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ABSTRACT

We study three different strategies of vaccination in an SEIRS (Susceptible–Exposed–Infected–Recovered–Susceptible) seasonal forced model,
which are (i) continuous vaccination; (ii) periodic short-time localized vaccination, and (iii) periodic pulsed width campaign. Considering
the first strategy, we obtain an expression for the basic reproduction number and infer a minimum vaccination rate necessary to ensure
the stability of the disease-free equilibrium (DFE) solution. In the second strategy, short duration pulses are added to a constant baseline
vaccination rate. The pulse is applied according to the seasonal forcing phases. The best outcome is obtained by locating intensive immuniza-
tion at inflection of the transmissivity curve. Therefore, a vaccination rate of 44.4% of susceptible individuals is enough to ensure DFE. For
the third vaccination proposal, additionally to the amplitude, the pulses have a prolonged time width. We obtain a non-linear relationship
between vaccination rates and the duration of the campaign. Our simulations show that the baseline rates, as well as the pulse duration, can
substantially improve the vaccination campaign effectiveness. These findings are in agreement with our analytical expression. We show a
relationship between the vaccination parameters and the accumulated number of infected individuals, over the years, and show the relevance
of the immunization campaign annual reaching for controlling the infection spreading. Regarding the dynamical behavior of the model, our
simulations show that chaotic and periodic solutions as well as bi-stable regions depend on the vaccination parameters range.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169834

The spread of infectious diseases is a challenge to world public
health. Many efforts are dedicated to mitigating the impacts of
the spreading of diseases. In this context, a mathematical model
is a powerful tool to simulate, forecast, and study efficient con-
trol measures for human and wildlife diseases. Although there
are many types of diseases, some of them have common charac-
teristics, for instance, to repeat the peak of infectious in certain
times. These diseases are called seasonal, e.g., measles, mumps,
and smallpox. The reasons for the seasonality can be varied, such
as climate and social behaviors. Due to the seasonal characteris-
tics of these diseases, they recur in the populations, and control
measures are needed to be implemented in order to eradicate

them. One of the most successful control measure is a vaccina-
tion campaign, which can be continuous or periodic. Continuous
vaccination is a campaign in which a constant quantity of vac-
cines is daily available to the population throughout the year,
while the periodic strategy considers an intense immunization
campaign, during a fraction of the year. In this work, we study
the impacts of vaccination in an SEIRS model with seasonal forc-
ing. We consider newborns vaccine and susceptible vaccination,
administrated in three different ways: (i) continuous vaccination;
(ii) periodic short-time localized vaccination, and (iii) periodic
pulsed width campaign. For the periodic strategies, we consider
a baseline rate. In the constant vaccine context, we obtain an
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analytical expression for the vaccination rate in which the DFE
is guaranteed. For the parameters considered, the annually vac-
cinated value is in agreement with numerical simulations for all
the vaccine strategies. Furthermore, considering parameters for
which bi-stability exist in the case without vaccine, our results
show that it persists depending on the vaccination rate.

I. INTRODUCTION

Infectious diseases spreading is a highly important problem in
public health.1 The spread of infectious diseases affects the human-
ity throughout whole history,2 e.g., Black Death during the four-
teenth century,2 Spanish flu in 1918,3 COVID-19,4 Dengue fever,5

HIV,6 etc.7–9 Some of these illnesses present seasonal patterns of
incidence,10 namely, seasonal infectious diseases.11 The mechanisms
of seasonality are varied, such as weather,12 school holidays,13 and
others.14 Examples of seasonal infectious diseases are mumps,15

measles,1 and dengue fever.16 An introduction to corresponding
models is found in Refs. 10 and 11.

Mathematical models are a powerful tool for studying the
spread of diseases, through predictions of new outbreaks and sim-
ulation of control measures.17 In epidemiology, the standard models
are compartmental,18 where the host population is compartmen-
talized according to the stages of the infection evolution and the
possible states considered. The individuals in the host population
are taken from susceptible to possible intermediate stages, as infec-
tious and recovered. Depending on the disease to be modelled,
when an infection cycle is completed, the individuals can acquire
permanent immunity19 or become susceptible again. These models
are easily adapted to study different diseases, as seasonal infectious
ones,20 which can be modelled by the inclusion of a nonlinear time-
dependent term in the transmissivity, e.g., a sinusoidal forcing21

or a square wave function.22 Due to this non-linearity, the result-
ing dynamics can become very intricate, even exhibiting chaos23 or
bi-stability.24

From a modeling perspective, seasonal models have been used
since 1928.11 These models reproduce the dynamics observed in
diseases, such as measles,23 chickenpox, mumps,25 and others,10

with great accuracy. In a formulation of the SIRS (Suscepti-
ble–Infected–Recovered–Susceptible) model with seasonal contact
rate, Greenhalgh and Moneim26 showed the existence of a unique
DFE solution, which is globally asymptotically stable when the basic
reproduction number is less than one (R0 < 1), where R0 is a mea-
sure of the reproductive potential for a given disease. In a popula-
tion, where everyone is initially susceptible, the infection can remain
only if R0 > 1.20 Furthermore, Greenhalgh and Moneim considered
four childhood infectious diseases (measles, chickenpox, mumps,
and rubella) and showed non-trivial solutions (chaotic dynamics).
These results are found by analyzing the bifurcation diagram, where
some ranges exhibit chaotic attractors. Also in an SIR (Suscepti-
ble–Infected–Recovered) framework, de Carvalho and Rodrigues27

implemented a multi-parameter periodically forced term leading to
strange attractor solutions. In their formulation, the DFE is not pre-
served when R0 < 1. Metcalf et al.28 studied the seasonal variation
of six childhood infections (measles, pertussis, mumps, diphtheria,

varicella, and scarlet fever) from the data of Copenhagen in the pre-
vaccination era. Their results showed that the transmission disease
decreases for some infections at school holidays.

