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a b s t r a c t

Spatial diffusion of particles in periodic potential models has provided a good frame-
work for studying the role of chaos in global properties of classical systems. Here a
bidimensional ‘‘soft’’ billiard, classically modeled from an optical lattice Hamiltonian
system, is used to study diffusion transitions under variation of the control parameters.
Sudden transitions between normal and ballistic regimes are found and characterized by
inspection of topological changes in phase-space. Transitions correlated with increases
in global stability area are shown to occur for energy levels where local maxima
points become accessible, deviating trajectories approaching them. These instabilities
promote a slowing down of the dynamics and an island myriad bifurcation phenomenon,
along with the suppression of long flights within the lattice. Other diffusion regime
variations occurring within small intervals of control parameters are shown to be related
to the emergence of a set of orbits with long flights, thus altering the total average
displacement for long integration times but without global changes in phase-space.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

From a wide range of experimental contexts, periodic potentials have been used to model diverse physical systems,
rom optical lattices, where ultra-cold gases or Bose–Einstein condensates are confined by a set of laser beams [1–4],
o ionic particles submitted to guided waves in E × B fields and plasma physics [5,6], to wave propagation in photonic
crystals [7], and to xenon atoms diffusion over platinum surfaces [8].

These systems have also been used as models for the quantum–classical correspondence of chaos for many-body
systems. As shown by Thommen [9], particles in a quantum tilted lattice can present a behavior similar to classical chaos.
Prants [10,11] proposes scenarios where the effect of chaos in particles displacement could be observed experimentally
in a periodic potential with semiclassical effects when the field interacts with two-level atoms.

Particularly within the theoretical perspective of classical dynamical systems, periodic potentials commonly appear in
Sinai billiards and hard wall scatterers models for Lorentz gases [12–14]. Analogous Hamiltonian models with smooth
periodic potentials, the so-called ‘‘soft’’ billiards, were also considered, providing a good framework to study chaotic
dynamics and control theory [15–17]. Such a feature is particularly relevant for the transport of particles through lattices,
since anomalous diffusion regimes can occur without the application of random forces, purely due to inner instabilities
in the system motion [5,18–24].

Recent works on periodic potentials as those on soft billiards based on optical lattices display their mixed Hamiltonian
phase-space structure and some scenarios for different parameters. We particularly mention Horsley et al., for a study
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on the same Hamiltonian model used here [25] (introduced in Section 2), although no considerations on diffusion and its
dependency on the system parameters were included. Regarding classical aspects on quantum models, Porter et al. studied
bidimensional (2D) Hamiltonian lattices for different topologies, such as a honeycomb lattice [26], including a quantum
treatment for the energy bands and the effect of symmetry breaking [27]. In [20], Prants studies a Hamiltonian model
analogous to the one considered here but modeling a dipole–field interaction by including into the coherent dynamics
the interaction of internal atomic degrees of freedom with translational ones.

Regarding diffusion itself, Zaslavsky performed some of the prominent works for continuous flows and Hamiltonian
odels considering the variation of control parameters [12,21,23]. Particularly in [23], for a periodic Q-model, were shown

he existence of long flights within the chaotic motion, the consequent anomalous diffusion regime, the tail thickening
ffect in the power-law distribution, and the occurrence of sudden transitions in diffusion rate as a function of a control
arameter. Similarly, Argonov and Prants [18,19,28] showed the fractal structure of escape time basins and the effect of
haos in different diffusion regimes due to Lévy flights in a fully coherent semiclassical model of a 1D lattice. Kleva [5]
onsidered in detail the structure of chaos close to movable separatrix curves of a periodic potential displaying these same
évy flights. The connection between these flights and anomalous regimes has been shown for a wide variety of models
12,29].

From this diffusion background, the present work aims to a detailed description of the dynamics behind the transport
f particles in a lattice Hamiltonian system. A bidimensional periodic classical potential, based on an optical lattice system,
s used to numerically study transitions in the spatial diffusion as the main control parameters change, namely the total
article energy and the coupling between the waves that form the lattice. Generally, for either varying energy or coupling,
he disruption of stability islands and further bifurcation of periodic orbits (PO), both stable (SPO) and unstable (UPO),
esults in a non-trivial dynamics with mixed phase-space. Due to such bifurcations, the system’s spatial diffusion regime,
easured by a long time exponent, undergoes sudden variations between normal and ballistic regimes or even peaks of

ntermediate rate with long transient times. The lack of pattern or predictability of such transitions thus motivates an
nspection of the topological changes within phase-space. In order to conduct this inspection as the control parameters
ary, a series of numerical techniques are applied, namely, the measurement of the ratio of chaotic/regular area within
hase-space, the automated search for POs and identification of their stability and period, the manifolds from UPOs, and
he escape time (or range) basins.

