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ABSTRACT

Cognitive tasks in the human brain are performed by various cortical areas located in the cerebral cortex. The cerebral cortex is separated
into different areas in the right and left hemispheres. We consider one human cerebral cortex according to a network composed of cou-
pled subnetworks with small-world properties. We study the burst synchronization and desynchronization in a human neuronal network
under external periodic and random pulsed currents. With and without external perturbations, the emergence of bursting synchronization
is observed. Synchronization can contribute to the processing of information, however, there are evidences that it can be related to some
neurological disorders. Our results show that synchronous behavior can be suppressed by means of external pulsed currents.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135399

The human brain is a complex organ responsible for cogni-
tive processes and physiological functions. It contains about
100 billion neurons that are coupled by means of electrical and
chemical synapses. The electrical synapse is a bidirectional link
between two neighboring neurons. In the chemical synapse, never
impulses are transferred in one way by means of neurotransmit-
ters. In this work, we build a neuronal network based on the
structural connectivity matrix of a human brain. Our network is
composed of cortical regions, in which each region is described
by subnetworks with small-world properties. Depending on the
parameters, it is possible to observe synchronous and desyn-
chronous behaviors. Neuronal synchronization can not only be
associated with memory and consciousness, but also be related to

epilepsy and Parkinson disease. We analyze the effects of periodic
and random pulsed currents in the neuronal activities. We show
that pulsed currents play an important role in the emergence and
suppression of neuronal synchronization.

I. INTRODUCTION

The brain is an organ located at the center of the nervous
system in humans.1 The human nervous system is responsible for
receiving stimuli from sensory receptors and sending them to the
brain and spinal cord, as well as to conduct impulses back to other
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parts of the body.2 At the cellular level, the nervous system has neu-
rons that send signals rapidly and precisely to other cells.3 The sig-
nals are sent in the form of electrochemical impulses through axons,
which can be directly transmitted to neighboring cells through elec-
trical synapses. Also, neurotransmitters are released at chemical
synapses, which can be either excitatory or inhibitory.4 The neu-
rons connected to each other form a large layered network in which
the different cortical layers in one hemisphere have connections
with other ones in another hemisphere.5 Smith and Pereda6 demon-
strated that a chemical synaptic activity modulates nearby electrical
synapses. They provided evidence that chemical transmission inter-
acts with electrical synapses to regulate the conductance. Kopell and
Ermentrout7 reported that chemical and electrical synapses perform
complementary roles in the synchronous behavior of interneural
networks.

Subnetworks appear in the brain and they interact with each
other during task accomplishing. Xu et al.8 demonstrated that mul-
tiple cognitive processes may be related to common brain regions
during cognitive tasks. Sun et al.9 explored burst synchronization
transitions in a neuronal network of subnetworks. They showed the
effects of intra and intercoupling strength on the burst synchroniza-
tion and implications on the brain plasticity.

Map-based models have been used to mimic neuronal behav-
iors, such as Izhikevich, Rulkov, Courbage–Nekorkin–Vdovin, and
Chialvo models.10 Originally, the Izhikevich model is continuous-
time,11 however, it can be transformed into a map by means of
Euler discretization. The Rulkov model12 is a two-dimensional iter-
ate map that can exhibit silent, tonic, and spiking-bursting. The
Courbage–Nekorkin–Vdovin model13 is a phenomenological model
of excitable and spiking-bursting neurons. It has similarities to the
Rulkov model. In 1995, Chialvo14 proposed a map to describe the
dynamics of isolated neurons. The Chialvo model shows aperiodic
solutions and bursting behavior.

In our neuronal network, each node is described by the Rulkov
model, which is a two-dimensional iterated map.12 The Rulkov map
is able to display a variety of dynamical regimes, as well as to produce
irregular bursts which are observed in human neurons, reported by
neurobiological experiments. It has been used to investigate large
neuronal networks.15 The Rulkov model has been considered in
a variety of studies, such as phase synchronization in clustered
networks16 and suppression of burst synchronization.17,18

We focus on bursting synchronization and desynchronization
in a neuronal network model based on a healthy human brain
obtained from Ref. 19. In our network model, we consider 83 cor-
tical areas (subnetworks) according to Ref. 20. The subnetworks
exhibit small-world properties,21–23 which are a high degree of clus-
tering and a small averaged distance between vertices (nodes). In the
brain, the connections between neurons are local (connections with
their nearest neighbors) and non-local (long range connections).24,25

One manner of modeling these connections is by means of small-
world networks.26 The topological properties of small-world ensure
the efficient generation and integration of information in the brain.27