Previous works reported the capacity of compartmental mod-
els to reproduce chaotic dynamics29 and the accuracy in simu-
lating real data.4,30 However, one of the most important advan-
tages in using compartmental models is the facility to imple-
ment important characteristics to simulate control measures, such
as social distancing,31,32 restrictive measures,17,33 quarantine,35,36

vaccination,37,38 etc. Despite there are some forms of control, one of
the most effective is vaccination.36,39,40

Vaccination campaign in infectious seasonal diseases shows a
significant infected number decrease.14,41,42 Gao et al.43 studied the
vaccination of newborns combined with pulsed vaccine in an SIRS
seasonal forced model in a modeling approach. One of the results
obtained in this research is the DFE when R0 < 1. The rotavirus
vaccination was studied by Atchison et al.44 using a modified SIR
model to fit the data from England and Wales. From these sim-
ulations, they reported that vaccination reduces rotavirus diseases
transmission by 61%. Considering a pulsed vaccination strategy in
an SIR model, Shulgin et al.45 showed the possibility of disease
eradication with relatively low vaccination rates. To get disease erad-
ication, they explored some conditions, as vaccine proportion and
periodicity. The effects of two vaccination doses in an SEIR (Suscep-
tible–Exposed–Infected–Recovered) epidemic model was studied by
Gabrick et al.46 In this work, they considered three vaccination
strategies: unlimited doses applied continuously in the susceptible
population, limited doses supply applied periodically in the suscep-
tible population, and limited doses applied in a periodic strategy in
all host population. Their results showed that the vaccine campaign
is more efficient when applied only in susceptible individuals, i.e.,
the population is previously tested. Considering a Kot-type function
as seasonality, Duarte47 analyzed the control of infectious disease
with vaccination strategies including a perturbation term. Seasonal
contact and optimal vaccination strategy were studied by Wang48

in an SEIR model. The persistence or extinction of a seasonal dis-
ease with reinfection possibility was discussed by Bai and Zhou.49

They explored the conditions for the extinction of the diseases in
the situations where R0 < 1 and also R0 > 1. Their results showed
that R0 = 1 is the threshold for disease extinction. However, from
simulations, a policy only based on R0 can overestimate the infec-
tions’ risks and the infected number due the presence of seasonality.
Periodic strategy vaccination in an SEIRS model was discussed by
Moneim and Greenhalgh.50 The vaccine periodicity was described
as integer multiples of the contact rate period. They reported that a
key parameter to understand the vaccine influence is the R0. Also,
they proved that R0 < 1 is associated with the DFE and is globally
asymptotically stable. Other works that address the vaccination of
seasonal diseases can be found in Refs. 51–54 and in the references
therein.

In this work, we study the effects of vaccination in an SEIRS
seasonal forced model.24,49 We substantially extended the works
of Moneim and Greenhalgh50 and Gabrick et al.24 The first one
explored the effects of periodic vaccination and conjectured one R0

as a function of vaccine parameters. However, the authors did not
explore the effects of constant vaccine and periodic pulses with dif-
ferent widths. In the second one, the authors obtained a parameter
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range in which the numerical solutions exhibit bi-stability and tip-
ping point phenomena can be explored. However, they did not taken
into account the vaccine influences in the dynamical behavior. In
this way, our work extend the Ref. 50 by implementing three differ-
ent strategies of vaccination in susceptible and newborn individuals,
namely, (i) constant, (ii) pulsed, and (iii) pulsed width vaccination
strategies. We choose these three strategies because (i) it can be
used to model mass vaccination programs;55 (ii) it can be consid-
ered to model a scenario in which a certain amount of vaccination
(baseline) is available during all the time, but periodically an intense
campaign is employed;56 and strategy (iii) modified (ii) by extend-
ing the duration of the intensive immunization campaign to days,
weeks or months, i.e., it saves vaccination efforts. Then, consider-
ing the parameters found in Ref. 24 for bi-stability, we explore, as
novelty, the dynamical aspects of the SEIRS seasonal in the pres-
ence of vaccine, according to the three strategies mentioned. Our
simulations show that for the (i) case, the vaccine in susceptible
is more significant and rates ≥ 44% are able to extinct the infec-
tion in the host population. In the (ii) scenario, we found a linear
relationship between the baseline and pulsed immunization rate to
result in infection eradication. Also, acting the pulses at the inflec-
tion point of the seasonality function, the campaign is slightly more
effective. To the strategy (iii), we discover a non-linear relationship
between the immunization campaign parameters that leads to the
illness extinction.

The current work is organized as follows: in Sec. II, we present
the model and its equilibrium solutions, from which we obtain the
R0 as well as a minimum rate to eradicate the disease. In Sec. III we
discuss the effects of constant vaccination in the model. The pulsed
vaccination strategy is discussed in Sec. IV, and the implementation
of pulsed width in the vaccine campaign is present in Sec. V. Finally,
our conclusions are drawn in Sec. VI.

II. MODEL

SEIRS is a compartmental epidemiological model that
describes the spread of a given infectious disease in a homoge-
neously mixed host population, in which individuals are computed
into one of the four compartments, namely, susceptible in S, exposed
and not yet contagious in E, infectious in I, and recovered in R.20 The
population size (N = S + E + I + R) is time-dependent when the
natural death rate (µ) is not equal to the birth rate (b). The transi-
tion flow between the compartments is schematically represented in
Fig. 1. Susceptible individuals become infected through interaction
with contagious agents at a rate βI/N, where β is the transmit-
ting infection rate per interaction. Once a portion of S is infected,
it evolves to E, remaining in this compartment by an average time
given by 1/α (latent period). The parameter α is the rate at which
exposed individuals become infectious, migrating to compartment
I. Individuals remain in I by an average time 1/γ (infectious inter-
val), after that they occupy the R compartment, the parameter γ is
called recovery rate. In this model, there is no permanent immu-
nity; then, after an average interval 1/δ, the individuals in R return
to S,18 in which δ is the immunity loss rate. Furthermore, we con-
sider vaccination of newborns and susceptible.50 A fraction p ∈ [0, 1]
of newborns are directly immunized, and a portion of S is vacci-
nated at a rate v with effectiveness λ ∈ [0, 1]. The vaccine effect is to

FIG. 1. Schematic representation of the SEIRSmodel with vaccine inclusion. The
compartments (colored boxes), indexed by variables of the system (1), contain
fractions of the population at each stage of infection spread. Arrows indicate the
flow between them, increase in newborns and loss of population due to death,
accompanying the respective transition rates.

give immunity to individuals, transferring, in this model, newborn
and susceptible ones to the recovered class. Given the nature of the
model, all parameters are non-negative real numbers.