From the general finding of non-trivial changes in diffusion, a particular transition was studied in more detail. An
ncrease (decrease) of stability (chaotic) area was found to correlate with a sudden diffusion change from ballistic to
ormal regime as energy increases. We verified that such behavior occurs when particles energy is enough to reach
ocal instability points (potential local maxima), promoting a slowing down of dynamics and giving rise to new regular
tructures amidst a web-like manifold pattern in phase-space. This myriad of islands soon vanishes as energy increases
nd is replaced with a global chaotic sea, determining a more restrained chaotic dynamics with suppressed long flights
hrough the lattice. For diffusion variations uncorrelated with changes in chaotic/stable areas, increments in the particles
verage displacement are found to be caused by the onset of a set of long flight orbits. These transitions exist for a short
nergy interval and represent a small part of the total stable area but still alter the average displacement calculation as
transient behavior, perceptible for long times (t ∝ 103).
In this paper, Sections 2 and 3 respectively present the lattice model used in this study and how the transport of

particles is evaluated. The main findings are discussed along Section 4, starting by the aforementioned diffusion transitions
(Section 4.1) and followed by an initial analysis of the onset of chaos and transport in the system (Section 4.2). A particular
transition is detailed in Sections 4.3 and 4.4 by showing the phase-space changes and POs bifurcations. For completeness,
in Section 4.5 we also present results for diffusion variations not related to global modifications in the dynamics. Final
remarks are given in Section 5. An appendix section and supplementary material are provided to enhance the discussion
on integration error, statistical convergence, further PO analysis and extra results. Each topic is mentioned through the
text whenever it may be of interest.

2. Model

The bidimensional periodic lattice model studied in this work stems from a classical Hamiltonian motivated by the
trapping of a single neutral particle in the superposition of standing laser waves [1]. Experimentally, this setup is used
as an optical lattice to trap and control cold atom gases or Bose–Einstein condensates, although its treatment is made
quantically. In such an arrangement, an electrical field E from a standing-wave, obtained by the superposition of multiple
counter-propagating monochromatic waves, induces a parallel dipole d into a neutral particle. The re-interaction between
ield and dipole yields the potential

Vdip(r) = −d · E(r) = −

∑
i

(
d · êi

)
E i
0 cos(ki · r + θi), (1)

ith ki as the wave vector and θi the phase of each individual standing wave; êi and E i
0 are the respective polarization

irection and amplitude of the waves, and r the particle spatial position. The induced dipole given by d = γ (ω)E holds
or the case where the incident radiation frequency ω does not resonate with the particle inner energy levels, avoiding

bsorption and further re-emission of photons and thus ensuring a linear polarization by a polarizability factor γ (ω).

2
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Fig. 1. 3D representation of particles (in green) over the lattice potential surface V (x, y) displaying its periodic structure.

This aspect allows for an approximation of spatial trajectories as classical. Alternatively, Prants [10,11,20] considered a
semiclassical effect of particle–field interaction by allowing photons absorption and emission for particles with two inner
energy levels.

The generic form of potential (1) allows the construction of different lattices by the combination of multiple waves
and frequencies. For a 2D lattice, at least two linearly independent wave vectors are selected, constraining the particle
movement along two cartesian axes, although an extra wave propagating in the same (k1, k2) plane can be placed in
rder to achieve different topologies, as done by Porter et al. for a honeycomb lattice [27]. Indeed, even non-harmonic
ields can be used for the lattice construction, particularly if one aims to consider symmetry breaking effects [26].

Here, two orthogonal waves within the x−y plane are taken with equal amplitude and wavelength (kx = kx̂; ky = kŷ),
ielding the periodic potential for the lattice

V (x′, y′) = U ′
(
cos2(kx′) + cos2(ky′) + 2α cos(kx′) cos(ky′)

)
, (2)

with

U ′
= γ (ω)E2

0 > 0 and α =
(
êx · êy

)
cos(θx − θy). (3)

Therewith, for a single particle the lattice Hamiltonian can be written as

H = p2x + p2y + U
(
cos2(x) + cos2(y) + 2α cos(x) cos(y)

)
, (4)

with space units scaled to (x = kx′
; y = ky′) and Hamiltonian to H = 2 mH ′, so that the energy scale is U = 2 mU ′. The

classical dynamics of a particle is thus described by the surface potential shown in Fig. 1, where a particle can be trapped
in the field wells for energies lower than those of the saddle point between pits or otherwise diffuse through the lattice
cells above this threshold.

The energy scale U is of no relevance in the classical regime, in the sense that it does not alter the topology of solutions
whatsoever, and can be set to 1 by rescaling time. In the quantum regime on the other hand, this energy scale relates to
the accessible eigenstates and thus has further relevance. For this study, we fix U = 20 following Horsley et al. [25] since
it corresponds to a feasible value obtainable in experiments. In [20], Prants considered a similar Hamiltonian to (4) but
taking into account the coupling of internal and translational degrees of freedom of the atom via a coherent semiclassical
model for laser frequencies close to optical resonance.

