islands appear as
four plateaus in the profile. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

is an elliptic fixed point, both belong to symmetry lines S2 and S4. As
we see, the parameter ✏ controls, together with a and b, the stability
of the fixed points. Considering a, b À [0, 1], by the residue criterion, a
change of stability occurs for ✏ = 1. As seen in Fig. 5, for 0 < ✏ < 1, z+1,4
and z*2,3 are hyperbolic; z

+
2,3 and z*1,4 are elliptic [Fig. 5a]. Otherwise,

if ✏ > 1, z+1,4 and z*2,3 are elliptic; z
+
2,3 and z*1,4 are hyperbolic, Fig. 5c.

In the critical value ✏ = 1, the fixed points collide [Fig. 5b] and the
residues of all fixed points are zero, then they are all parabolic.

Similar results, with four isochronous islands and three shearless
curves, have also been obtained for a map derived in a model of particle
trajectory in tokamaks with finite Larmor radius [22,23]. However, the
latter map does not have the symmetries of the Biquadratic Nontwist
Map introduced in this work.

3.2. Separatrix reconnection

In this section, we investigate the separatrix reconnection for the
BNM. In the standard nontwist map, which violates the twist condition
in one point, there are more than one (usually, two) orbits with the
same rotation number [9]. In contrast, the Biquadratic Nontwist Map
has three extrema in the twist function, allowing four isochronous
island chains. Those orbits may undergo a global bifurcation process,
namely, the reconnection of separatrices, that changes the topology of
invariant manifolds of the corresponding hyperbolic orbits [8]. In the
standard nontwist map, those reconnections have different properties
depending if the periodic orbit has an odd or even period [9]. For
the Biquadratic Nontwist Map, we also have the same standard odd
and even scenarios. We will focus the discussion on the reconnection
process of the fixed points.

The BNM has four primary resonances related to the fixed points
given by Eq. (20). The hyperbolic manifolds of each resonance may re-
connect to an adjacent island, so there are two possible reconnections of
separatrices. One of them involves the hyperbolic points z+1 = (0, 1) and
z*3 = (1_2,*1), displayed in Fig. 6, where b is the control parameter. The
hyperbolic manifolds of those fixed points have heteroclinic topology
in Fig. 6a. The reconnection of separatrix is shown in Fig. 6b and a
bifurcation changes its topology to homoclinic configuration, Fig. 6c.
The appearance of meandering orbits (orbits that are not graphs over
the x-axis) [24,25] is a consequence of that topology changing.

Considering the x variable mod 1, in Fig. 6a, the hyperbolic man-
ifolds have homoclinic topology because the fixed points on x = 0
and x = 1 are the same. Otherwise, if x has an unlimited range,
those fixed points are different and, as consequence, the separatrix has
heteroclinic topology. The literature, and this paper, assume the second
convention [8,26].

Given a and ✏, there is an analytical procedure, outlined in Ap-
pendix A, that returns the approximate critical value of the parame-
ter b for which the bifurcation occurs. Applying this method, to the
previously mentioned reconnection, we obtain the critical parameter

b1 =
4⇡a
3 (1 * ✏_5) , (23)

which agrees with the b critical value in Fig. 6b. The relation above is
an approximation, valid for small values of a and ✏. In the limit ✏ ô 0,
we recover the result for the standard nontwist map [9].

Another possible reconnection is between the two pairs of islands
close to the shearless curves C2,3. The hyperbolic points involved are:
z+1 = (0, 1) and z+4 = (1_2, 1_

˘

✏); and z*3 = (1_2,*1) and z*2 =
(0,*1_

˘

✏). All the primary resonances are involved in this bifurcation.
The islands reconnect, in pairs, in the same previous scenario: hete-
roclinic topology [Fig. 7a], reconnection of separatrices [Fig. 7b] and
homoclinic topology with meander formation [Fig. 7c]. The analytical
procedure described in A results in the relation

b2 = 2⇡a (1 * 5✏ + 5✏3_2 * ✏5_2)
15✏3_2

(24)
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Fig. 5. Same as Fig. 3b, for parameters a = 0.1, b = 0.01 and (a) ✏ = 0.6, (b) ✏ = 1.0 and (c) ✏ = 1.9. The ✏ parameter controls the position of the fixed points and there is a
bifurcation for ✏ = 1, where they collide.

Fig. 6. Separatrix reconnection of fixed points z+1 = (0, 1) e z*3 = (1_2,*1) in Biquadratic Nontwist Map. The parameters used are: a = 0.02, ✏ = 0.1 and b = (a) 0.0533, (b) 0.0821003
and (c) 0.133. The reconnection occurs in (b), changing the topology of separatrices from heteroclinic (a) to homoclinic (c).

Fig. 7. Same as Fig. 6, using parameters ✏ = 0.4, b = 0.05, a = (a) 0.3, (b) 0.18444 and (c) 0.1. The scenario is similar to Fig. 6, but involves different pairs of isochronous islands.

for the critical b value at the reconnection. Again, for small values of a
and ✏, this analytical relation agrees with numerical results [Fig. 7b].

Scenarios with four isochronous island chains and three shearless
curves have also been reported in atypical periodic orbit configura-
tions in the standard nontwist map [8]. The so-called inner and outer
periodic orbits reconnect in the two forms present in Figs. 6 and 7.
Although the standard nontwist map has the same scenario reported
for the Biquadratic Nontwist Map, the multiple twin island chains and
shearless curves are localized and come from bifurcations derived from

the perturbations in the map. In contrast, in the Biquadratic Nontwist
Map the multiple shearless curves are related to the twist function.

