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ABSTRACT

A phenomenon of emergence of stability islands in phase space is reported for two periodic potentials with tiling symmetries, one square
and the other hexagonal, inspired by bidimensional Hamiltonian models of optical lattices. The structures found, here termed as island
myriads, resemble web-tori with notable fractality and arise at energy levels reaching that of unstable equilibria. In general, the myriad is an
arrangement of concentric island chains with properties relying on the translational and rotational symmetries of the potential functions.
In the square system, orbits within the myriad come in isochronous pairs and can have different periodic closure, either returning to their
initial position or jumping to identical sites in neighbor cells of the lattice, therefore impacting transport properties. As seen when compared
to a more generic case, i.e., the rectangular lattice, the breaking of square symmetry disrupts the myriad even for small deviations from
its equilateral configuration. For the hexagonal case, the myriad was found but in attenuated form, mostly due to extra instabilities in the
potential surface that prevent the stabilization of orbits forming the chains.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0185891

A phenomenon of appearance of multi-oscillatory motion, here
called island myriads, is reported for periodic potentials inspired
by Hamiltonian models of two-dimensional optical lattices. The
two types of potentials considered here have a periodic structure
with square and hexagonal symmetries, allowing them to tile the
plane completely. This periodic tiling aspect, and its connection
to translational and rotational symmetries, is shown to be respon-
sible for the existence of stable periodic orbits which will form
the complex fractal-like structure that is the myriad. The effect of
breaking these symmetries is also analyzed. Besides, despite being
related to the appearance of stable trajectories, the phenomenon
takes place at energy values close to unstable equilibrium points
of the potential surface.

I. INTRODUCTION

In a broad sense, among the various dynamical behaviors seen
in Hamiltonian systems, the bifurcation of periodic orbits pro-
vides the main approach for describing changes in phase space as
one alters the control parameters of a model. Particularly within
area-preserving systems with more than one degree of freedom,

bifurcations are extensively documented in the literature.1 In this
scenario, stable periodic orbits represent the elliptic centers of
islands whereas when unstable they represent hyperbolic points,
with their manifolds governing the dynamics within chaotic regions.
As periodic solutions appear, disappear, or change stability, they
modify the kinetics of the system, thus being commonly referred to
as the skeleton of phase-space dynamics.

These bifurcation processes are then applied in studies of the
onset of chaos for resonant islands with commensurate frequency
(in the context of KAM theorem2); in the disruption of transport
barriers, whether in twist or non-twist systems;3 to the existence of
multiple oscillatory solutions (in the context of Birkhoff’s theorem4);
or diffusion,5 among others.

A peculiar scenario is the one of web-tori, where a multitude
of islands tiles a portion of phase space, corresponding to a dif-
ferent bifurcation condition than that of KAM islands.6 In KAM
theory, the persistence of invariant tori for a Hamiltonian H0(I)
that is monotonic in the actions I = (I1, . . . , In) is guaranteed for
nonlinear perturbations with small enough amplitude. In the case
of web-tori, the non-degeneracy condition is not satisfied, there-
with allowing for the generation of multiple islands depending on
the number of fixed points from the equations of motion and the
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frequency of the oscillatory perturbation. Despite the good intro-
duction to the topic given by Zaslavsky et al.5 and Chernikov et al.,7

not many works concern a detailed description of the properties of
web-tori. This configuration is mostly studied as a framework for
weak chaos within stochastic webs, when separatrices are slightly
perturbed forming thin chaotic channels with anomalous transport.

In this work, two Hamiltonian systems with periodic potentials,
based on optical lattice models, are used to report a bifurcation phe-
nomenon here named as island myriad. The myriad is a seemingly
dense filling of a finite region of phase space by a series of stability
islands, highly resembling finite web-tori with notable fractality. It
emerges from the bifurcation of orbits scattered when approaching
a set of unstable equilibria with the same energy in potential sur-
faces with tiling symmetry. At the energy level of these equilibria,
the deviated orbits form a fractal arrangement of isochronous island
chains in phase space, with each one being formed by rotated and
translated symmetrical sets of orbits as allowed by the potential sym-
metries. The two lattice models considered here have rectangular
and hexagonal bidimensional tilings, and the myriad phenomenon
is described in terms of its main periodic orbits and shown to rely
on the symmetries of the potential functions.

Although the myriad was already reported in a previous work,
the results presented here extend and are connected to the previous
study done on the square lattice system,8 to which we refer the reader
for additional aspects of the dynamics regarding diffusion.

In what follows, Sec. II starts with deducing the periodic poten-
tials and further Hamiltonians for the selected systems, as inspired
by a classical treatment of an optical lattice model. The island myr-
iad bifurcation is initially presented for the square lattice in Sec. III
and its properties listed for this case. Then, the effect of symme-
try breaking is demonstrated by considering a non-equilateral tiling,
i.e., a generic rectangular lattice (Sec. IV). At last, the myriad is fur-
ther analyzed for the hexagonal system (Sec. V). Appendixes A–C
provide details for discussions made along the results sections.

II. LATTICE HAMILTONIAN MODEL

Periodic potential models have been used as simple yet
rich descriptions in different physical contexts, from cold-matter
physics,9 charged particles in plasmas,10 or diffusion over crystal
surfaces.11 The kind of periodic potential considered for this work
is based on a classical Hamiltonian description of optical lattices.

