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ABSTRACT

In this work, we consider a phenomenological two-dimensional discrete model coupled in a structure of a
clustered network to investigate the suppression of neuronal synchronization in a complex network. We
constructed a network according to a weighted human connectivity matrix and an adjacency matrix that
carries small-world properties. The coupling between neurons is inserted through a chemical synapse
term and a neuronal activation function. The neuronal synchronization is measured by the Kuramoto
order parameter. We intend to achieve the suppression of burst phase synchronization, and for that,
we use a mathematical tool, based on the technique of deep brain stimulation, which consists of applying
an external signal to the network after a certain time, causing the bursts to desynchronize. Our results are
efficient when applying the feedback method both in the global network and in the cortical regions. We
have seen that for cortical regions, synchronization is more difficult to suppress, however, by slightly
increasing the perturbation, we are able to achieve the desired effect. This shows that it is possible to
use the control efficiently in isolated cortical areas, therefore, we present a new alternative to conven-

tional methods, avoiding to apply the control to the entire network to obtain the same results.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Motor disorders that affect humans, such as tremors resulting
from Parkinson’s disease, involuntary movements during epileptic
seizures and essential tremors, are associated, as known in the lit-
erature in the field of neurosciences, to synchronized neuronal
activity [1-4]. Recent studies investigate suppression methods of
neuronal firing synchronization and evidence the success of some
techniques already implemented. Complementary, advances in
the understanding of this phenomenon, as well as the development
of techniques aimed at controlling and suppressing the synchro-
nization of neuronal activity, are demonstrated by studies based
on computer simulations of neuronal networks, which are mathe-
matically described by graphs that mimic the connections present
in the human brain [5-7].

The human brain is divided into two hemispheres, each of
which has an inner core made up of white matter and an outer sur-
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face, called the cerebral cortex, which is made up of gray matter
[8]. Each hemisphere is conventionally divided into four lobes:
frontal, parietal, temporal and occipital, each of which is responsi-
ble for our ability to develop certain skills and perform different
activities functions. The cerebral cortex, the outermost layer of
the brain, is a highly developed structure related to the most famil-
iar functions that are associated with our brain [9].

The unit of the network, the neuron, is essential in carrying out
different tasks like cognition, sensory functions, motion, etc. A
human being has approximately 86 billion neurons, located mostly
in the cerebral neocortex [10]. The organization of neurons in the
cortex is distributed in layers so that they connect forming a kind
of microcircuit [11-14]. Neurons are responsible for transmitting
various electrical signals that process and send information
through synapses, established between the dendrites and cell bod-
ies of other neurons. These synapses can be electrical or chemical,
being the last one due to the transportation of a neurotransmitter
transferring information from a neuron (presynaptic) to the target
neuron (postsynaptic) [8]. This exchange of signals occurs as a tan-
gle of connections between dendrites and neural axon terminals,
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making it possible to treat the entire structure of the cortex as a
network.

The distribution of neurons present in the cortex forms a net-
work whose structure and connection are complex. It is common
to consider a neural network built from graph models, among them
are small-world [15], random [16] or scale-free networks [17]. The
insertion of the topology of a network to study the neuronal
dynamics is justified by the fact that the synaptic connections
between the several neurons form a network, since the neurons
will be able to connect to each other both in relation to their neigh-
boring neurons, and in more distant regions, where each cell will
continuously receive a few thousand excitatory or inhibitory stim-
uli from other neurons [18].

In this work we use a clustered network model to simulate the
connection architecture of neurons in the cortex. Each cortical area
is represented according to a chosen graph model. We choose to
work with a clustered network where the cortical areas are con-
structed according to a small-world network (SW), according to
the Newman-Watts algorithm [19] with 200 interneurons. The
connection between these networks is performed by a connection
matrix conceived through a map of structural connections of the
cortex (human connectome) [20-22], and by an adjacency matrix
of the SW network. Previous works were developed using cortical
connection maps such as the cat connectome [23-25], macaque
[26,27] and c. elegans [28,29]. Currently, the scientific literature
has many researches involving clustered networks using well-
known connectomes, including the human [30-32].

Neuronal activity in some regions of the cortex has a fast and a
slow time scale, which are characterized by repetitive spikes and
bursts activity. This behavior causes the activity of neurons to
alternates between a quiescent state and spike trains [33]. To sim-
ulate a neuronal network we need, in addition to a graph model, a
mathematical model that describes the dynamical behavior of the
neuron. We choose a two-dimensional map in which the combina-
tion of its parameters and the recurrence between its variables give
the equivalent of a spike or a burst in the neuron, this behavior
depends directly on the values adopted for the parameters of the
map [34].