The SEIRS model with vaccination, as described above, is
given by the following system of four coupled ordinary differential
equations:50

dS

dt
= b(1 − p)N + δR −

(
β

I

N
+ λv + µ

)
S,

dE

dt
= β

SI

N
− (α + µ)E,

dI

dt
= αE − (γ + µ)I,

dR

dt
= bpN + λvS + γ I − (δ + µ)R.

(1)

Other effects also can be considered in this model and incorpo-
rated into Eq. (1), such as reaction–diffusion57 and delay,58 but this
is beyond the present work and will be studied next. Seasonality is
included in the model by replacing β by a periodic function,

β(t) = β0 [1 + β1cos(ωt)] , (2)

where β0 is the average contagion rate, the seasonality degree is β1 ∈

[0, 1], and ω is its frequency.23

From Eq. (1), the sum of variables followed by a simple manip-
ulation provides us the growth rate of the host population dN/dt
= (b − µ)N. Considering this result, the Eq. (1) can be rewritten in
a normalized form, without loss of generality, by taking59

S = Ns, E = Ne, I = Ni, and R = Nr,

which gives the respective transformations for the time derivatives
of the variables,

ds

dt
=

1

N

(
dS

dt
− (b − µ)S

)
,

de

dt
=

1

N

(
dE

dt
− (b − µ)E

)
,

di

dt
=

1

N

(
dI

dt
− (b − µ)I

)
,

dr

dt
=

1

N

(
dR

dt
− (b − µ)R

)
.

(3)
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This change of variables leads to equations of the same form that
would be obtained by assuming b = µ. We get

ds

dt
= b(1 − p) + δr −

[
β(t)i + λv + b

]
s,

de

dt
= β(t)is − (α + b)e,

di

dt
= αe − (γ + b)i,

dr

dt
= bp + λvs + γ i − (δ + b)r,

(4)

with the constrain s + e + i + r = 1. Then, r can be determined in
terms of the other three variables, such that we replace it in the
first of Eq. (4), reducing the model to the following three-equation
system:

ds

dt
= b(1 − p) + δ −

[
β(t)i + λv + δ + b

]
s − δ(e + i),

de

dt
= β(t)is − (α + b)e,

di

dt
= αe − (γ + b)i.

(5)

A. Disease-free equilibrium

In general, Eq. (5) is solved numerically. However, for the par-
ticular case, when β = β0 is constant, there are two fixed point
solutions, which are DFE and endemic solution.60 The first one is
characterized by the disappearance of the disease in the host popu-
lation (i∗ = 0); in the other, the infection remains (i∗ > 0). First, we
investigate the DFE solution given by

(s∗, e∗, i∗) =

(
b(1 − p) + δ

λv + δ + b
, 0, 0

)
. (6)

This fixed point is stable if all eigenvalues of the Jacobian matrix (J)
of the system, computed in DFE, have negative real part.61 Given the
matrix

JDFE = −




(λv + δ + b) δ (β0s
∗ + δ)

0 (α + b) −β0s
∗

0 −α (γ + b)


 , (7)

its eigenvalues are

ξ1 = −(λv + δ + b), (8)

ξ2 =
−(α + γ + 2b) −

√
(α − γ )2 + 4αβ0s∗

2
, (9)

ξ3 =
−(α + γ + 2b) +

√
(α − γ )2 + 4αβ0s∗

2
. (10)

All of them are real numbers, once the constants are positive and ξ1,2

are always negative, then the DFE is stable when ξ3 < 0. From this

inequality, we obtain the relation for the stability of this fixed point,

R0 =
αβ0s

∗

(α + b)(γ + b)
< 1. (11)

Therefore, if R0 < 1, the DFE point is stable, i.e., the disease will
die out. On the other hand, if R0 > 1, the disease will be succeeding
in infecting the population.62 Thus, we establish a stability condi-
tion for the DFE relative to the basic reproduction number. The
quantity R0 informs about the evolution of the spread. Note that
if p = λv = 0, then s∗ = 1, and we recover the R0 for the model
without vaccine.24

Note that Eq. (11) is for the autonomous case, with β and
v being constants. However, for periodic diseases without latent
period,63 the R0 expression can be extended by replacing β0 with
〈β(t)〉,

〈β(t)〉 =
1

Tf − T0

∫ Tf

T0

β(t)dt, (12)

where Tf − T0 corresponds to the seasonality period. In the case
studied in this work, we can analyze both the average 〈R〉 of the
time-dependent reproduction number and its maximum R+ within
a seasonal cycle,50 being 〈R〉 = R0 and R+ = (1 + β1)R0. Impos-
ing the stable DFE condition on these quantities, we obtain two
quotas,

α[b(1 − p) + δ]

λ(α + b)(γ + b)
β0 −

(δ + b)

λ
< v0, (13)

α[b(1 − p) + δ]

λ(α + b)(γ + b)
β0(1 + β1) −

(δ + b)

λ
< v+. (14)

The disease extinction is guaranteed when the relationship
v+ ≤ v is verified. However, this upper limit for the vaccination rate
can be greater than enough, with v0 ≤ v being sufficient to reach
the DFE in our simulations. Note that this threshold is the same in
the autonomous case. As a numerical example, considering λ = 1,
p = 0.25 b = 0.02, β0 = 270, δ = 0.25, α = 100, and γ = 100, we
obtain a quota v0 = 0.445. Therefore, for a constant vaccination
campaign, the minimum rate is 44.5% of vaccinated susceptible. A
value very close to those numerically obtained in Sec. III and annual
vaccination rates in Secs. IV and V.