In these models, when a neutral atom interacts with an elec-
tric field EE from a monochromatic wave, despite its neutrality, a
dipole is induced along the field direction.12 The induced dipole thus
oscillates with the wave while re-interacting with the field, hence
submitting the particle to a potential function that, when averaged
over time, results in a pondemorative potential,

Vlatt ≈ −ρ(ω)

2

∣

∣ EE(Er)
∣

∣

2
. (1)

Consequently, this conservative potential produces a force over the
particle toward the wave antinode (node) if ρ > 0 (ρ < 0), thereby
constraining the particle along the wave propagation axis.

From the single wave-particle interaction described, a generic
lattice is then built by superposing the electric fields from multiple

waves oriented throughout 3D space,

EElatt(Er) =
N
∑

i=1

ên En
0 cos

(

Ekn · Er + φn

)

e−iωnt, (2)

with each one given by its polarization direction ên, amplitude En
0 ,

wave vector Ekn, phase φn, and angular frequency ωn. Note that

ên · Ekn = 0 ∀n.
For simplicity, all waves are assumed to have equal amplitude,

resulting in the generic lattice potential,

Vlatt

(

Er
)

= U ′
(

N
∑

n=1

cos2
(

Ekn · Er
)

+ 2
N
∑

n=1

N
∑

m>n

αnm cos
(

Ekn · Er
)

cos
(

Ekm · Er
)

)

, (3)

where αnm = (ên · êm) cos(φn − φm) are the coupling parameters
between waves n and m and U ′ = − 1

2 ρ(ω)E2
0. In such a manner,

the dynamics of particles is governed by Vlatt

(

Er
)

which generally is
tridimensional.

In potential (3), a variety of lattices can be built when combin-
ing different wave orientations and number. For 2D lattices, at least
two co-planar, linearly independent wave vectors must be selected,
producing a potential surface over the plane. To provide a q-fold
symmetry to the lattice, one can set q equally spaced wave vectors
with the same norm

Ekn = k cos

(

n
π

q

)

x̂ + k sin

(

n
π

q

)

ŷ, (4)

for n = 0, . . . , q − 1, generating polygonal lattice patterns.
Therefore, the Hamiltonian for a single particle in a bidimen-

sional lattice is directly written as

H ′ = 1

2m

(

p2
x + p2

y

)

+ V(x, y), (5)

for any lattice potential V(x, y).

A. Rectangular lattice

The main lattice type considered here will be a rectangular
one, that is, the one formed by two perpendicular waves within the

x–y plane, where Ekx = kxx̂, Eky = kyŷ, yielding the periodic potential
function,

V(x, y) = U ′ (cos2(kxx) + cos2(kyy) + 2α cos(kxx) cos(kyy)
)

, (6)

with

U ′ = −1

2
ρ(ω)E2

0 and α =
(

êx · êy

)

cos(φx − φy). (7)

The resulting Hamiltonian (5) is re-scaled to H = 2mH ′ so that
the energy scale is U = 2mU ′. In the classical regime, the magni-
tude of U has no relevance to the topology of solutions whatsoever,
with only its sign being relevant. For this work, we consider the case
of U > 0, in which the myriad could be identified. In case U < 0,
the stability of equilibrium points is reversed and the dynamics is
considerably different. Therefore, we set U = 20 in agreement with
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FIG. 1. Color plot of the potential surface V(x, y) [Eq. (6)] for kx = 1, ky = 1.5
and different values of the coupling α. The Poincaré section used for phase-s-
pace display is shown as the green dashed line at y = π

2ky
. At α = 1, minima

collapse into a “minima trench” given by cos(kyy) = − cos(kxx), shown as the
white dashed line. Color bars show the value of V(x, y) in normalized units.

Horsley et al.,13 although for simplicity it could be set to 1 without
loss of generality.

The dynamics of a particle will then take place over the poten-
tial surface shown in Fig. 1, where it can be either trapped around
minima regions, for energies below those of saddle points between
potential wells, or otherwise wander to neighboring cells above
this threshold. One may notice that a unit cell for the lattice can

be defined as the box (x, y) ∈
[

− π

kx
, π

kx

]

×
[

− π

ky
, π

ky

]

, allowing for

periodic boundary conditions when simulating trajectories (as used
in this work when showing trajectories on the lattice unit cell).
Notice that the near-symmetry case is when kx ≈ ky, as the unit cell
becomes square.

For increasing α, the potential surface moves from the sepa-
rable case (α = 0) to fully superposed (α = 1) as the equilibrium
points change energy and position (see Fig. 1 and Table I). While
minima remain with zero energy and do not change position with
varying α, saddle points move toward local maxima, finally merging
when α = 1, forming “trench lines” with degenerate minima along
the lines kyy ± kxx ≡ π mod (2π). Simultaneously, local maxima
diminish in energy thereby widening the pass between potential
wells and facilitating the transport of particles.

As seen in potential (6), the coupling parameter α acts as a per-
turbation to an integrable Hamiltonian of two uncoupled pendula-
like potentials along x and y (with spatial period 2π

ki
), coupling them

for any α 6= 0. Although α may vary in the interval [−1, 1], one
can limit oneself to solutions for α ∈ [0, 1] as the change α → −α

TABLE I. Equilibrium points position (x∗, y∗) and energy V(x∗, y∗) within a unit cell
of the rectangular lattice potential; positions are taken modulo 2π /k i.