To verify the collective behavior of neural firing patterns we
coupled the map according to a chemical synapse term, the matrix
that addresses the connections in and between areas, a neural acti-
vation function and an excitation or inhibition potential. By cou-
pling the map, we are making the neurons present their firing
activities synchronized. A relevant point to be considered is the
high synchronization between neurons. When neurons are out of
synchronization, the resulting electrical signal has a very small
oscillation amplitude. Conversely, when neurons are synchronized,
the resulting signal from each neuron produces a very relevant
oscillation amplitude. Recent works have investigated the
synchronization of coupled maps networks, using Rulkov neurons
[35-38].

In the literature, there are studies of synchronization in neu-
ronal networks based on time delay methods, that simulate neu-
ronal dynamics through other models and consider the intensity
of synaptic coupling between cortical areas, as well as the time
delay in the propagation of the signal along the axon [39-42]. Here,
we are interested in obtaining low levels of phase synchronization
of neuronal activity. In this sense, to control burst synchronization
in the clustered network we use a method known as time-delayed
feedback, which is a widely used method for stabilizing unstable
periodic orbits in chaotic attractors [43]. Such method is based
on the application of a feedback perturbation, proportional to the
deviation of the current state of the system from its state in a per-
iod in the past, so that the control signal disappears when orbit sta-
bilization is reached. This method, introduced by Pyragas [43], uses
a control signal obtained from the difference between the current
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system state and the system state delayed by a period of unstable
periodic orbits.

We can extend this concept to control burst synchronization in
a neuronal network. To assess synchronization suppression, it is
necessary to monitor the variation of the mean-field of the variable
that represents the membrane potential on the map. Once this is
done, we insert an external signal, which acts as a disturbance,
and then after that, we adjust the amplitude of this signal until
we reach the desired effect. This procedure considers the inclusion
of a time delay due to the need to calculate the mean-field in real
time. Applying the time-delayed feedback in our network has an
effect similar to deep brain stimulation (DBS), which is based on
the application of electrical impulses in target areas of the brain
with the aim that this impulse reduces or suppresses the patholog-
ical activities associated with brain dysfunctions. The feedback
control alied to time-delay has shown successful results to sup-
press synchronous behaviors and several studies have been done
using the technique [44-47].

The structure of this paper is as follows. In Section 2 we present
the global network connection model built according to the human
connectivity matrix. Section 3 introduces the mathematical model
of the neuron and also of the coupled neural network. Section 4
introduces the mechanisms to suppress, or significantly reduce,
neuronal synchronization. Finally, in Section 5, we present our
conclusions.

2. Corticocortical connection matrix construction

The connections of neural fibers are structured through a con-
nection map, known as a connectome [48]. To build the connection
scheme in this paper, we use a human connectivity matrix, assigns
links to different cortical areas in an addressed manner [48,49].
Some researches have used different connectomes as a way to sim-
ulate synaptic connections in neuronal networks, such as the con-
nectome of C. elegans [28], cat [37], macaque [26] and humans [50].

The data used to construct the corticocortical connection matrix
were collected and processed by the PIT Bioinformatics group
based on data from the NIH-funded Human Connectome Project,
and are available at http://braingraph.org [20-22].

According to the original data obtained from the PIT group, we
construct a weighted connectivity matrix of healthy human brain,
employed for establishing the corticocortical connections, that is,
the connection between different cortical areas. The procedure to
construct the connectivity matrix is done according steps as
follow:

i. Acquiring the average matrix of the amount of neuronal fibers
between each pair of cortical areas [51], computed over data
from 1064 brains, parceled into 83 nodes resolution, according
to the method described in the references [20-22]. This is the
upper triangular matrix shown in Fig. 1(a);
ii. Obtaining the histogram with the distribution of the values
contained in the matrix resulting from step i, discarding the
zeros;
iii. Separate the distribution obtained in step ii into four quar-
tiles and assign the weights:
0 (1-st quartile, less number of connections);

1 (2-nd quartile, sparse connectivity);

2 (3-th quartile, moderate connectivity);

3 (4-th quartile, dense connectivity).
iv. Formation of the matrix T, shown in Fig. 1(b), by replacing
the values in the matrix obtained in step i by the corresponding
weights, according to step iii;
v. Getting the connectivity matrix W = T + T, shown in Fig. 1

(c).
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Fig. 1. Sequence of intermediate matrices until obtaining the W connectivity
matrix. Note that the vertical axis is oriented from top to bottom. (a) Average matrix
of the amount of neuronal fibers between each pair of cortical areas. The amount of
fibers is represented according to the color bar. Blank regions, in the upper
triangular, indicate no connections. (b) Upper triangular weight matrix T. Colors
indicate the weights of corticocortical connections from 0 (white) to 3 (yellow),
according to the label. (c) Complete W connectivity matrix. Same color code used in
the representation of the T matrix, in detail: 0 - no connections (white), 1 - sparse
connections (teal), 2 - moderate connections (magenta) and 3 - dense connections
(yellow). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The weights follow the number of links to be attributed in dis-
tinct areas, as determined: O - none, 1 - sparse, 2 - moderate and 3
- dense connections. This means that if the weight is 1, 16 connec-
tions will be established between two distinct cortical areas. For
weights 2,3 and 0 we add 32,48 and 0 connections to different
cortical areas, respectively. The choice of which pair of cortical
areas are connected it is equally drawn.