B. Endemic equilibrium

Considering the autonomous case, the endemic equilibrium
point EE

(
s̃, ẽ,̃ i

)
is given in terms of R0 and s∗ as

s̃ =
(α + b)(γ + b)

αβ0

=
s∗

R0

, (15)

ẽ =
(γ + b)

[
b(1 − p) + δ

]

αβ0s∗ + δ(α + γ + b)R0

(R0 − 1) , (16)

ĩ =
α

[
b(1 − p) + δ

]

αβ0s∗ + δ(α + γ + b)R0

(R0 − 1) . (17)

In this solution, the disease is permanent in the host population. It is
worth to note that for the inverse relation s̃ proportional to R

−1
0 , the
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scenario without vaccination verifies the result24 s̃ = R
−1
0 . This fixed

point exists only if R0 > 1 since R0 < 1 implies ẽ,̃ i < 0 in Eqs. (16)
and (17). It means that in the case of stable DFE, there is no endemic
fixed point, recovering the information previously discussed.

As in the DFE case, we analyze the stability of the EE fixed
point through eigenvalues of the Jacobian matrix JEE computed on
it, being

JEE = −




(β0̃i + λv + δ + b) δ (β0̃s + δ)

−β0̃i (α + b) −β0̃s
0 −α (γ + b)


 . (18)

The correspondent characteristic polynomial is given by

P(ζ ) = ζ 3 + c2ζ
2 + c1ζ + c0, (19)

where the coefficients are

c0 = (β0̃i + λv + δ + b)
[
(α + b)(γ + b) − αβ0̃s

]

+ β0̃i
[
α (β0̃s + δ) + δ(γ + b)

]
, (20)

c1 = (β0̃i + λv + δ + b)(α + γ + 2b)

+ (α + b)(γ + b) + β0(δ̃i − α̃s), (21)

c2 = β0̃i + λv + α + γ + δ + 3b. (22)

Having such coefficients and using the Routh–Hurwitz
criterion,64 it is possible to find a parametric relationship for the EE
point stability. In this way, the real part of the all three eigenvalues
is less than zero if and only if

c0, c1, c2 > 0; and c0 < c1c2. (23)

Fulfilled the above conditions, once the EE point exists, it is
attractive.70 In the context of the present work, we verify that the EE
point is asymptotically stable for the parameters used in our simula-
tions, as already described in Sec. II A: λ = 1, p = 0.25, b = 0.02,
δ = 0.25, α = 100, γ = 100, β0 = 270, and v ∈ [0, v0 = 0.445),
where R0 > 1.

For the non-autonomous system, where β = β(t) is the peri-
odic function given in Eq. (2), the DFE solution is the only one of
the fixed-point type. In other words, the fixed point solution with
i 6= 0 does not exist when the transmissivity is an explicit func-
tion of time. In this case, endemic solutions are not fixed points
but consist of orbits that can be periodic or chaotic. Figure 2
shows the system evolution from the initial condition P0(s0, e0, i0)
= (0.39, 0.0039, 0.0039) in the two cases: (1) autonomous (with
β1 = 0), where the trajectory (orange line) spirals to the attractive
fixed point EE

(
s̃, ẽ,̃ i

)
≈ (0.371, 0.001, 0.001); (2) non-autonomous

system (with β1 = 0.28), where the trajectory (light-blue line)
evolves during a transient time around EE point and converges
to the periodic attractor (blue line). To obtain these curves, we
adopt the aforementioned parametric configuration and consider
a constant vaccination rate v = 0.17. In Secs. III– VI, we numer-
ically investigate the impacts of different vaccination protocols on
the dynamics of Eq. (5) with seasonality, focusing on the infected
population.

FIG. 2. Trajectories evolving from the initial condition P0(s0, e0, i0)
= (0.39, 0.0039, 0.0039) (black dot). We consider the parameters: v = 0.17,
λ = 1, p = 0.25, b = 0.02, β0 = 270, δ = 0.25, α = 100, and γ = 100.
For β1 = 0, the trajectory (orange line) spirals toward the attractive fixed point
EE(0.371, 0.001, 0.001) (red dot). In the non-autonomous case (β1 = 0.28 and
ω = 2π ), the system evolves (light-blue line) around the point EE converging to
the periodic attractor (blue line).

III. CONSTANT VACCINATION STRATEGY

Continuous vaccination campaign is modelled by a constant
vaccine term v in Eq. (5), which represents a fraction of the host pop-
ulation being vaccinated at every time step. This approach can be
used for modelled mass vaccination programs.55 In this campaign,
a certain amount of the population is vaccinated in a short period
of time. Some examples are the mass campaign against measles,65

smallpox,66 and COVID-19.67 In this case, p is also constant. To
numerically integrate the system of differential equations, we use
the fourth-order Runge–Kutta method68 with a fixed step of 10−3.
It is important to mention that without spoiling the analyses, we
consider the vaccine effectiveness λ = 1. Even so, this term can be
understood, more generally, as absorbed by v, since these always
appear as a product, maintaining the equations form.

Figure 3 displays three different numerical solutions to Eq. (5)
for different p and v. In these results, we consider b = 0.02,
β0 = 800, β1 = 0.20, δ = 0.25, α = 40, γ = 100, and ω = 2π . In
this work, the time unity is years. In order to interpret these val-
ues, we consider b as an annual birth rate, with the other four rates
being annual too. Thus, ω = 2π means seasonality with a period of
one year. Regarding the vaccination parameters, the reference curve
(red line) is obtained for p = v = 0; for the other two, p = 0.25 and
v = 0.2 for the blue curve and v = 0.4 for the green one. We adopt
the initial condition (s0, e0, i0) = (0.9, 0, 0.1) and discard the first 105

integration steps as transient. For these configurations, the solu-
tions of the system are limit cycles, which are projected onto the
plane i × s in Fig. 3(a). These cycles contract as the vaccination rate
increases, with a significant decrease in the local maxima of curve i,
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FIG. 3. Numerical solutions to Eq. (5) for three different values of p and v.
(a) Limit cycles obtained for p = v = 0 (red curve) and p = 0.25, with v = 0.2
(blue curve) and v = 0.4 (green curve). (b) Time series for i corresponding
to the limit cycles in the same colors according to the legend. We consider
b = 0.02, β0 = 800, β1 = 0.20, δ = 0.25, α = 40, γ = 100, ω = 2π , and
initial condition (s0, e0, i0) = (0.9, 0, 0.1). We discard 105 integration steps as
transient.

as shown in Fig. 3(b). We find that the presence of a vaccine cam-
paign causes a reduction in the maximum number of infects at a
time, and this effect is amplified with the v increment. Compared to
the reference curve, a constant vaccination rate of one-quarter of the
newborn population and one-fifth of the susceptible ones, for year,
leads to approximately a 21.4% reduction in peak infections. Inten-
sifying vaccination to a rate of 40% of the susceptible population per
year, this reduction reaches ≈ 38.9%.

