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a b s t r a c t

In this work, to support decision making of immunisation strategies, we propose the
inclusion of two vaccination doses in the SEIR model considering a stochastic cellular
automaton. We analyse three different scenarios of vaccination: (i) unlimited doses, (ii)
limited doses into susceptible individuals, and (iii) limited doses randomly distributed
overall individuals. Our results suggest that the number of vaccinations and time to
start the vaccination is more relevant than the vaccine efficacy, delay between the
first and second doses, and delay between vaccinated groups. The scenario (i) shows
that the solution can converge early to a disease-free equilibrium for a fraction of
individuals vaccinated with the first dose. In the scenario (ii), few two vaccination doses
divided into a small number of applications reduce the number of infected people more
than into many applications. In addition, there is a low waste of doses for the first
application and an increase of the waste in the second dose. The scenario (iii) presents
an increase in the waste of doses from the first to second applications more than the
scenario (ii). In the scenario (iii), the total of wasted doses increases linearly with the
number of applications. Furthermore, the number of effective doses in the application
of consecutive groups decays exponentially overtime.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the dynamics of epidemics is an important interdisciplinary research topic [1]. The studies can provide
ontribution to the prevention and control of infectious diseases [2]. An epidemic is the fast spread of infectious diseases
hat produce many infected individuals within a population [3]. Some examples of epidemics are the bubonic plague or
lack Death during the fourteenth century [4], Spanish flu in 1918 [5], Severe Acute Respiratory Syndrome (SARS) in 2002
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6], H1N1 in 2009 [7], and, more recently, in the end of 2019, the novel coronavirus (COVID-19) arose in Hubei Province
n China [8].

There are many ways that can be used to control the infectious disease spread, for instance the minimisation of the
ocial contact [9], quarantine [10], restrictions [1], lockdown [11], and others [2]. One of the most effective strategies is
he application of vaccines [12]. Most mathematical models consider only one dose [10,12]. For some diseases, there are
accines that are administered in two doses, for instance, for the novel coronavirus [12]. With this in mind, we include two
ew compartments in the SEIR model to simulate two doses of vaccination. Our SEIR model is described by a stochastic
ellular automaton and can be adapted for many diseases.
Mathematical models have been used to analyse the dynamical behaviour of epidemics and evaluate strategies to

ontrol them [13–15]. In general, the population is separated into compartments in the mathematical models of infectious
iseases, such as SIS, SIR, SEIR, and SEIRS [16]. The compartments can be susceptible (S), exposed (E), infected (I),
nd recovered (R) individuals. In this work, we choose the SEIR model [17], which can be studied from differential
quations [17] or cellular automata approach. Nevertheless, our model can be modified for the SIR model.
In the SEIR model, the host population is divided into four compartments [18]: S (susceptible) represents the individuals

ho can be infected, when in contact with infected individuals, E (exposed) are the individuals in latent [11,16] and/or
ncubation period [15,19]. The latent period corresponds to the range time in which the individuals do not transmit the
isease [16]. On the other hand, during the incubation period, the exposed individuals can transmit the disease with
lower incidence than infected individuals [15]. In our simulations, E corresponds to a latent period. I (infected) is
ssociated with the individuals that are infected and can transmit the disease. R (recovered) is related to the individuals
hat get immunity or die. The scenario studied does not consider the possibility of reinfection. This model was considered
o simulate the impact of easing restrictions [1], scenarios with reinfection [20], inclusion of vaccine [21], spatiotemporal
volution of epidemics [2]. More recently, Sharma et al. [11] considered a SEIRD model (Death) with delay to predict the
volution of pandemic in India. They analysed scenarios with no lockdown, strict lockdown, and movement with social
istancing.
Etxeberria-Etxaniz et al. [22] considered the vaccination of newborns and periodic impulse vaccination in the SEIR

odel. A stochastic formulation of the SEIR model with the inclusion of vaccination was studied by Balsa et al. [10]. They
onsidered the combination of vaccination and quarantine. Jadidi et al. [23] proposed the vaccination in two steps, vaccine
llocation, and targeted vaccination. The SEIR model with quarantine, isolation, and imperfect vaccine was analysed by
afi and Gumel [24]. Yongzhen et al. [25] reported the effect of constant and pulse vaccination on the SIR model with an
nfectious period. In the SIR model, White et al. [3] included vaccine using cellular automata. Nava et al. [26] studied how
ontrollable parameters can lower the infection spread in an open crowed space. They considered the generalised SEIR
odel with an analytical and cellular automaton approach.
Most of the works considered one dose of vaccine. Recently, De la Sen et al. [27] proposed a SEIR discrete model with

wo vaccination doses that are applied in susceptible individuals. They discussed the influence of the vaccination starting
ime, as well as the effect of the delay between the first and second doses.