As can be seen from potential (2), the coupling parameter α stands for the product of the fields polarizations and phase
difference, acting as a perturbation to the integrable Hamiltonian of two pendulum potentials along x and y (with period
π ), coupling them for any α ̸= 0. Although α values may vary within [−1, 1], one can notice that it is only required
to consider solutions for [0, 1], since the negative counterpart is equivalent to a spatial translation by π in one of the
cartesian directions, thus not altering solutions properties. Fig. 2 shows how the periodic potential structure changes as α

increases from the separable case (α = 0) to the maximum superposition amplitude (α = 1). As the saddle points move
towards the local maxima, they finally merge when α = 1, forming two trenches with degenerate minima on the lines
y+ x ≡ π mod (2π ) and y− x ≡ π mod (2π ) (see Table 1). For increasing α, the path between lattice pits for particles
to diffuse through lattice cells gets wider and wider, since the diffusion’s energy threshold at the saddle points is given
by V saddle(α) = U(1 − α2).

For the results shown along this work, all phase-space portraits will be made over the same Poincaré surface section
(PSS) — highlighted by green lines in Fig. 2, namely the one defined as the oriented surface along two of the lattice pits,
i.e.,

Σ =

{(
x, y, px, py

)
∈ R4

:

(
y =

π
; py > 0

)}
. (5)
2
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w

Fig. 2. Color plot of the top view of potential V (x, y) minimal unit cell for different values of the coupling α. The PSS (Poincaré Surface Section)
used for phase-space display is shown as the horizontal dashed green line at y =

π
2 .

Table 1
Equilibrium points position (x∗, y∗) and energy value V (x∗, y∗) within a unit cell of the periodic lattice;
positions are taken modulo 2π . At α = 1, saddle points merge with local maxima and form minimum
trench lines given by cos(yt(x)) = − cos(x).
Equilibrium points (x∗, y∗) V (x∗, y∗)

Minima

(
π
2 , π

2

)
0

(
−

π
2 , − π

2

)(
π
2 , − π

2

)(
−

π
2 , π

2

)
Maxima (global) (0, 0) 2U(1 + α)(π, π )

Maxima (local) (π, 0) 2U(1 − α)(0, π )

Saddle

(0, ± cos−1(−α))

U(1 − α2)(± cos−1(−α), 0)
(π, ± cos−1(α))
(± cos−1(α), π )

Since Hamiltonian (4) is autonomous, energy (E = H) is an immediate constant of motion, constraining trajectories in
a three-dimensional surface, which can thus be pictured by a 2D section. The oriented surface Σ is particularly convenient
for this potential since it intersects all possible solutions within a single unit cell pit, except for the UPOs along the stable
direction of the saddle equilibrium points located at y = 0 and y = π . Indeed, bounded solutions around the minima points
with y < 0 will occur, but nonetheless the π

2 rotation invariance implies that their symmetrical counterpart solutions
ill intersect Σ at y =

π
2 . The potential symmetry allows us to consider the motion in a restricted phase-space if one

modulates trajectories with periodic boundary conditions (x, y ∈ [−π, π )), but it also allows for the scattering or diffusion
of particles if one lets spatial variables run freely.

The PSS Σ will also be used as reference for representing periodic orbits. Along any PSS, POs appear as fixed points with
discrete period, i.e., an n-periodic orbit will cross the PSS n times until it return to its initial point. However, the number
of these crossings depends on the orientation of the surface and how it intercepts the orbit path. Therefore, along the text
we refer to discrete periods (labeled as T ) only defined relative to Σ(5). Moreover, we differentiate the discrete period
from the real-valued dynamical period (labeled as τ ), which is simply the total time elapsed for the orbit to return to its
initial point.
4
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Fig. 3. Diffusion exponent µ(E) for different values of the coupling α. Any non-integrable scenario (α ̸= 0) presents sudden transitions between
iffusion regimes. Energy scales range (Emin → Emax) = (0 → 2U(1 + α)).

. Diffusion calculation

The quantitative characterization of the diffusion regime of an ensemble of particles through the lattice was straightly
chieved from the asymptotic power law [23]

⟨R2
⟩(t) ∝ tµ, (6)

here R =

√
(x − x0)2 + (y − y0)2 is the spatial displacement of a particle from its initial position, with the average taken

over all particles. The exponent µ thus indicates the diffusion rate, being normal (µ = 1), ballistic (µ = 2) or anomalous
or different results within 0 < µ < 2. One can immediately assert from energy conservation and the boundedness of the
otential (4) that super-diffusivity (µ > 2) cannot occur in the system.
To numerically compute µ for a given pair of parameters (α, E), an ensemble of N random initial points covering

the 3D energy shell in phase-space is evolved for long times (t = 2000.0). From the time series data for ⟨R2
⟩(t), one

can retrieve the rate exponent µ by fitting it with the power-law (6). Since the power-law is expected to hold true only
asymptotically to long times, the data fitting is performed over the last 30% of time interval data. The random initial points
are sampled as a Monte-Carlo procedure by randomly generating a position (x0, y0) within the constraint V (x0, y0, α) < E
and a momentum vector p⃗ = (px, py) with random direction given by an angle uniformly distributed within [0, 2π ) and
odulus defined by the conservation of energy (4).
Besides errors of statistical order, the long-time integration required raises the issue of numerical error in the solutions.