For the next numerical simulations, based on the Gabrick’s
work,24 we consider the parameters b = 0.02, β0 = 270, β1 = 0.28,
δ = 0.25, α = 100, γ = 100, and ω = 2π . To compute the impact
of the vaccine on the system, over a given finite time interval, we
consider the ratio

θ =
Av

A0

, (24)

where Av and A0 are the areas under the i curve with and without
vaccine, respectively. Being

Av =

t0+1t∫

t0

i(t)dt, (25)

A0 =

t0+1t∫

t0

i(t; p = v = 0)dt, (26)

where A0 is the reference value. From this relation, we conclude that
if θ < 1, then the vaccination campaign reduces the total number of
infected individuals, and if θ > 1, the campaign has the undesired
effect of increasing it. θ = 1 means that the vaccination has no effect
on the total infections over time.

Figure 4 shows the influence of vaccination in two different
strategies. In panel (a), we fixed the fraction of newborns p = 0.25
and get θ as a function of the vaccination rate v ∈ [0, 1], with the
horizontal axis discredited in steps of 1v = 10−2. We evolve the sys-
tem from the same initial condition used in Fig. 3 and calculate θ

both for the first 75 years without transient discard (black curve)
and, past 100 years of evolution, for the last 75 years (blue curve).
Without discarding the early years, θ presents a linear decay as a
function of v, increasing until v ≈ 0.44 and stabilizing in θ ≈ 0.075.
This value is due to the nonzero area associated with the spread of
infection from the initial condition. In the blue curve, we see that
the DFE is reached for v ≥ 0.44 (gray background). Furthermore,
it is worth to mention that in our simulation if we consider a large
number of years, e.g., 100 and 125 years, the DFE also is reached for
v ≥ 0.44. Figure 4(b) displays θ as a function of p, with v = 0.1. This
result shows when whole newborns are vaccinated, a reduction of
≈ 12.5% of the total infected individuals occurs.

We evaluate the effects of combining different newborns and
susceptible vaccination rates in the parameter plane p × v, with θ

being in color scale, as displayed in Fig. 5. Our results show the
prevalence of v over p in reducing the spread of infection. This
is due to the intrinsic characteristics of the model; if δ decreases,
the parameter p becomes more relevant. DFE is achieved within 75
years from the onset of infection by (v, p) pairs from the dashed
white line to the right of it, defined by the straight line equation
c1 : p + 18.55v − 8.22 = 0. Extinction of infection in the host popu-
lation occurs when e = i = 0 and can be verified in simulations with
a given numerical precision. In order to determine the boundary line
c1 more accurately, we integrate the system in the region defined by
v ∈ [0.39, 0.46] and p ∈ [0, 1] in a uniform grid of 201 × 201 points.
Still in Fig. 5, the blue band indicates that the constant vaccina-
tion strategy leads to a significant reduction in the total infections,
computed around 20% of the reference. In the green band, where
v ≈ 0.2, the reduction is around 50%. For small vaccination rates,
with v ≈ 10% and less, the amount of infections decreases only
slightly, being around 70% to 80% (gradient from orange to red)
of the result without vaccination, even larger than 90% (magenta
band).

The vaccination does not only affects the number of infected
individuals but also the dynamics. Such effects are examined by
hysteresis-type bifurcation diagrams (HTBDs), as shown in Fig. 6.
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FIG. 4. (a) θ as a function of rate v with p = 0.25. DFE is reached for v = 0.44
(gray background). (b) θ as a function of newborn vaccine p with v = 0.1. Vacci-
nation of newborns reduced ≈ 12.5% the total of infected individuals. Horizontal
axis discredited in steps of 10−2. Results of the first 75 years without transient
discard (black curve) and evaluated the last 75 years (blue curve) after 100 years
of the system evolution. We consider b = 0.02, β0 = 270, β1 = 0.28, δ = 0.25,
α = 100, γ = 100, and ω = 2π ; initial condition (s0, e0, i0) = (0.9, 0, 0.1).

This kind of bifurcation diagram is generated by evolving the sys-
tem in a given discretized interval of a control parameter in both
directions along the horizontal axis, first in its growth (red points)
and then in decrease (blue points), assuming the final state of the
system at the current parameter value as the initial condition for the
next one. This numerical technique is especially useful for finding
bi-stability, when it exists.69 Figure 6(a) displays a HTBD of i local
maxima values (imax) as a function of the susceptible vaccination
rate. To compute the peaks in the i time series, we discard the first
105 integration steps as transient and evaluate the evolution of the
infection over the last 75 years in the simulation. For the considered
parameters, the bi-stability dynamics between chaotic and periodic
attractors exist without vaccination.24 The inclusion of vaccination
is able to destroy the bi-stability for some parameter values. How-
ever, the bi-stability remains in two ranges of the control parameter,
highlighted in Fig. 6(a), by the gray and green background columns.
In the approximate interval v ∈ (0.155, 0.165) (gray background)
the periodic orbit (blue dots) has a maximum value imax ≈ 0.032,

FIG. 5. Parameter plane p × v with θ in color scale. Both axes discretized in
steps of 10−2. We consider b = 0.02,β0 = 270,β1 = 0.28, δ = 0.25,α = 100,
γ = 100, and ω = 2π . θ is calculated for the first 75 years of infection, without
transient discard and with initial condition (s0, e0, i0) = (0.9, 0, 0.1). DFE occurs
from the dashed white line (c1) to the right of it, where p ≥ 8.22 − 18.55v.