It is important to make clear that the matrix resulting from the
number of fibers gives us an upper triangular matrix, that is, each
pair of cortical areas establishes a connection under the condition
p < d, that is because the data is organized like this in the primary
source. Thus, we can make a reflection of the upper triangular
matrix T, shown in Fig. 1(b), to obtain the connectivity matrix
W, shown in Fig. 1(c). The matrix shown in Fig. 1(c) performs the
corticocortical connections in our model, that is, the external con-
nections which are established between different cortical areas.

3. Neuronal dynamics
3.1. Neuronal model

To simulate the neuronal behavior, we use a two-dimensional
map given by the following equations:

. a(P:i) .
X =2y, W
1+ (XE" ‘”)
YEL = Y00 — o () — p). ?

This nonlinear system represents the Rulkov map. The typical
values for the parameters, that lies in burst regime, are p = —1,

6 =102 and ¥ € [4.1,4.2), which are assigned in the computer
simulations [34]. Duly adapted to the notation of the network
structure, the upper indices p and i correspond to the subnetwork
(cortical region) and vertex (neuron) in it, respectively. The lower
index n (and n+ 1) marks the evolution in discrete time, corre-
sponds to the iteration state of the map. The diversity in the neu-
ronal population is obtained through distinct o®? randomly
determined, with uniform distribution in the refered real half-open
interval [4.1,4.2), for each i-th neuron in the p-th cortical region.

3.2. Network connectivity

The implemented network model is organized into two stages,
which are ties-in neurons in the same cortical area, identified as
internal connections, and links between different cortical areas,
called external connections. All links are chemical type, that is, unidi-
rectional from pre-synaptic to postsynaptic neuron. The subnetworks
are built according to the Newmann-Watts algorithm for a small-
world network [19], with 200 neurons connected in ring, with 6
nearest neighbors (both left and right sides) and with the probability
to add new connections set (shortcuts) as 20%. Thus, there are 1200
inputs from nearby neurons and approximately 40 shortcuts in each
simulated cortical area. Furthermore, we guarantee that all neurons
have at least one input and one output connection within the same
cortical area, as well as no autoconnections occur.

External connections are established according to the connec-
tivity matrix W, represented in Fig. 1(c) and described in Section 2.
The number of links between pairs of subnetworks is defined as the
correspondent weight in W multiplied by the factor # = 16. Given
two cortical areas p and d, yW, 4 pairs of neurons (i, j) are randomly
selected, with uniform distribution, being i a vertex of p and j of the
d network. The direction of the link is also randomly assigned, with
a probability of one half from i to j, or vice versa. In this way, non-
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symmetric matrices encoding the simulated corticocortical inputs
are obtained. Considering the block matrix M s3«s3)200x200), that
encodes just the inputs, the element My 4)ij = Wy is the weighted
link from the i-th neuron of the d-th cortical region to the j-th neu-
ron of the d-th region, if there is this chemical connection and
being p # d. However, if this pair of neurons does not have a chem-
ical connection in the described direction, we have M4 = 0.
The submatrices of the diagonal M, express the internal connec-
tions, whose weights are unitary. Given the type of synaptic con-
nection chosen, the connectivity matrix is not symmetrical, since,
in chemical synapses, the neurotransmitter is sent from the presy-
naptic to the postsynaptic neuron, which makes the process of
sending information one way.

Since we aim to simulate a neuronal network where the neu-
rons interact by means of chemical synaptic connections, we cou-
ple the neurons by a convenient modification in the Eqgs. 1,2. For
that purpose, we add a coupling term —e.C?? to the first variable,
while the second equation of the Rulkov map remains unchanged
[30], being

. a(l’-f)
X(P-') _

il = 3
1+ (xn ’”)

where the chemical coupling strength &. > 0 and the input coupling
factor is defined by

S
i) M (dp) Ul
K®) &= =

+yPD — e CPY, (3)

C’(1P,i) —

= 0) (X2 = Papya)- (4)
The summation indexes run through the numbers of subnet-
works N = 83 and vertices V = 200 in each one of them. Note that,

since there are no autoconnections, we have Mg, i) =0. The
denominator K? is the amount of links for the respective neuron,
summing the total of inputs from both sources, internal and exter-
nal connections. As the neuronal activation function, we employ
the Heaviside function with the threshold potential § = —1, set to
assume two values:

w0 -{

The potential of connection could be excitatory or inhibitory. In
our model we choose to set randomly 80% of excitatory and 20% of
inhibitory links, respectively. If the synapse is excitatory, the
potential takes on the value P45 = 1, else, Ppa) i = —0.5.