In this work, we propose an epidemic SEIR model with two doses vaccinations based on stochastic cellular automata
CA) [28–30]. In the deterministic context, Wolfram defined the CA as discrete idealisations [31,32]. Deterministic CA
volves in accordance with deterministic transition rules [29,33], while the stochastic evolves in accordance with stochas-
ic transition rules [34]. Furthermore, the transition rules can be a mix of deterministic and probabilistic ones [35,36]. One
dvantage of the CA is the possibility of including local features in the model [37]. CA have been applied in various areas,
or instance physics [38] and biology [39,40]. Santos et al. [41] reported that a CA model can reproduce time series of
engue epidemics. Recently, Blavatska and Holovatch [42] investigated infection spreading processes in a CA where only
fraction of individuals is affected by a disease. Mikler et al. [43] studied a stochastic CA to simulate a SIR model with
eographic and demographic characteristics, as well as migratory constraints. In addition, Cavalcante et al. studied a SEIR
odel by means of differential equations and CA [44].
We consider three scenarios of vaccination: (i) unlimited doses in susceptible individuals by means of continuous

accination, (ii) limited doses in susceptible individuals through pulse periodic vaccination, and (iii) limited doses that
re randomly distributed. In the scenario (i), we obtain the variation of the infected individual numbers as a function of
he time of starting the application, the delay between the first and second doses, and the vaccine efficacy influence. The
cenario (ii) permits to find effective ways to manage few doses. In the scenarios (ii) and (iii), individuals are vaccinated
nd the effect occurs only in the susceptible individuals. For these scenarios, we estimate the occurrence of wasted
oses, applied to individuals who received the first dose and are infected before the second dose, as a function of the
onsidered control parameters. We show that the waste in the first dose occurs when the available doses are bigger than
he number of susceptible individuals or the first dose is applied in the individuals outside the susceptible state (third
cenario). Furthermore, we show that the number of vaccinations and time to start the vaccination is more relevant than
he vaccine efficacy, delay between first and second dose, and delay between vaccinated groups. In the scenario (ii), few
wo vaccination doses divided into a small number of applications reduce the quantity of infected people more than into
any applications. In addition, there is a low waste of doses for the first application and an increase of the waste in the
econd dose. The scenario (iii) presents an increase in the waste of doses from the first to second applications more than
he scenario (ii). In the scenario (iii), the total of wasted doses increases linearly with the number of applications. The
umber of effective doses in the application of consecutive groups decays exponentially overtime.
The paper is organised as follows. In Section 2 the model is presented in details. In Section 3, numerical simulations

f the scenario (i) are discussed. Section 4 shows numerical simulations of the scenerii (ii) and (iii). Finally, Section 5

resents our conclusions.
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Fig. 1. Schematic representation of the SEIR model. β is the probability of the susceptible individuals become exposed and λ is the rate of exposed
ndividuals become infected. τ1 and τ2 correspond to the time intervals in which exposed and infected individuals remain in the same state,
espectively.

. Description of the model

Cellular automata are mathematical models characterised by discrete time, space, and state variables. In our model,
ach time step is taken to be one day. The transitions between states occur by local rules. In this work, we build a two-
imensional CA with deterministic and probabilistic transition rules. The CA is given by a lattice (L) composed of N × N
dentical cells [45] with

L = (i, j), i, j ∈ Z∗

+
| 1 ≤ i, j ≤ N. (1)

ach cell is identified by one state x(i, j, t) ∈ U , where the set U = {1, 2, 3, 4} indicates the {S, E, I , R} states, respectively.
For each cell (i, j), a Moore’s neighbourhood V is considered and given by M(i, j) = (i, j)+v, where v ∈ V and V is defined
as

V = {(0, 0), (−1, 0), (−1,−1), (−1, 1), (1, 0), (1,−1), (1, 1), (0,−1), (0, 1)}. (2)

The boundary conditions represented by (i, j) ̸∈ L [3] are given by x(i, j, t) = 0. With this boundary condition the cells are
disposed in a plan. The cells inside of the region delimited by N × N do not interact with the boundary cells. One time
step (one day) is defined when all cells in the lattice are updated in accordance with transition rules.