4. Shearless bifurcations

The shearless curves, present in area-preserving nontwist maps, may
be broken by the perturbation. The breakup of the shearless curve in
these maps is the subject of many studies in literature [8,9,19,26–29].
For the Biquadratic Nontwist Map (BNM), there may be situations in
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Fig. 8. The Biquadratic Nontwist Map features a bifurcation in the shearless curves.
In (a) we observe one shearless curve in phase space and two chaotic regions on top
and bottom. Varying the parameter a, (b) the blue and green shearless curves shows
up at the boundary of the chaotic regions. The parameters used are ✏ = 1.0, b = 0.16,
(a) a = 0.325 and (b) a = 0.358. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

which one or two of the shearless curves are broken, but the remnant
shearless curve(s) still prevent global transport.

In Fig. 8a, the perturbation in the map has broken the shearless
curves C2,3 and we see just one shearless curve, C1, in the phase space.
In this particular example, the fixed points have collided and have
parabolic stability. However, on changing parameter a, the blue and
green shearless curves reappear, as seen in Fig. 8b. The scenario of that
shearless bifurcation is shown in Fig. 9. In the boundary of the chaotic
region, there are secondary resonances: a pair of twin isochronous
island chains, in pink and orange, Fig. 9a. The orange chain goes away
from the chaos and the shearless curve C2 emerges from that process,
Fig. 9b. Due to the symmetry of the map, the blue and green shearless
curves emerge concomitantly for the same critical parameter.

The scenario of shearless bifurcation displayed in Fig. 9 was re-
ported in a different system, with similar characteristics. In Ref. [18],
shearless bifurcations are analyzed in a Hamiltonian flow related to
Horton’s model. More than one shearless curve appears, and the sce-
nario of the shearless bifurcation is the same as the one reported
in Fig. 9. In fact, we conjecture that the Biquadratic Nontwist Map
captures the essential features of the shearless bifurcations present in
other nontwist systems.

Fig. 9. Emergence scenario of the shearless curves C2,3. (a) There is a pair of twin
islands, one in pink and the other in orange, (b) that leaves the chaotic region,
simultaneously with the blue shearless curve emerges. The parameters used are ✏ = 1.0,
b = 0.16 and a = (a) 0.328 and (b) 0.331. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

5. Conclusion

In this paper, we derived an area-preserving nontwist map from
a Hamiltonian model for particle trajectories in plasmas, named Bi-
quadratic Nontwist Map (BNM). It has a fourth-degree polynomial
function, which implies the presence of three shearless curves and four
main resonances in phase space. The map has symmetry properties
similar to the standard nontwist map, that enable simplifications in
some numerical problems. Although derived from a plasma model, the
map captures the behavior of a broader range of nontwist systems with
multiple shearless curves.

We reported reconnection scenarios, involving the main resonances,
similar to those found in other nontwist maps, and used analytical
techniques involving integrable Hamiltonian flows to find its critical
parameters. The results obtained agree with the map for a certain range
of the parameters when the chaos has not spread over the phase space.

Finally, we found shearless bifurcations in the BNM, with a sce-
nario identical to that found in more complex nontwist systems. The
results in this paper suggest a relation between secondary twin island
chains in the boundary of chaotic regions and the emergence of new
shearless curves in phase space. So, it can be used as a model for these
bifurcations in the shearless curve.
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Fig. A.10. Separatrix reconnection of fixed points z+1 = (0, 1) e z*3 = (1_2,*1) for the Hamiltonian with parameters a = 0.02, ✏ = 0.1 and b = (a) 0.0533, (b) 0.0821003 and (c)
0.133.

Besides, we would like to mention recent numerical and experi-
mental research reporting topological properties of bidimensional dis-
sipative maps [30,31], some of them including shearless attractors in
nontwist systems [32,33].
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Appendix A. Analytical results concerning reconnections

In this appendix, we outline the analytical method used to obtain
the relations (23) and (24). This method was proposed in [34], and is
also applied in other works [9,20,25,35]. An area-preserving map can
be approximated by an autonomous time periodic Hamiltonian flow in
the integrable limit [36]. Therefore, we can study the regular orbits in
the Biquadratic Nontwist Map (10) using the Hamiltonian

H(x, y) = *ay + a(1 + ✏)
3 y

3 * a✏

5 y
5 + b

2⇡ cos (2⇡x), (A.1)

valid for small a and ✏. The aim is to find a relation between the pa-
rameters when the reconnection process occurs. In Hamiltonian flows,
orbits in phase space have the same value of H(x, y). The reconnection
takes place when different manifolds of hyperbolic points (separatrix)
connect. In this situation, they have the same value of H , e.g.,H(0, 1) =
H(1_2,*1). So, the critical parameter for the reconnection of separatri-
ces in points z+1 and z*3 is

b1 =
4⇡a
3 (1 * ✏_5) . (A.2)

Notice that, in the limit ✏ ô 0, we recover the result for the standard
nontwist map [20]. Fig. A.10 illustrates the Hamiltonian phase space
for the same parameters as in Fig. 6. The similarity is evident, and the
critical value for the reconnections is in good agreement with the one
in the Biquadratic Nontwist Map.

The other possible reconnection involves the separatrices of two
pairs of points: z+1 and z+4 , and z*3 and z*2 . Applying the equality of
Hamiltonian in points z+1 and z+4 ,H(0, 1) = H(1_2, 1_

˘

✏), which implies

b2 = 2⇡a (1 * 5✏ + 5✏3_2 * ✏5_2)
15✏3_2

(A.3)

that agrees with the critical value in Fig. 7.
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