Equilibrium point (x∗, y∗) V(x∗, y∗)

Minima

(

π

2kx

,
π

2ky

)

0
(

− π

2kx

, − π

2ky

)

(

π

2kx

, − π

2ky

)

(

− π

2kx

,
π

2ky

)

Maxima (global) (0, 0) 2U(1 + α)
(

π

kx

,
π

ky

)

Maxima (local)

(

π

kx

, 0

)

2U(1 − α)
(

0,
π

ky

)

Saddles

(

0, ± 1

ky

cos−1(−α)

)

U(1 −α2)
(

± 1

kx

cos−1(−α), 0

)

(

π

kx

, ± 1

ky

cos−1(α)

)

(

± 1

kx

cos−1(α),
π

ky

)

is equivalent to a spatial translation by π

ki
in one of the Cartesian

directions, thus not altering solutions properties.
For the purpose of this work, we start by considering the par-

ticular case of a square lattice, that is, when kx = ky (which is set as
k = 1 without loss of generality). In general, for any kx, ky, the rect-
angular lattice presents translational symmetry for displacements
of 2π

ki
, for i = x, y, along each respective axis. However, the square

lattice presents an extra rotation symmetry, by rotations of π

2 . As
discussed in Sec. III, the presence of symmetry is necessary for the
myriad existence. Considering this, we initially analyze the myr-
iad for the square system and then set different kx, ky such that
symmetry is broken and its effects evaluated. Other alternatives for
symmetry breaking are possible, such as the use of non-harmonic
waves, as done by Porter et al.,14 although no particular analysis on
the bifurcations of orbits is made in that work.

To display phase-space portraits, along all this work the
Poincaré section with the oriented surface over two of the lattice
minima

6 =
{

(

x, y, px, py

)

∈ R
4; y = π

2ky

; py > 0

}

(8)

will be used—as highlighted in green in Fig. 1. Since Hamiltonian (5)
is autonomous, energy (E = H) is an immediate constant of motion,
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constraining trajectories in a three-dimensional surface, which can
thus be pictured in a 2D section. For the square lattice, the oriented
surface 6 is particularly convenient since its projection at the (x, y)
plane contains the minima at x = ± π

2kx
. Indeed, bounded solutions

around minima with y < 0 will occur, but nonetheless the π

2 rota-
tion invariance implies that their symmetrical rotated counterpart
solution will intersect 6 at y = π

2 .

B. Hexagonal lattice

Analogous to rectangular lattices, hexagonal ones (or honey-
comb lattices) are achieved with three co-planar wave vectors with
the same norm and equally spaced by 60o from each other, in
accordance with Eq. (4). From Eq. (3), the resulting potential is
given by

V(x, y) = U ′
(

cos2(kx) + cos2

(

k

2
x +

√
3k

2
y

)

+ cos2

(

−k

2
x +

√
3k

2
y

)

+ 2α12 cos
(

kx
)

cos

(

k

2
x +

√
3k

2
y

)

+ 2α13 cos
(

kx
)

cos

(

−k

2
x +

√
3k

2
y

)

+ 2α23 cos

(

k

2
x +

√
3k

2
y

)

cos

(

−k

2
x +

√
3k

2
y

)

)

. (9)

The potential form (9) has three coupling parameters αnm,
implying a four-dimensional parameter space: (E, α12, α13, α23); it is
then convenient to reduce it. For this purpose, Fig. 2 shows poten-
tial surfaces for different values of α, notably for cases where all
coefficients are equal (α12 = α13 = α23 = α). With this condition,
some equilibria alter their energy value and stability while remain-
ing in a regular hexagonal structure (Fig. 3). Hence, as α varies,
the potential surface changes in a similar fashion to that seen for
the square lattice, where points may change their energy or stabil-
ity, while keeping their symmetrical positions with fixed distances
(Fig. 3, right frame). Although restrictive, this simplification ensures
the parameter space reduction and the preservation of symmetry

FIG. 2. Color plot of the hexagonal lattice potential (9) for different α values,
within the single parameter condition (αnm = α). For these figures U = 1. Color
bars show the value of V(x, y) in normalized units.

required for the purposes of this study, as will be made clear when
discussing the dependence of the myriad phenomenon with the
latter aspect.

Nonetheless, since the orientation of one wave vector alters its
coupling with all the other waves, it can be shown that when all
αnm are equal, they must lie in the range α ∈ [− 1

2 , 1] (for details,
see Appendix A).

In this single coupling scenario, the potential can be re-
written as

V(x, y) = U

(

1 + (α + cos(x)) cos
(√

3y
)

+ cos(x)
(

4α cos
(x

2

)

cos

(√
3y

2

)

+ α + cos(x)
)

)

,

(10)

FIG. 3. Geometric schematic used for equilibrium points calculation in the hexag-
onal lattice potential, assuming the single coupling condition. (Left) Equipotential
lines (for α = 0.5) and the selected equilibria. The black dashed line marks the
Poincaré section position at y = 0. (Right) Schematization of the unit cell with the
main hexagons and distances used for calculations. Equal colors indicate equal
energy levels.
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TABLE II. Equilibrium points position (x∗, y∗) and energy V(x∗, y∗) for some refer-
ence points in the hexagonal unit cell (Fig. 3). In the indices above, n= 0, 1, 2, 3, 4,

5, modulo 6. Information on the labels is given in the text.