We consider parameters based on various sources in the literature. The values of the transmission rate are obtained
from Balsa et al. [10]. From Radulescu [17], we use the values related to the infectious period, time to develop symptoms,
and infection rate. The time between doses is obtained from De la Sen et al. [27] and the vaccine efficacy from Voysey
et al. [8].

2.1. Transmission model without vaccination

The total population N ×N is separated into four compartments, as shown in Fig. 1. The susceptible, exposed, infected,
and recovered cells are represented by S(t), E(t), I(t), and R(t), respectively. Individuals in the compartmental S can become
E with probability β when there are I neighbours. After τ1 times, there is a rate λ in which individuals go from E to I .
They stay during τ2 time step in I (infectious period) and then go to R. In the model, we consider that recovered cells
have a permanent immunity. The initial condition is given by a random distribution of infected cells I(0). The major part
of the cells is initially in the susceptible state. The exposed and recovered cells are not considered in the initial time of
the simulation.

The update rule of the individual (i, j) in absence of vaccination depends on its initial state and their neighbouring
states in the previous time, as well as on the transition probability β and λ from the exposed to infected states, and the
time constants τ1 and τ2. The evolution of the CA can be expressed by a time function F given by

F (i, j, t) = f (x(i, j, t − 1), . . . , x(i, j, t − τ ), x(i + α, j + γ , t − 1), β, λ), (3)

where (α, γ ) ∈ V , τ ∈ (τ1, τ2).
The transition rules can be summarised as:

(1) Each infected cell (x(i, j, t) = 3) can infect a neighbour in a susceptible state (x(i, j, t) = 1) with probability β .
In other words, if the cell is in the susceptible state with one or more (up to eight) infected neighbours, each
infected cell will try to transmit the disease to the susceptible with a probability β . Once infected, the susceptible
cell (x(i, j, t) = 1) will evolve in the next step (day) to the exposed state (x(i, j, t) = 2).

(2) After evolving to the exposed state (x(i, j, t) = 2), the cells stay in this state by τ1 time steps (days units). In the
next step, a fraction λ of exposed cells evolve to the infected state (x(i, j, t) = 3).

(3) If the cells are infected (x(i, j, t) = 3), they remain in the infected state by τ2 time steps. After τ2, infected cells
evolve to a recovered state (x(i, j, t) = 4).

(4) After evolving to the recovered state (x(i, j, t) = 4), the cells stay in there all the time.

An illustration of one spatial time evolution of the CA is displayed in Fig. 2. In Fig. 2(a), we see the states distribution
for t = 300. Fig. 2(b) exhibits the magnification of the region delimited in the panel (a) by a white square. Figs. 2(c)
and 2(d) show the spatial evolution for t = 600 and t = 900, respectively. In Fig. 2(b), the borders composed of green
and red cells represent the individuals in the exposed and infected states, respectively. These borders evolve overtime in
circular waves from the central region, as shown by means of the blue cells that represent the recovered states. In the
final evolution of the system, the lattice exhibits only blue cells, which is the disease-free equilibrium solution, where the

eradicating of the illness is found.
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Fig. 2. Spatial time evolution of the CA for N = 1000, I(0) = 15, λ = 1/3, β = 1/4, τ1 = 6, τ2 = 14. (a) States distribution for t = 300 and (b)
magnification of the region delimited by the white square in panel (a). The panels (c) and (d) show the states distribution for t = 600 and t = 900,
respectively. In the black, red, green, and blue regions, we observe the susceptible, infected, exposed, recovered states, respectively.

Fig. 3. SEIR model with two vaccination doses. The first and second doses are the two new cell states, being represented by V1 and V2 . The parameters
v define the fraction of the susceptible that receive the first dose. ψ and δ correspond to the first and second doses efficacy, respectively. τ3 is the
ime interval between the first and second doses, and τ4 is the time to arrive in the recovered state from the V2 .

Fig. 4. Schematic representation of three scenarios for vaccination. The panel (a) illustrates the (i) scenario. The panel (b) is a schematic representation
of the (ii) scenario, and the panel (c) is the representation of the (iii) scenario. The blue bars indicate the amount for first dose and the green bar
correspond to the second dose.