Runge–Kutta-Cash-Karp (RKCK) [30] method is used, and therefore it does not conserve the symplectic 2-form (even for
egular solutions). However, energy deviations did not exceed the order of 10−9, implying that the solutions obtained are
ery well bounded within the same energy hyper-surface, even though individual trajectories present small divergence
rom the real solution. This divergence is surmounted in this case since only the average over a uniformly filled phase-
pace is required, given that no stickiness was found to be relevant for the system’s dynamics. Nevertheless, a direct
omparison to a symplectic method, developed by M. Tao [31], was made and is inserted in the supplementary material,
howing that the lack of symplecticity of the RKCK method does not impact the results obtained here.

. Results

.1. Diffusion exponent

The study of the transport of particles through the lattice is made by the procedure described in Section 3 while
arying the main control parameters, i.e., the total energy of the particle (E), and the coupling between radiation waves
α). Fig. 3 shows the profile found for different α values and varying energy. When the system is integrable (α = 0), it is
spatially separable and, for energies allowing for diffusion, its behavior is completely ballistic, since this case is similar to
a pendulum with rotation energy, moving unimpeded through the lattice. When integrability is broken (α ̸= 0), generally
the diffusion exponent µ(E) undergoes a series of short and sudden transitions, with changes from normal (µ = 1) to
5
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free (µ = 2) regimes occurring abruptly and intermediate variations to intermediary regimes (1 < µ < 2), mostly seen
s sharp peaks or valleys.
As exposed in Section 2, the coupling α relates to the broadening of spatial channels through which a particle travels to

neighbor lattice pits (stable minima points). Both the saddle points between the pits and local maxima decrease in energy,
thus allowing a wider space for flights. Thus, one could hope to primarily find a continuous transition for the transport
exponent as a function of both α and E. However, inner instabilities from chaotic trajectories and a mixed phase-space,
with the emergence or destruction of Kolmogorov–Arnol’d–Moser (KAM) islands (PO bifurcations), imply a more intricate
profile for the particles diffusion and its exponent µ. Indeed, when conducting the equivalent diffusion calculation for
fixed energies and α as the free parameter, similar behavior is found (results shown in Section 2 of the supplementary
material), given that changes in dynamics occur in a similar way, namely the bifurcation of stability islands or UPOs, for
the variation of both control parameters.

For energies close to global maximum points (E ≈ Vg-max = 2U(1 + α)), a common plateau at ballistic regime occurs
or all values of α. At this energy level, the particle dynamics covers a wider space region with large momenta, where
nstabilities from the coupling can be seen as small perturbations. Therefore, the particle movement is that of a point
oving rapidly through the lattice with smaller deviations, thus yielding a ballistic diffusion regime. Furthermore, this is
lso verified by an emergent dominance of large chains of stability islands in phase-space.
Given the statistical reliance on the calculation for µ(E), an immediate concern with its convergence and error is

aised, particularly regarding the total integration time t and ensemble size N . Details on this error analysis are given
n the supplementary material, while here we summarize that the transitions undergone by µ(E) are found for either
ime and ensemble size of different magnitudes, whereas absolute deviations in their values do not exceed 15%. However,
ransitions composed of single thin peaks or intermediary rate values (1 < µ < 2) may correspond to long transient
ehavior due to small stability islands composed of long flights, slowly converging towards ballistic rate µ → 2, although
nly manifested for longer times; a further discussion is made in Section 4.5.
One may immediately expect that the transitions shown in Fig. 3 depend entirely on the mixed dynamics of the

ystem’s solutions. Therefore, we firstly inquired whether these transitions correlate to the appearance or destruction
f stability islands. For this purpose, the chaotic area was measured over the PSS Σ(5) via Smaller Alignment Index (SALI)
ethod [32,33]. Briefly putting it, the algorithm considers two deviation vectors

(
ω̂1, ω̂2

)
which are integrated by the

irst order variation of motion equations along with a reference orbit (their norms being kept constant). These deviation
ectors thus behave differently for each kind of orbit. In case the reference orbit is chaotic, they align or anti-align to
ach other since they orient themselves towards the unstable manifold direction, whereas for a regular orbit they are
ept at finite angle while only orienting themselves towards the tangent plane of the stability torus in which the orbit is
ontained. It is possible that for regular orbits the tangent vectors still align/anti-align due to shear between close torus
ayers, however this may occur for times much longer than the one for alignment in chaotic orbits.

From this principle, the defined index

SALI(t) = min
(
∥ω̂1 + ω̂2∥, ∥ω̂1 − ω̂2∥

)
(7)

rovides a quantitative way to discriminate the orbit’s nature, given that aligned vectors imply SALI(t) → 0 while regular
nes keep SALI at constant non-zero values (assuming non-parallel initial vectors). The algorithm does not rely on any
articularity of the present model, thus being applicable in general to Hamiltonian systems or symplectic discrete maps.
Using this index to differentiate between regular and chaotic orbits, one can mesh the surface Σ and sum over the

ub-areas from each initial condition assigned to each grid cell. Equivalently, the same procedure could be made for a 4D
rid over the whole phase-space. However, the selected PSS intersects all possible orbits within a unit cell, except the
POs along the saddle equilibrium points at y = 0 and y = π , thus ensuring that the section provides a good portrait
f the chaos/stability ratio of the whole phase-space. Fig. 4 shows the area portions of orbits along Σ normalized by the
otal area Atot = Achaos + Aregular for the same coupling values displayed in Fig. 3.