It has been observed that small-world networks can exhibit syn-
chronous behavior with fewer connections than networks with
all-to-all coupling.28

Small-world properties were identified in the nematode
Caenorhabditis elegans that has 2462 synaptic connections among

each one of the 282 neurons.29 Hilgetag et al. demonstrated that
small-world network characteristics can be observed in cortical con-
nectivity matrices from cat and macaque monkey brains.30 From
human functional magnetic resonance imaging (fMRI), Bassett and
Bullmore27 showed that small-world models provide an approach
to understand the function and structure of the brain. Lameu et
al.31 studied coupled small-world networks according to the cat
cerebral cortex. Without external perturbations, they showed an
emergence of bursting synchronization among neurons within the
visual, somatosensory-motor, and frontolimbic cognitive regions,
except for the auditory area, while burst synchronization appeared
in the auditory area when some perturbations were applied in the
visual area. Moreover, the small-world networks have been used to
analyze phase synchronization of bursting neurons.16,32

In this work, our main purpose is the study of burst syn-
chronization and desynchronization in a neuronal network model
composed of 83 subnetworks available in both hemispheres of a
human brain. We apply periodic and random pulses to investigate
how such perturbations influence the neuronal synchronization in
the network.

This paper is organized as follows: Sec. II describes the struc-
tural connectivity matrix of the human brain and the external pulsed
perturbations. In Sec. III, regarding electrical and chemical synapses,
we study the phase synchronization of the cortical areas. The effect
of external perturbations on the synchronization is analyzed in
Sec. IV. Finally, our conclusions are described in Sec. V.

II. NETWORK OF NETWORKS MODEL

The Rulkov model is a two-dimensional discrete dynamical sys-
tem. It is suitable to study a variety of large neuronal networks, due
to the fact that it is easier to compute than a continuous dynamical
system.12 Neurons modeled by the Rulkov model can exhibit a vari-
ety of dynamic regimes, such as tonic spikes and chaotic bursting.33

The Rulkov model is given by

xk+1 =
α

1 + x2
k

+ yk, (1)

yk+1 = yk − λ(xk − β), (2)

where xk is the fast variable (membrane potential) and yk is the slow
variable at the discrete time k, respectively.34 The constant α is the
control parameter, while λ and β describe the external influences,
which are on the order of 10−3. The Rulkov model is dimension-
less and is able to reproduce neuronal activities. The combinations
of both α and β are useful to mimic different dynamical behaviors
of the neurons, such as resting, tonic spiking, and chaotic bursts.35

The time series of the fast variable of the Rulkov map are shown in
Fig. 1. Figures 1(a) and 1(b) display the regimes of relaxation oscil-
lations and pieces of spikes with decreasing amplitude, respectively.
In Figs. 1(c) and 1(d), the Rulkov map exhibits bursting behavior
and the red circles denote the maximum value of the slow variable
yk. The chaotic bursts are observed for α > 4.

Our network consists of 83 nodes corresponding to differ-
ent cortical regions, where each node has 120 neurons described
by the Rulkov model. We use a structural connectivity matrix
according to the brain of a healthy individual obtained from
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FIG. 1. Time evolution of the fast variable xk for (a) α = 2.3, (b) α = 3.0,
(c)α = 4.1, and (d)α = 4.5. The red circles show themaximum value of the slow
variable yk . We consider x0 and y0 randomly selected from the intervals [−2, 2]
and [−4, 0], respectively, λ = 0.001 and β = 0.001.

https://braingraph.org20,36,37 to build a neuronal network model con-
taining the organization of cortical connections. The connection
matrix presents a weighted matrix, whose values represent the num-
ber of fibers. The symmetry adjacency matrix demonstrates the
connections between the 83 cortical regions located at the cortex
surface for both right and left hemispheres. The regions from 1 to
41 are related to the right hemisphere, from 42 to 82 are located
at the left hemisphere, and the region with the number 83 is con-
sidered for the brainstem. By considering the matrix, we build a
new matrix with only five numbers in different colors, as shown
in Fig. 2. The number 0 (white) shows that there is no connection
between the two cortical regions. The numbers 1 (red), 2 (green), 3
(blue), and 4 (black) represent the weak, intermediate, normal, and
strong connections between the cortical areas, respectively. These
numbers are based on the work published by Scannell and Young.38

They reported the connectional organization of neuronal systems
in the cat cerebral cortex. The regions with white, red, green, blue,
and black colors have no connections, 50, 100, 150, and 200 connec-
tions with other regions, respectively. The connections are randomly
selected. The numbers 1, 2, 3, and 4 have been classified accord-
ing to the number of fibers in the interval [1, 3000], [3001, 6000],
[6001, 9000], and more than 9000, respectively, from the structural
connectivity matrix of the brain.