The input coupling factor can be rewritten in two parts: the first
one is relative to internal connections, p = d in Eq. (4), and the adja-
cency matrix of p-th subnetwork is given by A® = M, ; the second
part is relative to external links, p # d in Eq. (4). Note that the AP
adjacency matrix describes a SW network with unidirectional links,
therefore not symmetrical. The element A") =1 means that in the
p-th cortical area is a chemical connection from the i-th neuron to
the j-th one; A”’ = 0 means that there is no link with this described
orientation. Thus, we obtain the following expression describing sep-
arately the intracortical and corticocortical contributions:

0, if x%
1, else.

=0 )

- ()
— 1
= <oy A]
j=1
s (xPD _ xP) _p )
n n (p-p)(i) 6
Ny (6)
2 D Mapia
d:I #p j=1
XW(XH D _ 0> X%p"') — P(d‘p)(j,i))-
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3.3. Phase synchronization

The Rulkov model shows repetitive bursts after periods of qui-
escent behavior. The onset of each burst in variable x”) of the map
is closely related to the variable y”'). When a burst starts, the vari-

able ynJr1 has a local maximum, shown in the Fig. 2. In this way, we
define a geometric phase in the interval [0, 27) such that

(p.i)
n-— kq

(p.i)
q+1 k

(7)

¢$”=2nk
where k%" is the iteration step (discrete time) when q-th burst

starts and k(p P<n< kq 1, the phase @ grows monotonically in

this time 1nterval. For each neuron, the first burst after the transient
receives the index q = 0.

The phase synchronization of a set of oscillators can be mea-
sured by the Kuramoto order parameter [52], which evaluates
the phase state of coupled oscillators classifying their movement

2.0 2.7
(a) evaluation interval
i -2.8
| 2
I =
it
il
Ih 2
-2.5 T T T =-3.0
kgl,l) k(11,1) k(21,1)
2.0 =-2.7
(b)
i
T 0.0 w “
|
-2.5 -3.0

T T T
k61,2) k(11,2) k(21,2)

n (iterations after transient)

Fig. 2. Time series of coupled map, according to Eq. (3). The Figure show the
sequence of bursts in the fast variable xP¥ (gray) and oscillations of the slow
variable y” (red line). The burst onset coincides with the local maxima in the y"
series, and the starting firing times are exhibited on the horizontal axis. The blue
background corresponds to the evaluation interval of the phase synchronization
between the two neurons used as an example, both from network 1, namely: (a)
first and (b) second neuron. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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as coherent or incoherent. The first one occurs when the oscillators
“lock”, causing their phases to be synchronized by the their
grouped movement, and the second occurs when the oscillators
drift along a unitary circle, that is, there is no synchronization
phase synchronization [52]. We can make an analogy for the case
where neurons are the phase oscillators [53,54], in this way, we
can use the definition made in Eq. (7) to measure the phase of neu-
rons firing in burst.

In order to evaluate the synchronization of the neural network
within a time interval, we analyze the time average of the Kura-
moto order parameter, which is defined for each subnetwork as

1 Wiy P
(nb—na+l)ZV D e

n=ng * |j=1

RY = , ®)

where i is the imaginary unit. Similarly, for the global network, we
have

1 y
:(n,,—n,,+1)z

n=ng

N VY < (D)
Rq Doy e, (9)

p=1j=1

1
NV
The Kuramoto order parameter takes on values between
0 <R? R, <1, with R? R, =1 indicating fully phase synchro-
nization, and R”, R, = 0 indicating that the neuronal activity are
not synchronized in phase.
Due to the definition of the phase, according to Eq. (7), to deter-

mine the average parameters in Egs. (8) and (9) it is necessary that
the chosen time interval is between, at least, two bursts of all neu-

rons considered. Thus, the calculation starts from the largest k.
The last compute burst time k}”‘” of each neuron must be greater

than kg"i) + A, where A +1 is the number of iterations taken into
account. In Fig. 2, we show excerpts from the time series of two
neurons in network 1, both with 3 consecutive bursts. Taking this
to illustrate how the evaluation time range lies: blue band high-
lights the synchronization evaluation interval, which starts at
ki (tick in Fig. 2)) and ends one iteration before ki (tick in

Fig. 2(b)). In this case A =k{"” —k{"” —1 and Eq. (8) becomes,
for just two neurons, in this example

K21
e’ (10)

Rexample

‘l 2
TR 22

n:k(ol.l) j=1

In order to obtain the results presented in this study, we com-
putationally evolve the neuronal network discarding the first 10*
iterations as transient and evaluated the synchronization, accord-
ing to Eqgs. (8) and (9), along also A + 1 = 10" iterations. Further-
more, the values are averages among 20 initializations (except
for raster plots) from randomly assigned equiprobable initial con-
ditions in the intervals x?* € [-2,0) and y?" € [-3, —2.5). For each
set of initial conditions, a different set of values for a® is also
drawn.