Eq. point (x∗, y∗) V(x∗, y∗)

V (0, 0) 3 (1 + 2α)
4π√

3

(

cos

(

(2n + 1)π

6

)

, sin

(

(2n + 1)π

6

))

E
2π√

3

(

cos

(

(2n + 1)π

6

)

, sin

(

(2n + 1)π

6

))

3 − 2α

2π
(

cos
(nπ

3

)

, sin
(nπ

3

))

I
4π

3

(

cos
(nπ

3

)

, sin
(nπ

3

)) 3

4
+ 3α

2

and consequently the Hamiltonian is as in Eq. (5) with V(x, y) either
as in Eq. (9) or (10) and H normalized as in the rectangular lattice.
Similar to the rectangular system, for the hexagonal lattice, phase-
space displays will be made over the section placed at y = 0 and
oriented as py > 0 (black dashed line in the left frame of Fig. 3).

In the right frame of Fig. 3, selected equilibria are highlighted
over the hexagonal lattice unit cell. They were selected as both geo-
metrical and energetical references related to the expectation to find
the island myriad phenomenon. The unit cell vertices and cen-
ter point are labeled as V; the cell outermost edges and the inner
hexagon edges are labeled as E and the innermost hexagon vertices
as I (see Table II).

III. THE ISLAND MYRIAD—SQUARE LATTICE

We start by presenting the island myriad phenomenon for the
square lattice in the context of emergence of stability structures in
phase space. When measuring the area (or volume) of phase space
occupied by islands or chaotic regions as a function of the con-
trol parameters (E, α), a series of fluctuations are expected given
the mixed nature of nonlinear dynamics. For this purpose, the
chaotic/regular areas were measured over the section 6 [Eq. (8)] via
a smaller alignment index (SALI) method, as developed by Skokos
et al.15,16

Briefly, the algorithm integrates a single orbit along with two
deviation vectors ( Eω1(t), Eω2(t)). These vectors are evolved in time
by the linearized equations of motion (and rescaled when neces-
sary) and present different behavior depending on the nature of the
orbit. In case it is chaotic, the deviation vectors align or anti-align to
each other due to the exponential stretching of phase space along the
unstable manifold direction. On the other hand, if the orbit is regu-
lar, ( Eω1, Eω2) are kept at a finite angle (up to secular drift) while only
orienting themselves toward the tangent plane of the stable torus
in which the orbit is contained. Therefore, the evaluation of this
alignment, achieved by the index function,

SALI(t) := min
(

‖ω̂1(t) + ω̂2(t)‖, ‖ω̂1(t) − ω̂2(t)‖
)

, (11)

can numerically discriminate the orbit’s stability, such that SALI(t)
→ 0 exponentially as t → ∞ for chaotic orbits, while it keeps
an essentially constant non-zero value for regular ones (SALI(t)

∈ (0,
√

2] – for normalized ω̂i = Eωi/| Eωi|)). It is possible that for
regular orbits the tangent vectors still align/anti-align due to shear
between close torus layers; however, this was seen to occur over
times much longer than the one for alignment in chaotic orbits.

Using such a discrimination index, the chaotic/regular areas are
then identified over a 2D fine mesh of the surface 6, where each area
tile is attributed to an initial condition and all tiles are summed at the
end. Figure 4 shows a color map of the chaotic area percentage (A) of
phase space along all parameter space (E, α), revealing a series of pat-
terns of emergence and disappearance of stability structures (white
regions—A ≈ 0.0). As seen in the bottom frame, two particular lines
stand out with the dominance of stability structures as well as bor-
ders to the global chaos limit of the system (A ≈ 1.0). These straight

FIG. 4. Color map of the chaotic area portion in parameter space for the square
lattice. Total chaos is indicated by A = 1 and total regularity by A = 0. In the
top frame, the seemingly dotted white lines are an artifact of grid pixel preci-
sion. In the bottom frame, energy lines for equilibrium points are displayed as
Vsaddle = U(1 − α2) in magenta; Vl-max = 2U(1 − α) in green, and Vg-max

= 2U(1 + α) in yellow. Grid size is 250 × 250.
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FIG. 5. Colorized section 6 for varying energy E. (Left) E = 35, below local maxima energy. (Center) Island myriad at E = 36, exactly at the local maxima level:
Vlocal(α = 0.1) (Table I)—the white square indicates a zoom in shown in Fig. 6. (Right) E = 36.6, after the myriad disappearance. Colors were set using the SALI(t)
index value to emphasize islands (in yellow) from chaos (in purple).

FIG. 6. Colorized phase space of the island myriad for α = 0.1 and E = 36 showing successive zooms into the myriad core. (A) zoom in from the central frame of Fig. 5.
(B) Zoom in from frame A. (C) Zoom in from frame B. (D) Zoom in from frame C.
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FIG. 7. (Left) Isochronous periodic orbits from two island myriad chains, shown in the square lattice unit cell. (Right) Poincaré section with the myriad structure. Colored dots
indicate the elliptic fixed points of the orbits relative to the section 6 (blue dotted line); T indicates the fixed point period. The innermost period 8 chain is formed by the blue
and red sets, while the immediate next one, with period 10, by the yellow and black ones.

pixelated lines with A ≈ 0 are seen to coincide with the energy lev-
els E(α) of maxima of the square lattice potential, being negatively
(positively) inclined for local (global) maxima [Eq. (6) and Table I],
as highlighted in the lower frame.