Fig. 4 shows a correlation between a main transition for (α = 0.1; E = 36), where a sudden increase of stable area
s found to occur, and the transition in diffusion exponent µ(E) shown in Fig. 3, where a free transport plateau drops
o normal regime. On the other hand, a series of peaks in diffusion rate, either from increasing or decreasing µ(E),
o not correlate with any pronounced changes in chaotic/stable area. This is particularly seen along the intervals at
α = 0.5; E ∈ [30, 50]) and (α = 1.0; E ∈ [30, 60]) where the system is dominantly chaotic along the whole energy
nterval although peaks of diffusion transition are seen for µ(E). Even though no direct implication requires the diffusion
xponent to correlate directly with the chaotic area, it is compelling to check whether the transitions found are related
o the emergence of chaos or inner changes in its domain, such as the appearance of Lévy flights, which may not alter the
rea but change chaos properties. Given these two scenarios for transport variation, we aim to inspect the phase-space
or energy values around these transitions and characterize the dynamical changes occurring along with it.

.2. Diffusion onset

As previously mentioned, the diffusion transition occurring at (α = 0.1; E = 36.0) comprises a sudden change
rom ballistic (µ = 2) to normal (µ = 1) regime as seen from Fig. 3, correlated with a simultaneous drop/growth of
chaotic/regular area. At the particular energy E = 36.0, the potential surface does not undergo any sudden change but its
6
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l

Fig. 4. Normalized chaotic/regular area A over the PSS Σ for varying energy and different fixed coupling values calculated via SALI algorithm.

ocal maxima points, located in the unit cell at (x = ±π, y = 0) and (x = 0, y = ±π ), become accessible to trajectories.
Counterintuitively, although spatially the path for transport widens, these new equilibrium points act as an instability
source, changing the chaotic dynamics properties by disrupting long flights through the lattice. It is therefore interesting
to use such an orbit as reference for changes in the system as energy increases.

The PO along the local maxima direction exists for all energy values E > 0, becoming unstable for E ≈ 6.9 (Sg → Ug )
whilst branching into two other SPOs (S and S ), as shown in Fig. 5. This bifurcation process is the first considerable
r y

7
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Fig. 5. PO bifurcation process for increasing energy seen from the PSS Σ (left column), with fixed points drawn as colored circles, along with its
correspondent spatial trajectories in the right column. Each PO is named after its stability – stable (S) or unstable (U) – and an index, related to its
color. In the portraits, top row has E = 5, center row E = 9 and bottom row E = 17.6; in all of them α = 0.1.

mergence of chaos in phase-space, as the separatrix around the new islands (related to Sr and Sy) is disrupted and
replaced by a chaotic layer with hyperbolic point at Ug fixed point. In Fig. 6, portrait A shows that for energy values
slightly above the diffusion onset (E = 22), the chaotic layer increases and forms a connected piece, surrounding the
three main stability islands. One may notice that the bottommost island, for px√

E
≈ 1, with Sr at its center, is highly

compressed along the energy shell border, but still exists.
Using the UPO Ug and the ones along the saddle equilibrium points (Ux and Uy, shown in portrait B of Fig. 6), their

manifold structure indicates that for transient times the chaotic region is separately occupied by an outer layer, seen in
portrait C as the unstable manifold of Uy (in red) and an inner layer, from the stable manifold branch of Ug (in green). These
nitially separated regions occur due to small turnstiles between the manifold branches, although they appear infinitely
any times for long periods, filling the whole chaotic sea as a single connected region. The unstable manifold is mostly

ocated along regions of high px momentum, related to direct flights traveling horizontally along the lattice. Due to the
↔ y symmetry, one can find the same division for vertical flights, from the unstable manifold of Ux (Fig. 6, portrait D),
here it is placed inside the innermost lobe of Ug manifold, corresponding to high values of py.

4.3. Local maxima transition

In order to detail the transition at E = 36 and α = 0.1, phase-space portraits over the PSS Σ (5) are given for energy
values before (E = 32.0 – Fig. 7), around (E = 36.1 – Fig. 8) and after (E = 38.0 – Fig. 9) the transition. These figures show
the PSS with its orbit crossings (black points), the stable manifold from the Ug UPO (Fig. 6), and a color map of escape
time basins. In this context, escape time basins are simply defined as a map of the time required for initial conditions on
the PSS Σ to reach outside the square box with n unit cells of size, i.e., x, y ∈ [−nπ, nπ ] (here n = 10).