Each cortical region is represented by a subnetwork with small-
world properties. The small-world network has a combination of
short path length comparable to a random network and high cluster-
ing as a regular network.22 According to these features, small-world
networks have been applied in various research studies related to the
connectivity of the nervous system.27,39 In the small-world network
introduced by Watts and Strogatz,22 non-local links are inserted
by randomly rewiring some local connections into non-local ones,
while randomly selected shortcuts are added in a regular lattice

FIG. 2. Structural connection matrix related to the 83 cortical areas in the brain
of a healthy human. The cortical areas start from 1 to 41 for the right hemisphere,
from 42 to 82 for the left hemisphere, and with the number 83 for the brainstem.

as proposed by Newman and Watts.40 In this work, we use the
small-world network introduced by Newman and Watts to build
subnetworks containing 120 neurons and 5% of shortcuts for each
one. In the Newman–Watts model, there is no probability of a
part of the network becomes disconnected from the rest. In the
small-world subnetworks, the electrical coupling is just between the
nearest neighbors (local), while the chemical connections only pro-
viding the shortcuts (non-local). In the network, the links between
the small-world subnetworks follow the cortical connectome of the
brain, as shown in Fig. 2.

With regard to the connections among the neurons, the cou-
plings can be electrical or chemical. The chemical coupling can be
excitatory or inhibitory. Within each small-world subnetwork, there
are local and non-local connectivities that describe the electrical
and chemical synapses, respectively. The connections between each
subnetwork are non-local links based on the chemical synapses.

Our neuronal network is given by

x
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α(n,j)

1 +
(

x
(n,j)

k

)2
+ y

(n,j)

k +
e

2

(
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)
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)
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k − VN

)]

+ υk,

(3)

y
(n,j)

k+1 = y
(n,j)

k − λ(x
(n,j)

k − β), (4)

where the initial conditions for the variables xk and yk are randomly
selected from [−2, 2] and [−4, 0], respectively. The pair (n, j) shows
the neuron n (n = 1, 2, . . . , N) in the cortical area j (j = 1, 2, . . . , P),
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where N = 120 is the number of neurons in each subnetwork and
P = 83 is the number of cortical areas. The connectivity matrix is
given by A(d,f),(n,j), corresponding to the chemical coupling. When
the neuron (d, f) connects with the neuron (n, j), the element of the
matrix is equal to 1, otherwise is equal to zero. The α(n,j) value is
the non-linearity parameter of the Rulkov model randomly selected
from [4.1, 4.4]. The values of α(n,j) are distributed using a random
uniform generator. We consider λ = 0.001 and β = −1.25. Fur-
thermore, e and c are associated with the electrical and chemical
coupling strengths, respectively. H(x) is the Heaviside step function
with the presynaptic threshold equal to θ = −1.0 for the chemi-
cal synapse. When the presynaptic neuron voltage is greater than
θ , the post-synaptic neuron receives an input. The constant VN

is described by the nature of the post-synaptic ion channels and
determines the reversal potential related to the synapse. In 1984,
Feldman41 reported that approximately 70%–80% of the neuronal
population of the cortex is excitatory. If VN = 1 or −2, the synapse
is excitatory or inhibitory, respectively. These values of VN are ran-
domly distributed in the whole network in such a way that 75% and
25% of connections, respectively, are excitatory and inhibitory.42 We
consider that a single neuron does not make both excitatory and
inhibitory connections with other neurons. Finally, υk is an exter-
nal pulsed perturbation that activates the spikes in the neurons. The
Rulkov neurons are stimulated over time k by periodic and ran-
dom pulses considered as an external pulsed current. The external
perturbation υ is defined as

υ = υ0 + 8(k), (5)

where υ0 is the current with constant amplitude in the interval
[8, 15] and 8(k) describes the pulses with amplitude τ which are
chosen from the interval [0, 4] according to Refs. 43–45. When 8(k)
is equal to zero for all times, the current is constant, as shown in
Fig. 3 (red line). The periodic pulsed currents are generated when
8(k) assumes an on–off configuration equal to τ and 0 over time
considering time intervals 1k1 and 1k2 in the range [1, 100] (blue
line). In the random pulse (green line), the on–off transition in 8(k)
has time intervals 1kr randomly distributed in the interval [20, 100].