2.2. Transmission model with vaccination

In our CA model, we include vaccinations that are divided into unlimited and limited doses. In this case, we consider
the states U = {1, 2, 3, 4, 5, 6}, where the two new ones x(i, j, t) = 5 and x(i, j, t) = 6 represent the cells that receive
the first V1 and second V2 doses of the vaccine. Fig. 3 displays the schematic representation of the SEIR model with the
first and second doses, named as SEIR2V. This schematic representation is valid for the scenario (i) (unlimited doses) and
scenario (ii) (limited doses), where only the susceptible cells are vaccinated. In the scenario (iii), the vaccine doses are
andomly distributed in all lattice.

The scenarios for vaccine application are illustrated in Fig. 4. The blue bars indicate the total available first doses and
he green bars correspond to the second doses. First, we consider the scenario (i), as illustrated in Fig. 4(a). In the time
v1 , a fraction fv of susceptible cells are vaccinated with the first dose, evolving to the V1 state. In the time tv1 +1, another
susceptible fraction (fv) receives the first dose. And so on, every day, until the infected number goes to zero. In this sense,
we say that available doses are unlimited. The cells that go to the first dose vaccinated state V1, remain in this state
during τ3 time steps before receiving the second dose. The time τ3 is the delay between the first and second doses. The
probability of these cells get infected is 1 −ψ , where ψ is the first dose efficacy. After τ3 (time delay), in tv2, the second
ose is applied in the cells in V states. The cells, that get the second dose, are the cells that were not infected while stay
1

4
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Fig. 5. (a) Average time of the SEIR model without vaccination. The green, orange, red, and blue lines denote ⟨S⟩, ⟨E⟩, ⟨I⟩, and ⟨R⟩, respectively.
b) Number of infected individuals for the case without vaccination (red line), where σ is the standard deviation for 50 simulations, and for the
cenario (i) with vaccination (black line). We consider β = 1/4, λ = 1/3, τ1 = 6, τ2 = 14. In the panel (b), the parameters of the vaccination are
v1 = 60, tv2 = 84 (indicated by vertical dashed lines), τ3 = 24, τ4 = 10, fv = 0.02, ψ = 0.66, and δ = 0.75. The time unit is day.

n V1 state. After receiving the second dose, the probability of the cells in V2 states get infected is 1 − δ, where δ is the
ooster efficacy. The cells, that are not infected in the period τ4, evolve to R state. Fig. 4(b) illustrates the (ii) scenario,
here the amount of dose is a fixed number, given by DT = fv · N2. The vaccination starts at tv1 with the application of
T doses in the susceptible cells. The next group receives the first dose after ∆tv times in a pulsed way. The application
f the second dose occurs in the same way. The second dose application starts in tv2 with DT doses that will be applied in
ninfected cells belonging to the first vaccinated group. The different susceptible groups and V1 groups, that receive the
irst and second doses, are denoted by m with m ∈ Z∗

+
. The time application of the first and second doses in subsequently

ell groups is given by tmv1,2 = tm−1
v1,2 + ∆tv , where m ≥ 2, t1v1,2 = tv1,2 , and ∆tv is the interval between the applications.

n this context, the (i) scenario has ∆tv = 1. Fig. 4(c) illustrates the (iii) scenario. The application protocols are the same
hat (ii) scenario. The difference is that instead of applying the first dose in susceptible cells, the application of DT doses
ccurs in all cells that belong to the lattice. However, the effect occurs only in susceptible cells. In this sense, we use the
erm wasted doses to refer to the doses given to exposed, infected, or recovered individuals. These applied doses will not
ontribute to preventing newly infected individuals. In this way, the total number of doses is represented by NT = DT ·NApp,
here NApp is the total number of applications. The total amount of vaccines in each dose DT can be identified as the sum
f the effective (Deff) and wasted doses (Dw), corresponding to DT = Deff + Dw.
To simulate the CA with the two new compartments, we consider new rules:

(5) Given a cell in V1 state, if this cell has one or more infected neighbours, it can be infected with 1 − ψ probability,
where ψ is the first dose efficacy. If the vaccinated cell is infected, it evolves to an exposed state, such as a
susceptible cell in the model without vaccination.

(6) The uninfected cells in V1, evolve to V2 state after a time delay, τ3.
(7) If the cell in V2 has one or more neighbours in an infected state, it can be infected with 1 − δ probability, where

δ is the booster efficacy. If the vaccinated cell is infected, it evolves to an exposed state. The cells that cannot be
infected evolve to the recovered states after τ4.