An evaluation of the global network phase synchronization
reveals an abrupt transition from the non synchronized to the syn-
chronized state, as illustrated by the blue dotted line in Fig. 3(a).
Synchronous behavior of neuronal bursts starts at chemical cou-
pling strength &. ~ 0.016. With increasing coupling strength, the
global phase synchronization changes from R; ~ 0 to R; ~ 0.84,
as of & ~ 0.02. Still in Fig. 3(a), it is possible to observe that, in
most cases, the subnetworks are more synchronized than the glo-
bal network. While the largest value of R? is very close to unity,
the value of R; does not reach 0.9. This behavior is represented
for the 83 subnetworks by the gray curves. Note that some net-
works remain with synchronization values below 0.8 even for high
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values of &.. It is also important to make an assessment of how the
synchronization of neurons occurs within each cortical area. We
present in Fig. 3(b) details of the synchronization in each cortical
area as a function of the chemical coupling strength. This behavior
is similar to global network, but the subnetworks, in general, have
higher synchronization levels than R. Also in panel (b) we have the
presence of some regions in which the synchronization of cortical
areas is close to 0.8, which is below the expected given the major-
ity RP values. The low synchronization rate in these cases occurs
in networks that establish few connections with other networks,
this can be better seen in Fig. 1(c). As the human connectivity
matrix shows, the cortical areas corresponding to subnetworks
2,3,4,27,28,43,44,68 and 69 do not establish many connections
with other subnetworks. When there is a connection in the cortical
areas mentioned, most of these are sparse and few of them have
moderate connections. This causes a slower synchronization
growth as a function of ¢ of the subnetworks, which can be seen

in Fig. 3 both in panel (a), for the networks with R® values below

1.0

0.8

on06'
84
=
K 0.4

& o))
(e} S
1 1

p (cortical area)

[\
o
1

e

1 1 1
0.04 0.06 0.08

€&

1 -
1 I
0.00 0.02

1
0.10

Fig. 3. Phase synchronization as a function of & € [0,0.1] discretized into 26
equidistant values, after discarding the first 10* system iterations and calculated
the average synchronization along discrete-time of 10* steps. For these results, we
take on the mean values over the 20 evolutions of the system from randomly
assigned initial conditions. In panel (a) are shown the synchronization Ry of the
global network (blue dotted line) and R” of each subnetwork (gray lines). Panel (b)
displays the synchronization details on each subnetwork, R” according to palette.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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the average for the global network, and in panel (b), in the regions
that go from blue to yellow according the color box.

4. Time-delayed feedback effects

Carry out an assessing synchronization suppression in neuronal
dynamics is essential, given the association between high synchro-
nization and neurodegenerative pathologies [1-3]. Thus, finding a
method capable of vanishing or decreasing burst synchronization
is essential for the neural rhythms to show distinct behavior. The
feedback term to be investigated consists of insert a negative term
to the equation for the fast variable, proportional to the mean-field

X,(f’fr, considering 7 iterations prior to n-th iteration, being the

mean-field

1i v
— val.
V n

i=1

XP = (11)

The delayed mean-field for a given cortical region p, is the aver-
age of the membrane potential of the network for each neuron in
the cortical region considered, remembering that V is the total

number of neurons in each subnetwork. In this way, the Eq. (3)
receives the feedback term and becomes

oy _ oD

n+1 — 2 +y,<f"i) — ScCgLi) — & LX(") J,

N2 n-t
1+ (xS,”"))

where & is the feedback signal strength and 7 is the time delay. The
floor function applied to the delayed mean-field gives us

LXﬁ{’ZTJ =z € 7, such that

(12)

z<XP <z+1. (13)

This means that z is the largest integer smaller than, or equal to
X,(fjr and, according to Eq. (12), a z value is calculated for each sub-
network at every iteration.

The raster plot displayed in Fig. 4 allows us to observe the effect
of time-delayed feedback on the neurons of the network. When
analyzing the burst synchronization without this term (Fig. 4(a)),
we observed the pattern in vertical bands resulting from the phase
synchronization of the neuronal bursts, where neurons firing in
phase (seen by the red and yellow range) and returning to their
quiescent behavior (cyan band), according to the behavior of the
map. Once the coupling is added to the map, the neurons lose their
phase synchronization, firing at individual rhythms, which is
observed by the break in the behavior pattern of the once well-
defined bands. For & =0.04, phase synchronization is not
observed, as shown in Fig. 4(b). This evaluation, even if qualitative,
is a good indication that synchronization is achieved through the
insertion of the coupling term and, with delayed feedback term,
this synchronizations is suppressed.