In the light of this, it is seen that when the system energy
reaches that of unstable equilibria, either local or global, stability
structures emerge in phase space. These structures are a myriad of
island chains, as illustrated in Fig. 5 for the case of α = 0.1 and
E = 36 (over the local maxima energy line—in green in Fig. 4).
Below local maxima energy, phase space is dominated by a chaotic
sea with three main stability islands. As energy approaches the local
maximum level, the two bottommost islands vanish and the chaotic
sea is filled with a multitude of island chains. Right above the local-
maxima level (E ≈ 36.6), the myriad completely vanishes and phase
space is again dominated by a uniform chaotic sea.

The observed chains have always even period and are all

concentric around the hyperbolic fixed point located at
(

x, px√
E

)

≈
(

π

2 , −0.71
)

, forming an onion-like structure with apparent frac-
tality, as higher period chains appear in between smaller period
ones (Fig. 6). The mentioned hyperbolic point corresponds to the
unstable periodic orbit located along the local maxima at (xloc, yloc)

= (0, π) and (xloc, yloc) = (π , 0). The myriad is more clearly visible
in parameter space for α . 0.6 and inside a short energy window of
1E ≈ 0.5 above maxima energy values.

As mentioned earlier, a similar stability emergence is seen
around global maxima energy lines (yellow line in Fig. 4). The
myriad structure for this scenario is qualitatively similar to the one

seen over local maxima lines, as shown in Appendix B, so it will not
be detailed in this work, which mainly focuses on the case of local
maxima energy levels.

A. Isochronicity

An individual island chain is not related to a single stable peri-
odic orbit and its set of elliptic fixed points, as one usually expects.
Instead, all chains in the myriad are isochronous, in the sense that
they are formed by two (or more) independent sets of interleaved
island links, where orbits contained in one set do not overlap with
the other, as illustrated in Fig. 7.

The isochronous condition can be found in many dynamical
systems17,18 but here its origin is clearly seen as a consequence of
the system symmetries. As an example, Fig. 7 shows that the orbits
forming each chain set are symmetric pairs (blue and red orbits for
the period 8 chain, and yellow and black orbits for the period 10),
i.e., they are rotated by (l + 1) π

2 or translated by (nπ , mπ) in space,
for l, m, n ∈ Z, relative to each other. Since they are the same geo-
metrical curve, they present the same period and rotation number,
therefore emerging in the same torus layer. Indeed, this is an imme-
diate consequence of the square lattice potential translational and
rotational symmetries, as well as its “tiling” closure property, the
same allowing for the use of periodic boundary conditions. In gen-
eral, chains in the myriad present double isochronicity, being split
into two orbit sets; however, triple isochronicity can also be found,
as better detailed in Appendix C.
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FIG. 8. Examples of periodic orbits with different spatial closures. On the left
column, trajectories within the unit cell and boundary conditions applied. On the
right column, the same trajectories without boundary conditions, ranging through
all space.

FIG. 9. Color map of escape time (tesc) basins over the island myriad. System
parameters are α = 0.1, E = 36.05.

FIG. 10. Separatrix reconnection of islands of period 4 within the myriad as
(α, E) vary on the local maxima line in the square lattice. The coupling increases
from top to bottom, α = 0.295 → 0.305 and E = Vl-max(α).
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FIG. 11. Separatrix reconnection of islands of period 6 within the myriad as
(α, E) vary on the local maxima line in the square lattice. The coupling increases
from top to bottom, α = 0.395 → 0.415 and E = Vl-max(α).

B. Escape time (periodic spatial closure)

When inspecting the stable periodic orbits associated with dif-
ferent chain layers in the myriad, distinct periodic behaviors are
seen. In one case, orbits return to their exact initial position even
when disregarding periodic boundary conditions (as in a libration),
whereas in the other they only do so with them (as in a rotation),
as exemplified in Fig. 8. This difference in spatial closure therefore
directly impacts the transport properties between different myriad
layers. In this context, escape time basins are simply defined as a
color map of the time required for initial conditions on the section
6 (within a central unit cell) to reach outside the square box with n
unit cells of size, i.e., x, y ∈ [−nπ , nπ] (here n = 20).

As seen among the interleaved chains, in yellow escape time
basins in Fig. 9, orbits from islands with librational movement
(top frames in Fig. 8) remain trapped while the ones from purple
basins with rotational movement (bottom frames in Fig. 8) quickly
escape in direct flights through the lattice. This is only possible
due to the periodic “tiling” property of the potential function, as
translated positions (x, y) → (x ± 2nπ , y ± 2mπ), for n, m ∈ Z, will
correspond to an identical site in a neighbor unit cell, thus allowing
for periodic behavior without return to the exact initial position.

C. Separatrix reconnection

As asserted initially, the island myriad is expected to emerge
when orbits reach the energy level of unstable equilibria of the
lattice. However, the energy of these points themselves changes
with the coupling α, thereby raising the possibility of analyzing the
myriad evolution as the unstable points change.

Qualitatively, it was found that when varying the energy over
the local maxima line for increasing coupling, i.e.,

FIG. 12. Regular area (normalized to total area Atotal = Aregular + Achaos = 1) as
a function of energy and fixed coupling (α = 0.1) for increasing ky as asymmetry
grows in the rectangular lattice.
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E = Vl-max = 2U(1 − α) (in green in Fig. 4), all island chains move
outwards from the myriad center; simultaneously, islands external
to the myriad core, from an external layer surrounding the myriad,
move inwards, eventually “colliding” with the outgoing inner island
chains.