Fig. 5(a) shows the time evolution of the SEIR model without vaccine application, where the green, orange, red, and
lue lines represent the average of susceptible, exposed, infected, and recovered cells, respectively. In Fig. 5(b), we present
he infected curve for the scenario (i) of vaccination (black line) and no vaccine (red line). In the considered example, the
irst and second vaccination times are, respectively, tv1 = 60 and tv2 = 84. With and without vaccination control, the
isease eradication is obtained for T0 = 218 and 360 time steps, respectively.
In Sections 3 and 4, we consider N = 100, λ = 1/3, β = 1/4, τ1 = 6 days, τ2 = 14 days, τ3 = 24 days, τ4 = 10 days.

he initial numbers of cells are given by I(0) = 15, S(0) = N2
− I(0), and E(0) = R(0) = V1(0) = V2(0) = 0. Our results

re calculated by means of an average of 50 independent repetitions, denoted by ⟨.⟩.

. Unlimited doses

Figs. 6(a) and 6(b) exhibit the infected cells overtime due to the influence of different values of fv and τ3, respectively.
he red dash-dotted line represents the case without vaccination. The vertical black dashed line indicates the start of the
irst and second doses. In Fig. 6(a), the infected curve suffers narrowing when fv is increased, implying in the decrease
f the area under the respective curve. The normalised area (An = 1) covers the red dash-dotted curve. Increasing the fv
alues from zero, the normalised areas are equal to An = 0.80, 0.70, 0.62, and 0.57, respectively. As a result, the system
oes to the disease-free equilibrium point earlier. In Fig. 6(b), we observe that an increase in τ3 generates wider infected
urves. The green, blue, magenta, and vertical black dashed lines indicate the start time of the second dose considering
3 = 20, 24, 28, and 30, corresponding to An = 0.59, 0.62, 0.65, and 0.65, respectively. For τ3 ≥ 20 occurs an increase in
he area, however, the influence of this parameter on the dynamics is less pronounced than f .
v
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Fig. 6. (a) Average of infected cells overtime for different values of fv . Vertical black dashed lines indicate the starting of the first (tv1 = 60) and
econd (tv2 = 84) doses. In the panel (b), infected cells overtime for different values of τ3 and fv = 0.05. The vertical coloured lines represent the
tarting of the second dose vaccination for different values of τ3 . The red dash-dotted line represents the case without vaccination. In the panel (b),
the insert shows the whole curve. The considered value of vaccination efficacy for the first and second doses are ψ = 0.66 and δ = 0.75. The time
nit is day.

Fig. 7. (a) Average of infected cells overtime for different values of ψ for δ = 0.95 and fv = 0.05. (b) Different values of δ overtime for ψ = 0.66 and
v = 0.05. The vertical dashed lines indicate the time in which the first and second doses are administrated. The red dash-dotted line corresponds
o the case without vaccination. The time unit is day.

Fig. 8. (a) Time for the disease eradicating (T0) and (b) normalised area under the infected curve (An) as a function of tv1 and fv for ψ = 0.66 and
= 0.75. The time unit is day.

We investigate the influence of the efficacy of the first and second doses, denoted by ψ and δ, respectively, in the
nfected curves. Figs. 7(a) and 7(b) display the infected curves overtime for different values of ψ and δ. In Fig. 7(a), we
ee that the infected curve goes faster to zero for large values of ψ . In this case, we consider the second dose efficacy
s δ = 0.95. For ψ = 0.66, Fig. 7(b) shows that the infected curve is narrowed when δ is increased. In both cases, the
reas do not change significantly. Therefore, for this range of values, we do not observe significant effect on the dynamical
ystem.
Fig. 8(a) exhibits the time for disease eradication (T0) as a function of tv1 and fv. In Fig. 8(b), we calculate the normalised

rea (An) under the infected curve as a function of tv1 and fv. Our results show that earlier to start the first dose application
ore effective is the vaccine. The fv values larger than 0.01 affect positively the dynamics for tv1 ≤ 30, namely, for these
alues T0 and An are significantly reduced. For small fv or large tv1 values, the effect of vaccination on T0 can occur,
owever, it is reduced. The major reduction in T0 and An happens for large fv and small tv1 . For fv ≤ 0.01, the effects of
are smaller than f ≈ 0.01. The total number of infected individuals is smaller for f ≥ 0.01, as shown in Fig. 8(b).
0 v v
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Fig. 9. (a) Average of infected cells overtime for different values of ∆tv and fv = 0.03. The green, blue, magenta, and black lines correspond to
he values of ∆tv equal to 1, 5, 7, and 15, respectively. (b) Average of infected cells overtime for different values of fv and ∆tv = 7. The green,
blue, magenta, and black curves correspond to the values of fv equal to 0.01, 0.03, 0.06, and 0.15, respectively. The vertical dotted lines indicate
the first and second doses applied in the first cell groups. The red dash-dotted line represents the situation without vaccination. The parameters for
vaccination are given by ψ = 0.66, δ = 0.75, tv1 = 60, and tv2 = 84. The time unit is day.