while the chaotic one (red dots) has a smaller maximum of imax

≈ 0.026. Also in the interval v ∈ (0.256, 0.263) (green background),
we observe the periodic orbit with an extreme value of imax slightly
higher than that seen from the chaotic one. Chaotic behavior can
be related to non-predictability in infectious diseases spread.24 Prior
knowledge of these behaviors or how they can be modified is cru-
cial for epidemic control strategies. Figures 6(b) and 6(c) display the
i × s projection of the attractors obtained for the highlighted values
in the bi-stability for, respectively, v = 0.16 and v = 0.26. Both plots
show the periodic solution (blue line) with a higher peak than the
chaotic one (red line). For v = 0.16, we observe a chaotic attractor
from the initial condition P1(s0, e0, i0) = (0.9, 0, 0.1), while the peri-
odic one emerges for P2(s0, e0, i0) = (0.3, 0.03, 0.03). However, for
v = 0.26, P1 leads to the periodic attractor and P2 to the chaotic one.
The magnification in the panel (c) exhibits a small amplitude local
maximum of i, occurring before the large increase in infectious cases
and showing the two maxima as obtained in the bifurcation diagram.

IV. PULSED VACCINATION STRATEGY

Periodic vaccination consists of the appliance of vaccine in a
certain fraction of the population in periodic time intervals. Exam-
ples of this strategy is considered in seasonal influenza56 and in
control of childhood viral infections, such as measles and polio.53

In our modeling approach, we consider this immunization strat-
egy that consists of maintaining a minimum level v = vmin during
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FIG. 6. (a) Hysteresis type bifurcations diagram (HTBD) for i local maxima val-
ues (imax) as function of v ∈ [0, 0.4] discretized in steps of 4 × 10−4. We consider
b = 0.02, β0 = 270, β1 = 0.28, δ = 0.25, α = 100, γ = 100, ω = 2π , and
p = 0.25. For each value of v, a transient of 105 integration steps is discarded
and computed imax over the last 75 years of the infection. The red points are in
the forward v direction and blue points in the backward direction. Gray and green
backgrounds highlight bi-stability intervals. Projections in the plane i × s of peri-
odic (blue line) and chaotic (red line) attractors coexisting for (b) v = 0.16 and
(c) v = 0.26.

the year and raising the vaccination rate to v = vmax ≥ vmin in con-
centrated pulses at specific times according to the oscillation of the
transmissivity. An illustrative scheme is shown in Fig. 7, where dif-
ferent pulse timings are superimposed on the periodic curve β(t)
(black line). We consider four variants of the same strategy, in which
the pulse occurs, relative to the β(t), at every time corresponding to
the inflection point at decreasing (green line), local minimum (blue
line), inflection point at the curve growth (magenta line), and local
maximum (red line). Being the vaccination rate,

v(t; τ) =

{
vmax, if {t − τ } = 0,

vmin, otherwise,
(27)

FIG. 7. Schematic illustration of pulsed v with maximum vmax (dashed gray line
level) and minimum level vmin (solid gray line). Pulses in four different timings rel-
ative to β(t) (black curve): at inflections (green and magenta vertical lines) and
at the local minimum and maximum, blue and red lines, respectively.

where {t − τ } is the non-integer part of (t − τ). For the first vari-
ant of the strategy, we have τ = 0.25, in the second τ = 0.5, next
τ = 0.75, and in the last one τ = 0.

Considering a time interval of ≈ 9 h in one day per year, we
investigate the impact on total infected in the first 75 years of infec-
tion, with vmin = 0 and vmax ∈ [0, 1000], where v = 1000 means that
the entire susceptible population is vaccinated in one pulse since the
integration step is 10−3 and the proportion of people vaccinated is
given by the product of the campaign duration with the vaccination
rate. Furthermore, we adopt p = 0 and the same initial condition
used in Sec. III.

Figure 8 displays θ as a function of vmax, with the horizontal
axis discretized in steps of 1vmax = 1, equivalent to increments of
0.1% in the reach of the immunization campaign. The four vari-
ants of the strategy are covered, with the pulse applied at the first
(green) and second (magenta) inflections of β(t) and, complemen-
tary, for both τ = 0.5 (blue) and τ = 0 (red), at times corresponding
to the transmissivity minimum and maximum, respectively. These
results are practically the same. There is no expressive difference as
to when a concentrated immunisation campaign works, with a slight
advantage in applying the pulse at the local maximum (τ = 0) or
second inflection (τ = 0.75) of the transmissivity curve. When the
campaign coincides with the extremes of the β(t) curve (τ = 0 and
τ = 0.5), DFE is achieved within the initial 75 years (gray back-
ground) from vmax = 452, i.e., vaccinating from 45.2% of the sus-
ceptible population on a single day per year. This threshold is 49.0%
for τ = 0.25 and 44.4% for τ = 0.75, the latter being the best result.

According to our simulations, considering a not null baseline
vmin > 0, it is possible to reduce the pulse amplitude and yet result in
the extinction of the disease in the host population within 75 years.
In Fig. 9, we show the parameter plane vmax × vmin reinforcing this
proposal. We define τ = 0.75, applying the pulse at the moment
of inflection during the increase of the transmissivity, varying vmin

∈ [0, 0.4] and vmax ∈ [100, 400] in a uniform grid of 101 × 101
points. We highlight the white dashed line c2 : vmax + 1000vmin

− 444 = 0, from which we obtain DFE. Pairs (vmin, vmin) in the blue
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FIG. 8. θ as a function of vmax ∈ [0, 1000] from four variants of the pulsed
vaccination strategy and obtained in the first 75 years of infection. Horizontal
axis discretized in 1001 equidistant points. We consider b = 0.02, β0 = 270,
β1 = 0.28, δ = 0.25, α = 100, γ = 100, ω = 2π , and p = vmin = 0. Initial
condition (s0, e0, i0) = (0.9, 0, 0.1). Pulse application timing identified in colors,
according to the legend. DFE is achieved (gray background) within 75 years for
vmax ≥ 452 with τ ∈ {0, 0.5}, vmax ≥ 459 for τ = 0.25, and vmax ≥ 444 when
τ = 0.75.

band bring the total infected to ≈ 20% of those that would occur
without vaccination, e.g., how we get with the base rate vmin ≈ 0.28
and the intensive campaign vmax = 100, the latter meaning vacci-
nation of 10% of the susceptible population. Since the base value
throughout the year is around vmin = 0.125, even with vmax = 100,
the number of people infected during the 75 years simulated is
reduced by approximately half (green band), when compared to the
reference case.