We show, in Fig. 5, the effect of time-delayed feedback control
when applied to the neuronal network. In panel (a) we verify
through the plot 7 x & that there are two distinct regions that
exhibit high and low synchronization. The combination of values
in the parameter space t x & for & < 0.02 and all T values displays
a region where network synchronization is still high, reaching
Ry > 0.8. On the other hand, for T between 0 and ~ 16 with combi-
nations of & > 0.02 there is a region of the parameter space where
the synchronization presents values of Ry very small, indicating
low phase synchronization of neurons in the global network. In
panel (b), we have a similar situation. The synchronization sup-
pression occurs for certain combinations of cortical areas and &.
In this case, we adopted 7 = 0 and see that synchronization in cor-
tical areas decreases as &;. Likewise, for values of & < 0.02 there is
no supression of synchronization in the neuronal bursts in the sub-
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Fig. 4. Raster plot of the fast variables for an example subnetwork. Bursts can be
identified in colors from yellow to red and the interval between these is from cyan
to black color. In both panels & = 0.1. We observe the evolution of the neural
network in two different configurations: (a) Without feedback term, equivalent to
& =0 in Eq. (12). There are well-defined bands over time, evidencing the burst
synchronization. (b) With active feedback & = 0.04 and 7 = 1. If a well-defined
pattern of the bands is not observed, so, there is no synchronization in the phase of
neuronal activity. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

networks. So far, we analyze the effectiveness of synchronization
suppression through Kuramoto order parameter values, however,
the best way to assess the effect of network synchronization con-
trol is the suppression measure, which we will introduce in the
next subsection.

4.1. Suppresion of global and subnetwork synchronization

The technique used to suppress neuronal burst phase synchro-
nization evaluates the variance according to the mean-field
strength [45]. To evaluate the efficiency of the feedback method
strategy applied, we compute the synchronization suppression
value in each subnetwork, given by

Var [x;m (& = 0)]
Var [Xf{’)]

(14)

being X' (¢; = 0) the mean-field in the absence of the feedback con-
trol and Var[-] denotes the variance. Similarly, we evaluate the glo-
bal synchronization suppression
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Fig. 5. Network phase synchronization as a function of ¢ € [0, 0.04] discretized into
21 equidistant values. We adopted ¢. = 0.1 and the feedback applied throughout
the evolution of the system. High synchronized states are represented in color
gradient from yellow (Ry,R? = 0.8) to red (Rg,R” = 1), lower synchronization is
from gray to blue color. (a) Results for global network. Vertical axis are discretized
in 21 values for 7 from 0 to 20. (b) Evaluation of each subnetwork with delay t = 0.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

5 _ Var[Z, (& = 0)]
& Var[Z,]

where =, is the mean-field of the fast variable for the global net-
work, given by

(15)

N V
>3

p=1i=1

= _Igyp 1
p:
If an undisturbed subnetwork is phase synchronized at a given
interval n, < n < ny, the mean-field X” (¢ = 0) presents oscilla-

tions accompanying the bursts of neurons [50], being characterized
by a well-defined large amplitude oscillations and with a relatively

large variance given by Var [Xf.{’)(af = 0)]. Conversely, if the subnet-

work is completely desynchronized, the mean-field exhibits a low
amplitude fluctuation, around zero, that is, a low variance [45]. As
the objective of the control procedure is to reduce the level of syn-
chronization, we expect that when applying the control term with
amplitude &, the variance of the mean-field with control be the
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smallest possible. Therefore, for the model we are using, the suc-
cess of the suppression method is reached when the condition
S>> 1 is satisfied. The same reasoning is valid for the global net-
work behavior.

Fig. 6 shows the suppression factor obtained for the global net-
work. It is observed, at first, that as we increase the value of the
feedback signal strength, the suppression reaches values much
greater than the unity, which implies that the chosen method gave
us a good Result 6(a). Also, in the panel (a), we see a region, in cyan,
that spreads, in which S, exhibits values lower than 10 for tiny &
and certain combinations of &, even when &. = 0.1. There is also
the presence of a “tongue”, region in orange, where the suppres-
sion factor reaches the maximum value S > 100. The panel (b)
shows how synchronization is suppressed in different cortical
areas according to the values of &. The plan p x & is well separated

into two regions whose suppression values are S” < 10 (dark-

cyan) and S? ~ 15 (yellow), respectively. Within the cortical areas
we verify sufficiently high suppression values. Comparing the
results of panels (a) and (b), we notice that the suppression in
the subnetworks reaches lower values than for the global network,
still showing good results for suppressing the neuronal synchro-
nization. We must remember that, as shown in Fig. 3, the synchro-
nization in cortical areas is greater than in the global network,
making it more difficult to suppress the synchronization, which
corroborates our results.