Fig. 10. (a) Average of infected curve overtime for different values of NApp and NT = 3621 for each dose. (b) Time distribution of first and second
vaccine doses for NApp = 12 in the panel (a). (c) Average of infected curve overtime for different values of NApp and NT = 6073 for each dose. (d)
Time distribution of vaccine doses for NApp = 12 in the panel (c). In the infected curves, the green, blue, magenta, and black lines correspond to
NApp = 1, 8, 12, and 15, respectively. The vertical black dashed lines indicate the time of the first and second doses for the first cell groups. The
red dash-dotted line represents the case without vaccination. In the time distribution of vaccines, the blue and green bars represent the first and
second effective doses, respectively. We consider ψ = 0.66, δ = 0.75, tv1 = 60, tv2 = 84, and ∆tv = 7. The time unit is days.

. Limited doses

In the scenario (ii), we investigate the effect of different times among different groups who received the first and
econd doses (∆tv) in the susceptible cells. We consider fv = 0.03 and DT = 300 for each application, as well as we vary
the values of ∆tv, as shown in Fig. 9(a). The values of An are equal to 0.58, 0.73, 0.79, and 0.89 for the green, blue, magenta
and black curves, respectively. Then, an increase in ∆tv contributes to an increase in An. Therefore, the vaccine is more
effective for small values of ∆tv.

Fig. 9(b) shows the influence of fv for ∆tv = 7. In the scenario (ii), the wasted doses in the first dose vaccination occur
when DT is larger than the number of susceptible individuals. For fv = 0.01 (green curve), fv = 0.03 (blue curve), fv = 0.06
(magenta curve), and fv = 0.15 (black curve) the cells number who receive the first dose are Deff ≈ 1500, 3621, 4835, and
6073, respectively. The An values are given by 0.92, 0.78, 0.70, and 0.60. For fv = 0.01, the number of infected individuals
goes to zero approximately when there is no vaccination. For large values of fv, the number of infected individuals goes
to zero faster. The increase of fv implies in a reduction of the area and the equilibrium point is achieved earlier.

Fig. 10 displays the effect of dividing the total amount of doses NT into many applications NApp that are spaced out by
∆tv = 7 with NApp ∈ Z∗. Figs. 10(a) and 10(b) exhibit the dynamics for NT = 3621 and the time distribution of first and
second vaccine doses for NApp = 12. The values of An are equal to 0.74, 0.77, and 0.79. Fig. 10(c) shows the time series
for NT = 6073 and the time distribution of vaccine for NApp = 12 is shown in 10(d). In Figs. 10(b) and 10(d), the blue
and green bars indicate the effective doses in the first and second doses applications, respectively. The grey bars denote
the total quantity of available first doses (D ). For simplicity, the total quantity of available second doses is omitted in the
T
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Fig. 11. (a) Average infected curve overtime for different values of fv . The green, blue, magenta, and black curves denote the results for fv equal to
0.03, 0.06, 0.15, and 0.40. The vertical dashed lines indicate the starting of vaccination. The red dash-dotted line is without vaccination. (b) Time
distribution of the effective doses for fv = 0.03. The grey bar indicates the available quantity of each dose (DT), the blue bar indicates the effective
first dose (V1), and the green bar denotes the effective second dose (V2). We consider ψ = 0.66, δ = 0.75, and ∆tv = 7. The time unit is day.

Fig. 12. (a) Infected cells curves in the scenario (iii) considering different values of ∆tv . The green, blue, magenta, and black curves correspond to
∆tv = 1, 5, 7, and 15, respectively. The vertical black dashed lines indicate the time of application of the first and second doses at tv1 = 60 and
v2 = 84. The red dash-dotted line corresponds to the case without vaccination. (b) Time distribution for the vaccine, where the grey bar is the total
ose available (DT), the blue bars correspond to the effective dose for the first dose (V1), and the green bar is the effective dose for the second dose
V2). We consider ψ = 0.66, δ = 0.75, fv = 0.03. The time unit is day.