Before the transition, for E = 32 (Fig. 7), phase-space stability regions are still given by the three main islands with
center given by Sy, Sr and Sb SPOs (Fig. 5). As indicated by the escape time basins, the bottom islands (Sy and Sr ) are related
to direct flights through the lattice, given their small escape time. Besides, channels of low escape time infiltrate the
chaotic sea by stretching themselves from the instability region. These channels are also visible in the manifold portrait,
while penetrating between the finger-like structure of the folded lobes that delimit the island. The upper island, related to
8
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Fig. 6. (A) PSS Σ for E = 22. (B) UPOs used for the calculation of the manifolds displayed at frames C and D. (C) Stable (green) and unstable (red)
manifolds from Ug and Uy respectively. (D) Stable (green) and unstable (red) manifolds from UPO Ug and Ux respectively. In frame B, the blue dashed
line depicts the spatial location of the PSS Σ and the blue dot in the remaining frames the fixed point from UPOs within it.

orbits bounded to inside the unit cell, is the only set with ‘‘trapped’’ trajectories, whereas the chaotic sea alone presents
an average escape time around ⟨t⟩ ≈ 20. As expected, the escape time basins reflect the manifolds structure, since these
are the invariant lines that approach/depart the PSS single fixed point from the UPO Ug . Although not shown in Fig. 7,
the unstable branch is perfectly symmetric, under the reflection y′

= y; x′
= π − x, to the stable branch. The mentioned

hannels may fade for higher box sizes or integration time, however they imply a transient behavior lasting for at least
undreds of time units, thus considerably long.
While the system exceeds the transition energy (E = 36), the manifold finger-like lobes fold into the bottom stability

slands (from Sr and Sy), merging exactly at the fixed point position of the UPO Ug with the stable regions vanishing in
he process (Fig. 8). At this point, a myriad of islands emerge from the chaotic sea, forming centered chains around the
nstable fixed point related to Ug , located at (x, px√

E
) ≈ ( π

2 , −0.71) and also around the upper stability island related to
Sb. These structures last for a narrow energy interval, approximately E ∈ [36.0, 36.3]. For the group around Sb island, a
higher escape time (constrained orbits) can be seen, indicating a stickiness behavior for this region. The bottom chain
structure, around Ug , presents an alternated layered structure (indicated by the yellow and purple islands in Fig. 8). Every
layer has even discrete period, with each one increasing its period by 2 as they grow englobing the inner layers, forming
an onion-like structure with the web-like manifold folding through them. More details on the alternating escape time
range of this structure are given in Appendix A, where the SPOs related to the chains are shown. Briefly, this alternation
occurs due to the spatial ‘‘closure’’ of SPOs at the center of yellow chains, i.e., they return to their initial point, considering
an unbounded dynamics, without periodic boundary conditions (PBC), thus having limited range of transport, whereas
the chains with fast escape time (in purple) are related to SPOs that only close themselves when one considers spatial
PBC, meaning that when unbounded, they travel as direct flights through the lattice. Moreover, these islands are discrete
isochronous, being formed by multiple SPOs, with either odd or even discrete period.

After the transition, with the vanishing of the island myriad, a uniform chaotic sea mostly invades all phase-space,
with only the upper island still remaining but in reduced size (Fig. 9). Amidst this chaotic region, the previous manifold
web structure loses its ‘‘horizontal’’ tangling lines, leaving only a swirling structure, with a ‘‘knot’’ at (x, px) = (0, 0). The
vanishing of the two previous bottom islands and their channels within the chaotic region contributes to the suppression
of long flights and therefore transport in the system ceases from being ballistic.

4.4. Periodic orbits bifurcations

In order to analyze POs bifurcations and their modification in phase-space, a period-energy diagram was calculated
with a monodromy algorithm. As developed by Baranger et al. [34] and further detailed by Simonović [35], one can obtain a
periodic orbit, either stable or unstable, from a given initial condition attempt and iteratively applying a Newton–Raphson
algorithm to approach a periodic solution. This technique is generically applicable to any conservative Hamiltonian system
of N degrees of freedom or symplectic map. Running this procedure extensively along the PSS Σ , a series of POs can be
9
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(

Fig. 7. Phase-space portraits for (α, E) = (0.1, 32) with ballistic diffusion regime, before transition. (Top) PSS with orbits crossing points in black.
Center) Escape time basins color map. (Bottom) Stable manifolds from Ug .

found in an automated way for different energies, allowing the construction of a diagram displaying the dynamical period
τ of the orbits found as a function of the energy value.

The result for such a diagram calculated for α = 0.1 is shown in Fig. 10, where POs with discrete period T = 1, 2
and 3 on the section Σ are considered. The horizontal dashed lines mark two key energy values, namely the diffusion
onset (E = 19.8) and the potential local maxima (E = 36.0). As the energy approaches either one of these values, a
slowing down of the dynamics occurs, with the dynamical period of orbits asymptotically diverging as they reach the
horizontal lines. This is easily understandable as the case of orbits reaching an unstable equilibrium point for the exact
energy value of access, taking an infinite time span to reach it, analogous to the dynamics of a simple pendulum at the
exact libration–rotation threshold. In this case, the saddle point between energy unit cells marks the energy for diffusion
onset and the local maxima to the transition we studied here. Since the discrete periods considered in the diagram are
low (T = 1, 2, 3), the diagram does not display the island myriad appearance, given its higher period chains. However,
10
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Fig. 8. Same as Fig. 7 but for (α, E) = (0.1, 36.1) energetically slightly above the transition.

t can be seen that the presence of an unstable point, even though it spreads trajectories and introduces chaos, is also
elated to a slowing down of the dynamics and the vanishing of a series of POs, along with the creation of completely
ew ones. Therewith, the scenario for the transition studied here is that the effect of a new instability source suppresses
ong flights within the lattice while it permeates the phase-space with chaos of more constrained trajectories.