III. BURST SYNCHRONIZATION WITHOUT PULSES

In the central nervous system, bursts and oscillatory patterns of
neuronal activities can be observed from slow to fast oscillations.46

In this work, we focus on the burst phase synchronization, which is
a type of neuronal synchronization.47 It is possible to identify phase
synchronization related to bursts of neuronal ensemble by means of
the Kuramoto order parameter,48 that is given by

Rk =

∣

∣

∣

∣

∣

∣

1

N × P

N
∑

n=1

P
∑

j=1

ei2
(n,j)
k

∣

∣

∣

∣

∣

∣

, (6)

where N is the total number of neurons of each subnetwork, P is
the number of cortical areas, i =

√
−1, and 2k is the phase of the

neuron n in the cortical area j at time k.
To analyze the burst synchronization, we calculate the neuron

phase obtained by the slow variable yk. When y at time k repre-
sents a local maximum, a burst starts. Within each burst, a phase

FIG. 3. Representation of external currents with constant amplitude for υ0 = 14
in red color, with periodic pulses for υ0 = 12, τ = 1, and 1k1 and 1k2 equal to
1 in blue color, and with random pulses for υ0 = 10, τ = 1 and 1kr randomly
distributed in green color. We consider external currents that do not change the
individual neuron behavior, namely, the neuron continues to exhibit chaotic bursts.

is described by49

2k = 2π t + 2π
k − kt

kt+1 − kt

, (7)

where kt < k < kt+1, kt denotes the time when the t-th burst of
the nth neuron starts and t is an integer. We investigate the role
of the electrical and chemical coupling strengths by means of the

FIG. 4. Time-averaged order parameter (color bar) as a function of c (chemical
synapses) in the interval [0, 0.05] and e (electrical synapses) in the range [0, 0.1]
of the human’s brain cortical areas during 105 iterations.
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FIG. 5. Averaged order parameter of the human’s brain network under a peri-
odic pulse with υ0 = 8 and τ = 0.1 in the parameter space 1k2 × 1k1 for the
synchronized point e = 0.1 and c = 0.05.

time-averaged order parameter, that is given by

R =
1

T

T
∑

t=1

Rk, (8)

where T is the total simulation time, after a transient time. If the neu-
rons are phase-synchronized or desynchronized, the time-averaged
order parameter R is equal to 1 or 0, respectively.33

With regard to the neuronal network for an individual, the val-
ues of the time-averaged order parameter (color scale) as a function
of the electrical and chemical coupling strengths are displayed in
Fig. 4. In Fig. 4, we show the coupling strength ranges in which the
network exhibits synchronous behavior. The neuronal network does

FIG. 6. Time-averaged order parameter of the whole brain network grouped into
regions from (a) 1 to 34, (b) 35 to 41, (c) 42 to 75, and (d) 76 to 82. We consider
a periodic pulsed current with υ0 = 8 and τ = 0.1 for e = 0.1 and c = 0.05.

FIG. 7. Time-averaged order parameter of region 83 by considering a periodic
pulsed perturbation with υ0 = 8, τ = 0.1, 1k1 ∈ [1, 100], and 1k2 ∈ [1, 100]
for e = 0.1 and c = 0.05 indicating the burst synchronous behavior.

not exhibit a completely phase synchronized state (R = 1), due to
the fact that the neurons are not identical. According to the net-
work synchronization diagnostic of the dynamics, the regions for
R < 0.8 show desynchronous behavior, while synchronous behav-
ior occurs for R ≥ 0.8. The increase of the chemical coupling c leads
the network to the neuronal synchronization.

IV. APPLYING EXTERNAL PULSED PERTURBATIONS IN

BURSTING SYNCHRONIZATION

It has been reported that external pulsed currents can cause
changes in neuronal synchronous behavior, as well as alterations in
neuron spiking activities.50,51 With this in mind, we investigate the
effect of external pulsed perturbations, as described in Eq. (5), in our
brain network model considering e = 0.1 and c = 0.05, as shown in

FIG. 8. Averaged order parameter of the whole brain network under a random
pulsed current as a function of τ and 1kr for υ0 = 8, e = 0.1, and c = 0.05.
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FIG. 9. Time-averaged order parameter of the four cortical regions of the brain
network from (a) 1 to 34, (b) 35 to 41, (c) 42 to 75, and (d) 76 to 82, by considering
a random pulsed perturbation with τ and 1kr in the intervals [0, 4] and [20, 100],
respectively, for υ0 = 8, e = 0.1, and c = 0.05.