igures, however, the same DT is displaced in time. The effectiveness of the first doses, represented by the blue bars, is
qual to Deff = 3503 in the panel (b) and Deff = 4529 in the panel (d). In the last applications of the first doses, we observe
decrease in the effective doses. This behaviour occurs due to the number of available dose (DT) to be larger than the
umber of susceptible cells. The effectiveness of the second dose, represented by the green bars, suffers a higher decrease
n the amplitude, that occurs by a sum of factors. The cells that receive the second doses come from the successful first
oses. In this way, it is expected a wasted of at least 1 − ψ in the V2 state for the range time that DT is not larger than

the number of susceptible individuals. This behaviour can be seen in the time distribution shown in Fig. 10(b).
In Fig. 10(c), the behaviour significantly depends on NApp. The An values are 0.58, 0.68, 0.73, and 0.75. Therefore, the

ame doses quantity has an effect more pronounced for a small number of applications, despite the eradication point
s reached later. In Fig. 10(d), the blue bars decrease due to the fact that the number of susceptible individuals is less
han the available doses. In the green bars, the decrease occurs by the same effect that in Fig. 10(b). The decay is more
ronounced by the decrease in the blue bar.
The scenario (iii) is similar to the scenario (ii), except that the doses are randomly distributed over all cells. Fig. 11(a)

hows the infected cells overtime for some values of fv for ∆tv = 7. Fig. 11(b) displays the time distribution of the
vailable vaccine DT (grey bar), and the effective first (blue bar) and second (green bar) doses for fv = 0.03. In Fig. 11(a), the
ormalised area under the green, blue, magenta, and black curves are An = 0.91, 0.83, 0.69, and 0.59, respectively. Similar
esults are found in the scenario (ii) (Fig. 9(b)), namely, the vaccination becomes more effective for large fv. However, the
asted doses in V1 and V2 are larger. This occurs due to the fact that the cells leave the susceptible state overtime.
The influence of ∆tv on the infected curves is shown in Fig. 12(a) for fv = 0.03. The values of An are equal to 0.65,

.88, 0.91, and 0.95 for the green, blue, magenta, and black curves, respectively. In Fig. 12(b), the time vaccine distribution
hows the effective doses for the first V1 (blue bars) and second V2 (green bars) applications, as well as the available doses
T (grey bars). The fraction of wasted doses is 0.68 for V1 and 0.78 for V2. We verify that the vaccine intervention is more

effective for smaller ∆tv, however, the wasted doses are larger.
We investigate the influence of the number of applications considering the scenario (iii). The results in Fig. 13 are

similar to Fig. 10 (scenario (ii)). Fig. 13(a) shows the time evolution of the infected curve for 3621 doses and NApp equal to
(green), 8 (blue), 12 (magenta), and 15 (black). The time distribution of the vaccines for NApp = 12 is shown in Fig. 13(b).
igs. 13(c) and 13(d) exhibit our results for 6073 available doses. The effect of vaccine application is less pronounced than
8
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Fig. 13. (a) Average of infected curves overtime for NT = 3621 doses and NApp equal to 1 (green), 8 (blue), 12 (magenta), and 15 (black). (b) Time
distribution of vaccines for NApp = 12 with the effective vaccine for the first doses (blue bars), second doses (green bars), and available doses (grey
bar). (c) Average of infected curves overtime for NT = 6073 doses. (d) Time distribution of vaccines for NApp = 12 with the effective vaccine for
the first doses (blue bars), second doses (green bars), and available doses (grey bar). The red dashed–dotted line is without vaccination. The black
vertical dashed lines indicate the time of the first and second doses for the first cell groups. We consider ψ = 0.66, δ = 0.75, and ∆tv = 7. The
ime unit is day.

Fig. 14. Comparison between the scenarios (ii) (continued lines) and (iii) (dash-dotted lines). The vaccinations start at tv1 = 60 and tv2 = 84 (vertical
ashed lines). The red dashed line is for the case without vaccination. We consider ψ = 0.66, δ = 0.75, and ∆tv = 7. The time unit is day.