In order to evaluate the effect of time delay on global synchro-
nization suppression, we compute the value of S, as a function of t,
with & =0.1 and for six different values of feedback signal
strength. Fig. 7 shows the curves obtained for 0 < 7 < 20, where
the adopted values of & are indicated by colors, from & = 0.040
(black line) to & = 0.050 (red line). The suppression value falls
with 7, remaining greater than 50 for 7 < 10 and approximately
25 when 1 ~ 15. Such values are still satisfactory as indicative of
phase synchronization suppression. However, for T = 20 none of
the feedback signal strengths proved to be sufficient to suppress
the synchronization of neuronal activity, with the smaller values
& = 0.040 and & = 0.042 (dark-blue line) being insufficient even
for the time delay slightly less than 20. Here, we employ feedback
signal strength that results in high suppression, the same values
are used in the analyzes performed on the Sub-s. 4.2 (see Figs. 8
and 9).

Note that for small values of 7, namely witht =0and 7 = 1, we
obtain the best global synchronization suppresion levels. In partic-
ular, T = 0 configures the case without delay, being the feedback
signal calculated as a function of the cortical area mean-field in
the same time of the last iteration. This can be understood by
observing that, when a given cortical area presents phase synchro-
nized activity, its mean-field shows oscillations accompanying the
neuronal bursts, but the feedback perturbation acts disturbing the
current state. Therefore, if most of the neurons are in quiescent
state, the feedback acts stimuling firings, if they are in burst, the
disturbance is in opposite way. There is suppression of phase syn-
chronization, since different neurons show different responses to
stimuli over time.

4.2. Time-delayed feedback acting after synchronization

We also analyze the effect of feedback when applied to an
already synchronized network, as the sample shown in Fig. 8. For
that, we modify the Eq. 12 by adding a multiplicative time-
dependent activation term #’(n — ¢), where 7 is the discrete time
computed after the transient and ¢ marks the onset time of feed-
back actuation. Thus, the networks evolves without the action of
a synchronization suppression factor until it is activated from the
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Fig. 6. Synchronization suppression as a function of & € [0,0.04] discretized into 21
equidistant values. Here 7 =1 and the feedback acts throughout the evolution of
the system. Suppression values are represented in color, according the palette:
lower values in dark-cyan and higher ones in gradient from yellow to red. (a) Global
results from pairs (&, &), with & varying from 0.02 to 0.1 in steps of 0.004. (b)
Detailing for the subnetworks, adopted & =0.1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

determined iteration step J. The fast variable equation takes the
form

(pi) _

oPd)
n+1 = ]+(X51p,i))

sy = e CPY — A (- 0)er | XD, (17)
Here, we define § = 3000, highlighted in Fig. 8, and evaluate the
effect of the feedback signal strengths. This assessment is done by
means of temporal evolution of the Kutamoto order parameter,
which is calculated for a given subnetwork by

v i (PJ)
§ eion”|.
=

We study the case of high synchronization in the cortical areas.
For this, we set & = 0.1 and apply the time started feedback with
T = 1. First, we choose a subnetwork and analyzed how it behaves
before and after the feedback control acting in the global network.
In Fig. 8, the panel (a) displays the value of r’ according to the
temporal evolution from 1000 to 5000 steps after the transient.
The panel is divided into two parts that configure without and with
the application of feedback, in this order. For the case without
feedback, it is expected that the synchronization is high, corrobo-

1
=y (18)
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Fig. 7. Suppression of global synchronization as a function of time delay in the
interval 0 < 7 < 20. Simulations performed with ¢. = 0.1 for six different & values,
according to the label.

rating the previous results. In this case, the synchronization

reaches values of P’ ~ 1. From interaction n = 3000 after tran-
sient, the feedback control acts on the network with & = 0.04
and, as we can see, it does not present a significant reduction in

the synchronization value, keeping values close to ¥’ = 0.8. The
same effect is observed in the raster plot (panel (b)). Initially, the
bursts (yellow) are synchronized in phase followed by their quies-
cent periods (cyan), and, after the application of the feedback, there
is still the presence of well-synchronized firings, characterizing the
phase synchronization of Rulkov neurons within the subnetwork.

We subsequently verified the effect of a stronger feedback signal
when applied to the same conditions. Thus, in the panel (c), we see a
significant change in the synchronization values before and after the
control application. Again, when the feedback is not applied, the
phase synchronization has an expected behavior, however, in this
case, when applying the control, the synchronization falls quickly,
reaching values closely to zero. In the panel (d), the raster plot con-
firms the control effect. Approximately 500 iterations after starting
feedback actuation the phase synchronization falls by half. Around
750 iterations after suppression factor activation, the phase synchro-
nization is completely suppressed, namely the neurons are firing at
different times, and it is not possible to distinguish a pattern of yel-
low bands (bursts) on the raster plot. This evidences that to obtain
more expressive results in a given cortical area, it is necessary to
apply a slightly larger feedback control signal &, in this case
& = 0.05 is enough to achieve the desired effect.