The “collision” (or superposition) of these island chains gives
rise to a bifurcation process eventually leading to the disappearance
of both chains. Particularly, this bifurcation process occurs via a sep-
aratrix reconnection, as illustrated for a pair of chains of period 4,
in Fig. 10, and a pair of period 6, in Fig. 11. In this process, the
outer and inner chains are interdigitated relative to each other, in
the sense that the stable centers of islands from one chain align with
the saddles (unstable points) of the other. When colliding, the sepa-
ratrix is divided while changing its configuration, with the previous
outermost chain now inside the center myriad structure and the for-
mer inner chain immersed in the chaotic area. This process keeps
on going continuously and sequentially as the inner chains move
outwards, always in an interdigitated configuration relative to the

FIG. 13. Poincaré section portraits of the island myriad for fixed energy
(E = 36) and coupling (α = 0.1) and increasing ky . (a) ky = 1 (square case);
(b) ky = 1.01; (c) ky = 1.05; (d) ky = 1.2; (e) ky = 1.5; (f) ky = 5.

outer ones, then reconnecting and further disappearing, eroding the
myriad with chaos until it vanishes for α = 1 and E = 0.

Commonly, the scenario of separatrix reconnection is seen in
non-twist systems, widely studied in their standard form.3,19 In such
systems, the twist property, i.e., the monotonic increase of the wind-
ing number with the action variable, is violated, presenting points
of maximum or minimum. In case resonances appear around these
extreme points, they form an interdigitated island chain pair, similar
to that seen in Figs. 10 and 11. At the same time, the curve between
them, exactly at the extreme point, is a shearless curve which acts
as a transport barrier between chaotic regions in phase space. Here,
a similar arrangement is seen when considering the local winding
number relative to the island myriad center. The supposed shearless

FIG. 14. Color map of the chaotic area portion in parameter space for the hexag-
onal lattice. Total chaos (regularity) is indicated by A = 1 (A = 0). In the bottom
frame, energy line colors correspond to the equilibria displayed following Table II
and the texture of the line stands for the point stability. Grid size is 250 × 250.
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curve would thus be expected to occur between the interdigitated
islands that reconnect; however, higher order bifurcations and the
constant presence of a chaotic layer between them prevent a direct
verification via winding number profile and can indicate that the
curve is destroyed.

IV. ISLAND MYRIAD—RECTANGULAR LATTICE

The results obtained for the square lattice highlight the depen-
dence of the myriad phenomenon on the tiling symmetry of the
potential function, which stands from the assumption kx = ky. For

FIG. 15. (Top) Island myriad in the hexagonal lattice as seen on the Poincaré
section (y = 0; py > 0) forα = 0.04 and E = V(E,α) = 2.92. (Bottom) Stable
periodic orbits for the main stability islands shown in the hexagonal unit cell.

this purpose, this section verifies to what extent the breaking of this
symmetry affects the phenomenon.

When setting kx 6= ky, the rotation symmetry is lost, although
translation symmetry is still preserved for translations by 2π

ki
, for

i = x, y, along the axis. Nevertheless, the stable periodic orbits that
form the myriad observed in the square system may be deformed
or change their stability as symmetry is broken, preventing its
emergence.

A verification of the myriad disappearance was carried out by
measuring the regular area profile for a fixed coupling value and
varying energy, as the value of ky changes from the square case
(kx = ky = 1) to asymmetric scenarios. Figure 12 shows that, as the
energy reaches the local maxima (E = Vlocal = 36, for α = 0.1), the
regular area presents a sudden peak, as expected for the square case
ky = 1. As asymmetry grows with increasing ky, this peak is quickly
suppressed, with the myriad completely vanishing when ky ' 1.100.
This effect is also verified in phase-space portraits A to C in Fig. 13,
with the myriad being eroded by chaos. The same trend is seen for
the myriad relative to the global maxima energy level (E = Vglobal

= 44, for α = 0.1).
Furthermore, for even larger ky (ky > 1.2), a stabilization is

seen in phase space for larger values of momentum, as shown
in portraits D to F. Primarily for the bottommost region of the
Poincaré section, for px ≈ −

√
E, and later for the uppermost region

px ≈ +
√

E, islands and invariant curves appear and grow in area as
the asymmetry between the x and y axes becomes more pronounced.
This indicates that the creation of a movement channel along the y
axis with a period different from the one along x induces the stabi-
lization of long flights, implying a pendulum-like dynamics along x
in the limit that its movement becomes uncoupled from the one in y.

FIG. 16. Island myriad in the hexagonal lattice as seen from the Poincaré section
(y = 0; py > 0) for α = −0.02 and E = V(E,α) = 3.04.
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V. ISLAND MYRIAD—HEXAGONAL LATTICE

From the premise that the myriad relies on the potential func-
tion symmetries, we extend the investigation to a hexagonal system,
as the next polygon with tiling property. Therewith, as done for
the regular square system, the chaotic and regular area portions are
shown in Fig. 14.

As conjectured, the myriad is expected to emerge at energy
levels of maxima of the potential surface. However, in the hexag-
onal system, this correlation is not so prominent as in the square
case. Indeed, the only region where it is clearly identified is near
α ≈ 0, over the V(E, α) = 3 − 2α line (in green in Fig. 14). The
myriad found is shown in phase space in Figs. 15 and 16 for α & 0

FIG. 17. Escape time (tesc) color map over the Poincaré section (y = 0;
py > 0) for the hexagonal lattice. (Top) E = 2.92, α = 0.04. (Bottom) E = 3.04,
α = 2.92.

and α . 0, respectively. Despite the general similarity, for α & 0 the
island chains surround only the center island, relative to a bounded
periodic orbit (in purple in Fig. 15), whereas for α . 0 the island
chains surround all four major islands.