n Fig. 10 due to the number of wasted doses to be larger, as shown in Fig. 13(b). The areas for these curves increase with
he application number. Nevertheless, an increase in the application number implies an increase in the wasted doses.
he effective doses decrease overtime, as a result of the increase in the number of exposed, infected and recovered cells
vertime. Furthermore, we observe that in the scenario (iii), the number of effective doses in the application of consecutive
roups decays exponentially according to ∆tv.
The difference between the scenarios with limited doses is that for the scenario (ii) the individuals are tested and then

eceive the vaccines, while in the scenario (iii), the vaccines are randomly distributed and consequently it is observed
larger waste of doses. In Fig. 14, the continuous lines show the results for the scenario (ii) and dash-dotted lines for

he scenario (iii). These results demonstrate that the scenario (ii) is more effective than the scenario (iii) when the same
umber of doses are available.
Fig. 15 displays the fraction of wasted dose as a function of NApp for the scenarios (ii) and (iii) by means of circles and

quares, respectively. In some cases occur the waste in the first dose for the scenario (ii) due to the fact that the total
uantity of available doses is larger than the number of susceptible individuals. In these cases, the average of wasted doses
s equal to 0.01. In the second dose, the wasted doses in the scenario (ii) remains approximately constant, exhibiting an
verage value about 0.32. On the other hand, the wasted doses in the scenario (iii) have a linear dependency on the
umber of applications. For the first dose, the average of the wasted doses is about 0.60 and for second is about 0.72.

. Conclusions

In this paper, we introduce two vaccination doses in the SEIR model by means of a stochastic cellular automaton,
amed SEIR2V. We consider probabilistic transitions in our cellular automaton. There are transitions from susceptible
o exposed states and from exposed to infected states after latent periods. The individuals in the infected state go to
9
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Fig. 15. Comparison between the fraction of wasted doses as a function of NApp in the scenarios (ii) (circles) and (iii) (squares) for the (a) first and
b) second doses. We consider ψ = 0.66, δ = 0.75, ∆tv = 7, tv1 = 60, and tv2 = 84. The time unit is day.

ecovered states after an infectious period. In our model, the disease propagation occurs by contact in a two-dimensional
pace with a fix position, such as in a conduction process. A discussion of convection-like process, i.e. movements in the
odel, can be found in [46] and the influence in a CA model in [47]. In future works, we plan to analyse the effects of
ovement in our model. We use parameters that are related to types of illnesses and can be adapted for many other

nfectious diseases. Depending on the parameter values, it is possible to find an equilibrium point that is related to the
isease-free.
In our model, we consider the inclusion of two new compartments, which are associated with the individuals

accinated with the first and second doses. As a result, a fraction of individuals transit between these two states. The
ynamic behaviour of the model depends on the time between the dose applications, the efficacy of the first and second
oses, and the time of immunisation after the vaccine application. The inclusion of two doses vaccinations allows us to
nvestigate the influence of different strategies to realised the immunisation of the individuals. In this work, we analyse
wo major scenarios, where there are unlimited and limited doses of vaccines.

Unlimited doses of vaccines are considered in the scenario (i), while limited doses are analysed in the scenarios (ii) and
iii). In the scenario (i), we observe that the cellular automaton converges early to a disease-free equilibrium for a fraction
f individuals vaccinated with the first dose (fv) greater than 0.01 starting at a small time (tv1 ). Similar results are found
or other tv1 values when fv ≥ 0.08. For small values of tv1 , earlier eradicating points are achieved. More important than
accine efficacy and delay between the first and second doses are the quantity of effective vaccination and how earlier
he application starts.

The scenarios (ii) and (iii) are more realistic, since in real situations the number of doses is limited. The scenario (ii)
epresents the case in which all population is tested and only the susceptible individuals are vaccinated. In this scenario,
e consider a new parameter ∆tv, which is the interval between the applications of vaccines in different groups. We

verify that the vaccination is more effective for small intervals of applications. When the total available doses are divided
into many applications, the best strategy is to administrate the doses through few applications. Despite the disease-free
points, they are reached earlier when the number of applications (NApp) is larger, while the total number of infected cells
is small when NApp is small. In this strategy, the number of wasted doses in the first application is minimal (≤ 13%), while
he fraction of wasted doses in the second application is in the range from 20% to 45%.

The scenario (iii) corresponds to the case in which the population is not tested and the available doses are randomly
istributed. In this scenario, the vaccination is less effective than the scenario (ii) due to the number of wasted doses.
he dose effectiveness decays exponentially according to ∆tv. The wasted doses can be minimised in this scenario by
ollecting the available doses and apply them just once. In this strategy, the number of wasted doses in the first and second
pplications exhibits approximately a linear growth with the number of applications, being larger than the scenario (ii).
All in all, independently from the strategy, the results can be improved when the vaccination campaign starts early

nd with a large number of vaccinated individuals.
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