Fig. 4. Figure 5 displays the effect of periodic pulses with υ0 = 8,
τ = 0.1, and 1k1 and 1k2 ∈ [1, 100] ms, which represent the on
and off intervals in the periodic pulse profile, respectively. The peri-
odic perturbation induces a change in the synchronous behavior and
reduces the value of the time-averaged order parameter in some
areas. Our results show that alterations related to 1k1 and 1k2

play an important role in the synchronous patterns. In other words,
depending on the combination of 1k1 and 1k2, synchronization
and desynchronization can emerge in all the network.

Considering the impact of the periodic pulses in the whole
brain, we investigate how this external perturbation influences the
synchronous behavior in the regions from 1 to 34, from 35 to
41, from 42 to 75, from 76 to 82, and 83, as exhibited in Fig. 6

FIG. 10. Time-averaged order parameter of region 83 of the brain network under
a random pulsed current for τ and 1kr selected from the intervals [0, 4] and
[20, 100], respectively. We consider υ0 = 8, e = 0.1, and c = 0.05.

from the panels (a) to (d), and Fig. 7, respectively. For the right
hemisphere, Fig. 6(a) displays that, for instance, the burst desyn-
chronization with R about 0.4 and 0.6 starts from the time intervals
greater than 1k1 ≈ 20 ms and 1k2 ≈ 10 ms, and continues until
the center of the figure and around it, as well as the intervals close
to 100 ms. The synchronous behavior is not suppressed when the
on–off intervals change, except on some combinations of them with
the time-averaged order parameter about 0.6 dispersed in Fig. 6(b).
Regarding the left hemisphere, the bursting synchronization and
desynchronization [Figs. 6(c) and 6(d)] are very similar to the behav-
iors observed in Figs. 6(a) and 6(b). In Fig. 7, neuronal synchronous
behavior with R close to 0.8 is observed.

We analyze the effect of random perturbations, as another type
of external pulsed current. We consider random pulses with υ0 = 8,
τ ∈ [0, 4] and 1kr randomly distributed in the interval [20, 100]. To
investigate the neuronal synchronous behavior in the whole brain
network under a random current, we compute the time-averaged
order parameter R, as displayed in Fig. 8. Increasing τ approximately
from 0.5 to 2, the bursting synchronization is suppressed for almost
all the values related to 1kr. The burst synchronous behavior does
not change for τ > 3 and alterations in the on–off time intervals
have no substantial effect on the synchronization. For τ < 1, we
observe parameter regions in which synchronization appears.

In order to study the bursting synchronous behavior, we apply
in the five regions an external current with random pulses. In Fig. 9,
we find desynchronization (R equal or close to 0.4 or 0.6) in the four
regions exhibited in panels (a)–(d). The desynchronization occurs
for all the amplitudes. Figure 9(d) shows the time-averaged order
parameter greater than panels (a)–(c). Furthermore, the random
perturbation applied in region 83 of the brain changes the synchro-
nization in the whole region with R approximately equal to 0.7, as
shown in Fig. 10. The bursting synchronization does not depend on
τ and 1kr.

V. CONCLUSIONS

In this paper, we build a neuronal network model based on the
healthy human brain cortical areas. We analyze the effects of vari-
ous types of external pulsed perturbations on burst synchronization.
We consider a small-world network of coupled Rulkov neurons for
each cortical area. The network is composed of 83 subnetworks with
small-world properties. In our network, each neuron can have local
and non-local connections with other neurons by means of electrical
and chemical synapses, respectively.

Without external pulsed currents, the neurons can exhibit syn-
chronization between themselves due to the synaptic interaction.
With regard to the external perturbation with periodic pulses, the
neuronal activities depend on the pulse duration. For the random
pulsed currents, we observe a reduced time-averaged order parame-
ter when the pulse amplitude changes. Our results are robust due to
the fact that we consider not only different nonlinearity parameter
values in the range in which the neurons exhibit chaotic bursts, but
also the initial conditions that are randomly distributed.

Our results have some similarities with the outcomes obtained
by Lameu et al.18 for a clustered scale-free neuronal network
based on the cat cortex structure. The neurons in the whole net-
works exhibit synchronous patterns when the coupling strenght is
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increased. Depending on the external perturbation, regions with
synchronous behavior while others remain desynchronized are
observed. We consider an external pulsed current which permits a
better control on the synchronization, due to the fact that we can
choose the pulse amplitude and time interval.
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