At α = 0.0, the parameter space reveals a vertical line with
increased stable area seen for E > 2.5, as expected from a myr-
iad structure. However, this increase was seen to be related to the
stabilization of the four major islands shown in Figs. 15 and 16
and satellite islands, although not as a myriad. It becomes appar-
ent then that at null coupling, where both E and V points are
isoenergetic maxima, the inner triangulations within the unit cell,

FIG. 18. Poincaré section for E = V(E,α) = 2.92 and α = 0.04 with selected
orbits from a chain with total period T = 20. (Bottom) Isochronous periodic orbits
without periodic boundary conditions: red (T = 8); blue (T = 6); yellow (T = 6).
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despite increasing symmetry, are not enough to form a myriad but
instead changing α increases the stability area of the four main island
orbits.

Despite the lack of visible fractality in the myriad as seen in
the square system, the chaotic region in between chains presents a
strong stickiness behavior, acting as a permeable barrier for chaotic
transport from the chaotic sea into the myriad core. Indeed, the
myriad in the hexagonal system seems to be affected by other insta-
bilities in the potential surface caused by saddle and maxima points

FIG. 19. Poincaré section for E = V(E,α) = 3.04 and α = −0.02 with
selected orbits from a chain with total period T = 22. (Bottom) Isochronous
periodic orbits without periodic boundary conditions: red (T = 7); blue (T = 7);
yellow (T = 8).

not listed here, preventing the existence or stabilization of periodic
orbits to form the chains.

Besides the lack of pronounced fractality, the orbits comprising
the myriad present less varied features regarding its periodic closure
and isochronicity as compared to the ones seen in the square system.
For example, Fig. 17 shows the escape time pattern over the section
from Fig. 15, revealing only trapped orbits (in yellow) through all
myriad chains. Also, the stickiness in between chains become clearer
once the chaotic region inside the myriad core has trapped orbits (up
to time t = 6 × 103) despite being connected to the outer chaotic
sea.

Regarding isochronicity, once the hexagonal tiling has a three-
fold rotation symmetry (from its three symmetry axes, 60◦ apart
from each other), the multiplicity of most chains is also three-folded,
as exemplified in Figs. 18 and 19. In this case, the orbits are invari-
ant under rotations of π/3, thus not altering their fixed point period
when rotated. For this reason, isochronous orbits are simple trans-
lations from one another. In Fig. 18, using the yellow orbit as a

reference, the red orbit is translated in the t̂y→r =
(√

3
2 , − 1

2

)

direc-

tion and the blue one along t̂y→b = (0, −1). Similarly in Fig. 19,

the yellow to red translation is along t̂y→r =
(

1
2 ,

√
3

2

)

and the red

to blue along t̂r→b = (0, −1). As seen for the square system, higher
multiplicity chains may occur, but none was found for this case.

VI. CONCLUSIONS

Fundamentally, the island myriad is seen as the emergence of
stability islands at energy levels of maxima in periodic potentials
with tiling symmetry. Despite the instability of these equilibrium
points, the periodic orbits deviated near these points are stable
and appear as concentric layers of island chains in phase space. A
thorough verification over parameter space reveals that this struc-
ture is exclusively found over a short energy interval near unstable
points, being clearly visible along both local and global maxima for
the square lattice, while being restricted to null coupling for the
hexagonal case.

The myriad existence relies on the translational, rotational, and
mirror symmetries of the potential function. This dependence was
directly verified when comparing the square lattice with its non-
symmetric equivalent form as a rectangular lattice, with asymme-
tries of 5% being enough to suppress the myriad

(
∣

∣ky − kx

∣

∣ = 0.05
)

.
Moreover, further increasing the asymmetry between the x and y
axes for ky � kx, the dynamics becomes uncoupled and phase space
is stabilized in a pendulum-like configuration, with chaos restricted
to separatrix vicinity.

Particularly for the square lattice system, the myriad appears
as a finite web-torus with notable fractality, where each chain has
an even period split into two independent sets of isochronous
orbits, although isolated cases with three sets were also found. Fur-
thermore, the translational symmetry allows for different periodic
closures, in the sense that some periodic orbits return to their ini-
tial position whereas others reach identical sites in translated unit
cells by (1x, 1y) = (2mπ , 2nπ), for m, n ∈ Z. The overall effect is
the co-existence of trapped orbits (libration—periodically closed)
and long flights (rotation—periodically open), therefore affecting
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global transport. In addition to that, as the coupling parameter was
increased, the myriad was seen to undergo separatrix reconnections
for each of its layers, destroying them sequentially as they expand
outwards the myriad core, suggesting a non-twist local dynamics
over the Poincaré section.

One can add to these results our previous findings for the
square system regarding the diffusive transport of particles.8 For the
energy level of local maxima, the myriad emergence and sudden dis-
appearance correlates to suppression in global diffusion, with long
flights vanishing from the system dynamics. Also, periodic orbits
approaching the maxima present a divergence in their period, as in
the paradigmatic classic pendulum in its threshold between rotation
and libration, therefore promoting a slowing down of the dynamics.