Along lines parallel to c2, the proportion of susceptible vacci-
nated annually is a constant given by

ρline = 0.001vmax + vmin. (28)

Thus, on line c2, we have ρc2 = 0.444, close to the DFE threshold
value in line c1 with p = 0, as shown in Sec. III. In these simulations,
an immunization campaign that reaches ≈ 22.5% of susceptible
annually reduces to 50% of the accumulated of infected people,
whereas a rate of ≈ 38% causes a decrease of 80%. Similar values to
those obtained with v constant and without newborns vaccination,
as displayed in Fig. 5. The strategy of intensifying immunization in
pulses allows the reduction at baseline, being vmin less than the rates
required for the same results with constant vaccination rate.

V. PULSED WIDTH VACCINATION STRATEGY

Extending the proposal of Sec. IV, we modify the pulsed vacci-
nation strategy considering, now, a longer duration of the intensified
campaign. Similarly to the formulation of Eq. (26), the pulse is cen-
tered at t = τ + k, ∀ k ∈ Z, but with a width of D ∈ [0, 1], which cor-
responds to the duty cycle. Outside the intensive campaign interval,
vaccination assumes a baseline rate vmin, according to the following

FIG. 9. Parameter plane vmax × vmin discretized on a uniform grid of 101 × 101
points, with θ (color scale) calculated for the first 75 years of infection. We con-
sider b = 0.02, β0 = 270, β1 = 0.28, δ = 0.25, α = 100, γ = 100, ω = 2π ,
p = 0, and τ = 0.75. Initial condition (s0, e0, i0) = (0.9, 0, 0.1). DFE occurs
from the dashed white line (c2) to the right of it, where vmax ≥ 444 − 1000vmin.

mathematical description:

v(t; τ) =





vmax, if

{
(t − τ) +

D

2

}
≤ D,

vmin, otherwise.

(29)

Remembering that {x} ∈ [0, 1) is the non-integer part of the real
number x. Figure 10 displays a schematic illustration of this strat-
egy, where the seasonal transmissivity (black curve) is superimposed
on the time-dependent vaccination rate curve (magenta curve). For
instance, the value D = 0.2 corresponds to 1/5 of one year. The
concentrated pulse strategy, according Eq. (26), is recovered when
D = 0. As for D = 1, we return to the constant vaccination rate.
Based on the best result presented in Sec. IV, in the next simulations,
we adopt τ = 0.75.

First, we keep p = 0 and obtain θ in the parameter planes as
shown in Fig. 11. As in Secs. I–IV, we take into account the first
75 years of infection and consider the same initial condition. Both
panels display uniform grids of 101 × 101 points.

We analyze the results taking into account the annual reaching
of the immunization campaign, which is given by

ρ = vmin + D(vmax − vmin), (30)

and the proportion of vaccinated susceptible during each pulse, that
is,

ρpulse = Dvmax. (31)
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FIG. 10. Schematic illustration of pulsed width vaccination. Transmissivity β(t)
(black curve) superimposed by vaccination rate v(t) (magenta curve), it is on two
levels: maximum vmax (dashed gray line level) and minimum vmin. Pulse width D
centered on τ , which is a time instant relative to the seasonal cycle.

In Fig. 11(a), we fix the baseline vmin = 0 and vary the two
remaining parameters of Eq. (28) in the range 0 ≤ D, vmax ≤ 1. In
this configuration ρ = ρpulse and the DFE threshold is obtained from
ρpulse = 0.44, i.e., from the curve c3 : Dvmax = 0.44 to the right of it.
Already ρpulse = 0.28 leads to θ ≈ 0.4 (cyan band), value obtained
along the curve c4 : Dvmax = 0.28 (dashed black line). Similar rela-
tionships can be obtained for the other θ values, with the balance
between pulse height and duty cycle being the determining charac-
teristic for reducing the number of infected people over the 75 years
simulated. Figure 11(b) illustrates the parameter plane vmin × D
with vmax = 0.5, where we evaluate the baseline vaccination interval
0 ≤ vmin ≤ 0.4. As evidenced in panel (a), the constant θ curves are
determined by the proportion of susceptible individuals vaccinated
during a year, so we get them from Eq. (29). We check that DFE
is reached from the curve c5 : (0.44 − 0.5D)/(1 − D) to the right,
where 44% of susceptible are vaccinated annually. The total infected
are reduced to ≈ 40% around the curve c6 : (0.28 − 0.5D)/(1 − D)

(black dashed line), being 28% of susceptible vaccinated along each
year.

Inclusion of newborns immunization changes the minimum
proportion of susceptible immunized annually that leads to DFE.
In order to obtain the boundary surface cDFE as a function of p, we
use the equation of the line c1, as described in Sec. III. Assuming
a constant vaccination rate v = ρDFE along that line and relating to
Eq. (29), we infer

vmin + D(vmax − vmin) −
8.22 − p

18.55
= 0. (32)

DFE is achieved, during the simulated 75 years, once

vmin + D(vmax − vmin) ≥
8.22 − p

18.55
. (33)

This relation recovers the equations obtained for the thresholds c1,
c2, c3, and c5 presented throughout the text. Note that in the plane,
cDFE reduces to curves.