.5. Local flights

To fully explore the aspects of the diffusion profiles obtained here (Fig. 3), we briefly describe in this section the
hort peaks and valleys comprising sudden changes in them. These are variations in diffusion exponent uncorrelated with
onsiderable changes in chaotic area, as exemplified by the energy intervals around E ≈ 24 and E ≈ 36 for α = 0.5, and
≈ 10, E ≈ 33 and E ≈ 40 for α = 1.0.
As we did previously, we look at phase-space portraits for energies in these intervals searching for alterations in

ransport characteristics. Therewith, to clearly display regions in phase-space with long flights, we use a displacement
11
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Fig. 9. Same as Figs. 7 and 8 but for (α, E) = (0.1, 38) after the transition, at normal diffusion regime.

color map, similar to the escape-time ones but instead coloring each initial point with its displacement for a given
integration time t (here t = 1000). Fig. 11 exemplifies this result for the transition at E ≈ 24 and α = 0.5, where a
eak from normal diffusion to an intermediary value (µ ≈ 1.3) is found. It can be seen that the only modification is

the emergence of three small islands (shown in dark blue) around each of the twin islands (shown in light red) in the
bottom region of the PSS, along with the bifurcation of these twin islands. The emergent island triads that appear present
a very high displacement when compared to the chaotic sea surrounding them or the other stability islands composed of
trajectories with limited range. It is clear then that the ballistic transport due to these small islands increases the global
average diffusion rate, making it increase quadratically but with smaller amplitude, thus taking longer times to increase µ
ut still converging towards µ ≈ 2. Although not shown here, the same behavior is seen for the other peaks and variations
n transport rate mentioned that are not correlated with changes in chaotic/regular areas.

To emphasize that the variations for the energy values mentioned above are not global transitions, in the sense that
hey are not related to major changes in the chaotic domain, Fig. 12 shows the manifold structure for the case discussed
bove (E ≈ 24, α = 0.5). Even though the island triads are not visible in the figure, one may notice that they appear
12
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Fig. 10. Period energy diagram for orbits with PSS discrete period T = 1, 2 and 3.

etween the manifold lobes without disturbing them. After the island triad disappears, for the highest energy value
= 24.5, the new bifurcated islands from the bottommost twin islands present a small stickiness around them. Here

his is indicated by the region unfilled by manifold lobes where these islands previously existed. However, this behavior
s not very pronounced and is not related to the increase in displacement seen for the transport rate, given that the
ifurcated island pairs are composed of orbits with limited range.
The effect of ballistic islands over the global diffusion rate is in agreement with the diffusion profiles simulated for

ifferent integration times. Whenever these islands are present, as the evolution time increases, the diffusion regime
lowly converges towards ballistic, as shown in the supplementary material. Therewith, we point out that, for the diffusion
valuation method used here, the presence of even small portions of phase-space with quadratic rate will imply a
ominance over the total regime rate. Therefore the method use requires care for analysis of long times; however, it
till serves as an indicator of the existence of long flights, given that they are indeed effects of the system dynamics. It
s also interesting that islands with long displacement range appear amidst a chaotic sea with transport in a different
egime, without major changes in the sea.

. Conclusions and perspectives

This work presented a study of classical transport of particles for a 2D lattice model based on the periodic potential
esulting from a dipole–field interaction. It was shown that as the system control parameters change, namely the coupling
and total energy E, the diffusion exponent µ, evaluated from an asymptotic law, presents sudden variations between
allistic and normal regimes due to the mixed nature of the system dynamics and its series of POs bifurcations.
A sudden drop of diffusion rate from ballistic (µ = 2) to normal (µ = 1) regime is found to occur in correlation with a

ecrease in chaotic area for (α = 0.1, E = 36.0). A detailed analysis indicated that this transition occurs at an energy level
or which orbits reach local maxima points. Even though the transport of particles seems facilitated by the wider spatial
hannel, the new instability source promotes a large bifurcation process with the emergence of multiple stable structures.
oreover, a global slow-down of the dynamics occurs due to orbits reaching the unstable equilibrium position, as seen

n a period-energy diagram for periodic orbits.
Before the transition, long flights occur due to two main stability islands that vanish as E → 36. At transition, phase-

pace becomes populated by an island myriad amidst a web-like manifold structure, with multiple isochronous chains
f even discrete period. These chains form layers with increasing period and alternate displacement range in the lattice
ue to SPOs with closed or open spatial periodic topology. After a narrow energy interval (E ≈ 36.3), the island myriad
anishes and the remaining phase-space is dominated by a single chaotic region with long flights suppressed, presenting
normal diffusion regime. This characteristic transition may occur on the system for any coupling α ̸= 0, although it
hall be more pronounced for small values, since local maxima energy levels decrease as a function of α, thus being less
nfluent in the dynamics.