Despite being also confirmed in the hexagonal lattice, as
expected from its similar tiling symmetries, the myriad was found
in attenuated form. In this case, fractality is less pronounced due
to extra saddle and maxima points in the potential surface acting
as instability sources, thereby preventing the stabilization of orbits
that would form the chains. Also, only periodically closed orbits are
found, thus with no simultaneous opposite transport regimes as in
the square case.

Although isochronicity, separatrix reconnection and web-tori
are already well-documented features of dynamical systems, lattice
models present all of them simultaneously in a single structure.
Moreover, the simplicity of the model allows for an intuitive under-
standing of these phenomena in phase space and their correspond-
ing dynamical behavior in position space. As seen from the periodic
orbits that comprise the myriad chains, they are a direct conse-
quence of the potential function symmetries, as opposed to more
abstract models.

However, it is not yet intuitively clear why orbits in the myriad
are found to be stable, where a more formal analytical description of
the dynamics could better describe it. Zaslavsky6 presents a simple
Hamiltonian for web-tori, although it does not contain the periodic
closure and fractality properties seen here.

As indicated by the stable periodic orbits seen throughout this
work, the myriad is formed as a consequence of scattered orbits
approaching a set of unstable equilibria with equal energy. Baesens
et al. showed that, for chaotic scattering, these types of equilibria
configuration give place to an abrupt bifurcation of hyperbolic orbits
at energy levels close enough to the maxima in a smooth repul-
sive potential.20 From this premise, one could be inspired to justify
the myriad as the consequence of similar bifurcations. But whereas
Baesens et al. consider a potential vanishing at infinity, in a lattice
system, the tiling periodicity of V(x, y) may provide stability to the
orbits and therefore the appearance of the island chains along with
their rotated and translated twin pairs.

In addition to that, a triangular lattice, the remaining polygonal
periodic tiling shape, could present new features to the myriad phe-
nomenon. Even though its construction cannot be achieved via the
procedure used here, since only even-fold symmetry is allowed in the
optical lattice setup, mathematically it could be promptly obtained.
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APPENDIX A: SINGLE COUPLING PARAMETER

RESTRICTION TO THE HEXAGONAL LATTICE

When assuming the single coupling condition for the hexago-
nal lattice, it is required to check whether it is feasible physically, as
the couplings αnm can be related to each other geometrically. Fol-
lowing Porter et al.,14 by assuming the first wave polarization versor
ê1 along the ẑ direction, the remaining ones can be written in terms
of spherical angles (θj, φj) as











ê1 = ẑ,

ê2 = cos(φ2) sin(θ2) x̂ + sin(φ2) sin(θ2) ŷ + cos(θ2) ẑ,

ê3 = cos(φ3) sin(θ3) x̂ + sin(φ3) sin(θ3) ŷ + cos(θ3) ẑ,

Chaos 34, 033115 (2024); doi: 10.1063/5.0185891 34, 033115-14

Published under an exclusive license by AIP Publishing

 11 M
arch 2024 14:51:20

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

with φj ∈ [0, 2π) and θj ∈ [0, π]. The couplings thus are






















α12 = ê1 · ê2 = cos(θ2),

α13 = ê1 · ê3 = cos(θ3),

α23 = ê2 · ê3 = sin(θ2) sin(θ3) [cos(φ2) cos(φ3)

+ sin(φ2) sin(φ3)] + cos(θ2) cos(θ3).

When imposing the same value for all αnm, it must hold that
θ2 = θ3 = θ , implying the equality

sin2(θ) cos(φ2 − φ3) + cos2(θ) = α,

whence

cos(φ2 − φ3) = α

1 + α
,

which will have real solutions φi only if
∣

∣

α

1+α

∣

∣ ≤ 1, thereby restrain-

ing α ∈
[

− 1
2 , 1
]

. In short, it will only be possible to set αnm = α, ∀i, j
by selecting θ2 = θ3 = θ , such that cos(θ) = α, and selecting values
of φ2, φ3 such that cos(φ2 − φ3) =

(

α

1+α

)

, for α ∈
[

− 1
2 , 1
]

.

APPENDIX B: ISLAND MYRIAD OVER GLOBAL

MAXIMA

Figure 20 shows different portraits of the island myriad for the
square lattice at energy values over the potential global maximum
Vg-max = 2U(1 + α). The emergent structure is qualitatively similar
for any α considered, with the size of resonant islands increasing
with the coupling.

APPENDIX C: TRIPLE FOLDED ISOCHRONICITY

Figure 21 shows a scenario for the square lattice where a sin-
gle isochronous chain, with 12 islands, is formed not by two sets

FIG. 20. Section 6 calculated for energy values at the global maxima energy
line, showing the island myriad for different couplings α for the square lattice.

FIG. 21. Single myriad chain formed by three isochronous orbits for the square
lattice. The colored dots indicate the fixed points of the trajectories relative to the
section 6 (blue dotted line in trajectory frames).

of period 6 chains, but instead by two sets of period 3 (shown in
red and blue) and one of period 6 (shown in yellow). The orbits
themselves show that they are indeed the same curve rotated and
mirrored in three different ways, revealing that whenever an orbit’s
translation or rotation intersects the Poincaré section with the same
discrete period, higher multiplicities may appear. However, for the
square lattice, no more than four isochronous sets can be expected
to appear, since its symmetries are limited by rotations of a quarter
of cycle

(

π

2

)

.
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