For analyzing the phase synchronization effects of the time
started feedback on global network, we perform simulations with
six different values of feedback signal strength, being from
& = 0.040 to & = 0.050 in steps of 0.002. Similarly to the expression
of r?) for an individual network in Eq. (18), the Kuramoto order
parameter at a n-th iteration of the global network is given by

14

N i
>y et
p=1

j=1

1
r":W (19)

For simplicity of notation, here we omit the subscript g indica-
tive of global. As in the previous sections, the following results are
averages of 20 initialization from randomly initial conditions,
which were assigned the same for all & adopted values.
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Fig. 8. Effects of applying feedback on the already synchronized global network,
shown the behavior of an example cortical region. Chemical coupling strength
& = 0.1. Feedback term activated from iteration n = 3000 after transient (high-
lighted on the time axis), delay parameter set as T = 1. Pink background denotes
active feedback term. (a) Evolution of network phase synchronization with
& = 0.04. (b) Raster plot of fast variable. The phase synchronization is presented
in previous panel. (c) Evolution of network phase synchronization with & = 0.05.
(d) Raster plot of fast variable. The phase synchronization is presented in previous
panel.

Fig. 9 shows the r, curves obtained for each feedback signal
strength, identified in colors according to the label next to it. Before
the activation of the suppression term (white background region),
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Fig. 9. Effects of applying feedback on the already synchronized global network.
The evolution of the Kuramoto order parameter of the global network is shown (Eq.
(19)) for six different ¢ values, according to the label, with chemical coupling
strength & = 0.1. Feedback term activated from iteration n = 3000 after transient
(highlighted on the time axis), delay parameter set as 7 = 1. Pink background
denotes active feedback term.

the global network presents phase synchronization levels oscillat-
ing close to r, = 0.84. From the action of the control term (pink
background region), in the iteration n = 3000 after the transient,
different behaviors are observed according to & values. For the
highest implemented values & = 0.048 (yellow curve) and
& = 0.050 (red curve), a fast reduction in the synchronization of
neuronal activity is observed, reaching r, ~ 0 shortly after 1000
iterations with feedback term active with & = 0.048 and, for
& = 0.050, a little before this time. A slower decay was obtained
with & = 0.046 (green curve), for which complete desynchroniza-
tion was achieved after 1500 iterations with suppressor term acti-
vated. For the three lowest implemented feedback signal strengths,
complete desynchronization was not observed in the investigated
time interval. & = 0.040 (black curve) and & = 0.042 (dark-blue
curve) lead to similar behaviors, with the phase synchronization
levels slowly decreasing in oscillations around relatively high val-
ues. In these two cases, the suppression method is not satisfactory
when applied to the already phase synchronized network. An
intermediate behavior is obtained when & = 0.044 (light-blue
curve), for which the synchronization of neuronal activity is slowly
lost, reaching r,, ~ 0.3 at the end of the evaluated time interval.

5. Conclusions

The study of synchronization plays an important role in under-
standing pathological dysfunctions in certain areas of the cortex. In
this work, we employ synchronization control techniques in a
small-world network composed of Rulkov neurons, with the net-
work connectivity performed by a human connectivity matrix with
83 cortical areas. Our results indicate that the control method used
has a good success rate.

Phase synchronization is evaluated in two situations: (i) in the
global network and (ii) in the cortical areas (subnetworks). Com-
paring the result of the measurement of the Kuramoto order
parameter in both cases, we see that for the subnetwork the syn-
chronization is more accentuated, with some networks reaching
values higher than in the global network, close to the full phase
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synchronization. We understand that this is a characteristic arising
from the construction of the network network model, regardless of
the chosen network topology, be it small-world, scale-free or
random.

The time-delayed feedback technique, applied to all cortical areas
in the form of a floor function of the fast variable mean-field in each
of them, proved to be quite efficient in suppress the network phase
synchronization. When applied to the global network, the success
rate is high, with the suppression factor, S; described in Eq. (15),
reaching high values. In contrast, given the high synchronization of
neuronal activity, as obtained with chemical coupling strength
&. = 0.1, the suppression for each cortical area reaches less satisfac-
tory values in some regions. A solution for this is the application of
the control with a slight increase of the feedback signal strength
(&). The method applied to the network with the neuronal activity
already synchronized was effective for & > 0.046, for which an
accentuated desynchronization was observed. On the other side,
when applied before phase synchronization, lower values of feedback
signal strength, as verified 0.02 < & > 0.04, are sufficient to sup-
press the synchronization of neuronal activity with the high value
of chemical coupling strength ¢. > 0.1.

The techniques applied in this work allowed us a better under-
standing of the synchronization of neuronal activity allowing the
design of specific recovery strategies based on network analysis.
This proved to be important because, in practical terms, it is desir-
able that external actions in the brain are precisely defined to reach
target areas with the application of low currents, which in this
study were simulated by the feedback control.
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