In addition, the bi-stability depends on the pulsed vaccination

FIG. 11. Parameter planes discretized on a uniform grid of 101 × 101 points, with
θ (color scale) calculated for the first 75 years of infection. (a) Plane vmax × Dwith
vmin = 0 fixed. DFE threshold c3 : Dvmax = 0.44 and θ ≈ 0.4 along the curve
c4 : Dvmax = 0.28 (black dashed line). (b) Plane vmin × D with vmax = 0.5
fixed. DFE threshold c5 : vmin = (0.44 − 0.5D)/(1 − D) and θ ≈ 0.4 along
the curve c6 : vmin = (0.28 − 0.5D)/(1 − D) (black dashed line). We consider
b = 0.02, β0 = 270, β1 = 0.28, δ = 0.25, α = 100, γ = 100, ω = 2π ,
p = 0, and τ = 0.75. Initial condition (s0, e0, i0) = (0.9, 0, 0.1). In both panels,
DFE occurs from the dashed white lines (c3 and c5) to the right, where ρ ≥ 0.44.

parameters. Figure 12(a) displays a HTBD of infected local max-
ima values (imax) as a function of vmax ∈ [0, 1], with p = vmin = 0
and D = 0.4. The results yielded in forward direction are red points
and backward ones are the blue points. The peaks are computed
discarding the first 105 integration steps as transient and evaluate
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FIG. 12. (a) Hysteresis type bifurcations diagram (HTBD) for i local maxima
values (imax) as function of vmax ∈ [0, 1] discretized in steps of 10−3. We con-
sider b = 0.02, β0 = 270, β1 = 0.28, δ = 0.25, α = 100, γ = 100, ω = 2π ,
p = vmin = 0, and D = 0.4. For each value of vmax, a transient of 105 integra-
tion steps is discarded and computed imax over the last 75 years of the infection.
Red points are in the forward vmax direction and blue ones in the backward direc-
tion. Gray and green backgrounds highlight bi-stability intervals. Projections in the
plane i × s of periodic (blue line) and chaotic (red line) attractors coexisting for
(b) v = 0.01 and (c) v = 0.56.

the i series over the last 75 years in the simulation. Similarly to
the case of a constant vaccination rate, as shown in Fig. 6(a), there
are two ranges (highlighted backgrounds) of the control parameter
where periodic and chaotic orbits coexist. For vmax ∈ [0, 0.014) (gray
background), the periodic orbit (blue dots) has a maximum value
imax ≈ 0.049, However, the chaotic one (red dots) has a smaller max-
imum of imax ≈ 0.036, as also showed by the attractors projection in
Fig. 12(b) for vmax = 0.01. In the next interval vmax ∈ (0.542, 0.577)
(green background), the periodic orbit presents a maximum value
imax ≈ 0.019, while the chaotic one has an extreme ≈ 0.015, i.e.,
the periodic solution has peak infection values of 26.7% above the
chaotic case. This difference between the peak of infectious is bet-
ter observed in the i × s projection of the attractors, as displayed
in Fig. 12(c), for vmax = 0.56. The chaotic solutions (red line) in
both Figs. 12(b) and 12(c) are obtained from the initial condition

P1, and the periodic attractors (blue line) are from (b) P3(s0, e0, i0)
= (0.27, 0.05, 0.05) and (c) P4(s0, e0, i0) = (0.28, 0.02, 0.02).

VI. CONCLUSIONS

In this work, we study an SEIRS model with seasonal transmis-
sivity and vaccination control. Considering an autonomous version
of the system, we obtain two equilibrium points: the DFE and the
endemic fixed point. For the DFE, we established a limit for the
vaccination rate as function of the other parameters in the model.
We find that the endemic solution can only exist if the DFE is not
stable. By numerical simulations, we explore three different vacci-
nation strategies in the non-autonomous case: constant, pulsed, and
pulsed width vaccination strategy. All are based on immunizing a
proportion of susceptible individuals as well as a fraction of new-
borns. In order to evaluate these three different strategies, we analyze
the accumulated infected over a simulated interval of 75 years:

(i) The first one refers to a constant vaccination rate applied to the
susceptible individuals. Our results show that the immuniza-
tion of newborns is able to slightly reduce the total number of
infected in the simulated time interval. However, vaccination
of susceptible is more efficient, with a constant rate of ≈ 44%,
or greater, leading to the extinction of the infection in the host
population. We also identify the occurrence of bi-stability as a
function of the vaccination rate, with periodic orbits presenting
values of infected higher than the chaotic ones.

(ii) The second strategy is the pulsed vaccination, in which the
immunization campaign operates intensively on a single day per
year, more precisely and according to the simulations, just 9 h
on one day in each year. The baseline vaccination rate is a small
constant. Pulses are applied annually at timings given in relation
to seasonality, thus modeling the campaign acting according to
the transmissivity variation. The timing of the immunization
pulse does not lead to a significant difference in the accumulated
number of infected. Even so, acting at the inflection point of the
rise in the transmissivity curve proved to be slightly more effec-
tive, reducing the percentage of susceptibles vaccinated during
the pulse to result in DFE. The baseline and intense immuniza-
tion rate has a linear relationship with the reduction in disease
spread. Hence, the total number of cases depends on the propor-
tion of susceptible vaccinated annually and not on independent
immunization rates.

(iii) In our last strategy, we applied a pulsed width vaccination
campaign. We discover that the disease spread depends on a
non-linear relationship between vaccination rates and the duty
cycle of the campaign. We derive the relationship between the
immunization parameters that leads to the extinction of the
infection within the simulated 75 years. It depends on the base-
line and intensive vaccination rates, the campaign duty cycle,
and the proportion of immunized newborns. We find that the
reduction in the accumulated infected number depends on the
annual vaccination rate of the susceptible population, this find-
ing being valid for all three strategies, mainly in the first one.
For example, regardless of the strategy, given a vaccination of
≈ 38% of susceptible each year, the cumulative case of infection
is reduced to only 20% of what it would be in a no-vaccination
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situation. Since we study the model with normalized variables,
we are always dealing with proportions of the total population.
For constant population approximation, a direct transition to
the number of infected people over time is valid, whereas for the
more general case, where the population may vary, we must take
the results into account as proportions.

We plan to study, in future works, the effects of periodic and
perturbed vaccination in chaotic dynamics and bi-stable parameter
ranges. In addition, we plan to fill some points opened in this work,
which is exploring the effects of stochastic process in vaccination
campaign.
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