Diffusion variations that do not present correlation with chaotic area are shown to be caused by the emergence of
mall stability islands composed of long flights rather than global changes in dynamics. These long flights increase the
13
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Fig. 11. Displacement range color map for different energies around the sudden peak for E ≈ 24. The total integration time is t = 1000 for each
point in a 850 × 830 grid.

average displacement towards ballistic rate but appearing only for long integration times, given their small weight within
the orbits ensemble.

Further investigations can be made on the island myriad structure; it is possible that this phenomenon may occur due
to a superposition of a fast dynamics, related to bounded orbits oscillating inside a single lattice pit, and a slow dynamics,
related to the period divergence of UPOs reaching the unstable point [36]. Moreover, different lattice topologies could be
experimented and the local maxima transition studied for a different symmetry, such as in a honeycomb lattice, in order
14
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Fig. 12. PSS portraits of the stable manifold branch from UPO Uy for different energies along the diffusion variation. Integration time is t = 6.9.

o analyze changes on the spatial closeness of the arising POs of such transitions. Further investigations could include
n analysis dedicated solely to the chaotic dynamics and its main UPOs, better detailing the influence of the unstable
oint deviation in bifurcations of POs that suppress long flights. Alternatively, Hamiltonian perturbations feasible within
xperiments, such as potential amplitude variation, extra monochromatic waves or noise, could be applied and compared
ith the conservative case shown here, in order to enhance the control of particles in the lattice.
15
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Fig. 13. Selected SPOs with spatial closure, i.e., returning to its initial spatial point without considering PBC. Orbits found for system parameters
= 0.1; E = 36.1. T is the discrete period related to the PSS Σ .
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Fig. 14. Selected SPOs without spatial closure, i.e., they only return to its initial spatial point when considering PBC. Orbits found for system
parameters α = 0.1; E = 36.1. T is the discrete period related to the PSS Σ .

Appendix A. Periodic orbit analysis

As shown by the escape time basins of Fig. 8, amidst the emergent myriad structure, island chains with even discrete
period present an alternated layer structure of high (in yellow) and low (in purple) escape times. The new emergent
SPOs are of two different kinds: one related to orbits with spatial closure, in the sense that they return to their initial
position even when PBC is disabled, thus forming closed loop paths; the other group comprises orbits without spatial
closure, meaning that when PBC is not considered, they evolve with repeating patterns without returning, thus forming
long flights through the lattice. Therewith, it becomes clear that closed SPOs will have limited range and therefore higher
escape time (or no escape at all). The displacement range of these orbits may increase with their discrete period but will
still remain bounded. Open SPOs on the other hand will travel unboundedly through space, in an approximately ballistic
way.

Figs. 13 and 14 respectively display closed and open SPOs belonging to the myriad chains. It is worth mentioning that
all these orbits are perfectly periodic when considering PBC. The periodicity of open SPOs is allowed in this case due to
the periodic nature of the potential itself, given that a particle can return to a symmetric point in a neighbor cell, thus
repeating the same dynamical evolution. Besides, one may notice that every orbit will have a symmetric counterpart,
obtained by a rotations of π

2 , with the same properties regarding stability (Lyapunov exponent), period and ‘‘closedness’’
but with different discrete period, given the different possibilities of intersection with the PSS Σ .

Moreover, the island chains are isochronous, implying that for an N-periodic chain, their ‘‘links’’ are not sequentially
opulated by a single SPO as usual, but instead they are composed of multiple SPOs with discrete period of divisors of
, with fixed points alternating between the links [37]. This may be due to the rotation symmetry of the lattice, making
eriodic solutions to occur in pairs and therefore have the same winding number. Therefore they will occur superposed
n phase-space and form the isochronous chain structure. As shown here, since the PSS is restricted to x ∈ [0, π], some
ixed points of these SPOs may be located in x ∈ [−π, 0], where the PSS map is identical to the one seen for x > 0 but
nverted, given the reflection translational symmetry of π/2.
17



M.J. Lazarotto, I.L. Caldas and Y. Elskens Communications in Nonlinear Science and Numerical Simulation 112 (2022) 106525

R

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cnsns.2022.106525.

eferences

[1] Bloch I. Ultracold quantum gases in optical lattices. Nat Phys 2005;1:23–30.
[2] Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases. Rev Modern Phys 2008;80:885–964.
[3] Hemmerich A, Schropp Jr D, Hänsch TW. Light forces in two crossed standing waves with controlled time-phase difference. Phys Rev A

1991;44(3):1911–21.
[4] Monteiro TS, Dando PA, Hutchings NAC, Isherwood MR. Proposal for a chaotic ratchet using cold atoms in optical lattices. Phys Rev Lett

2002;89(19):194102:1–4.
[5] Kleva RG, Drake JF. Stochastic ExB particle transport. Phys Fluids 1984;27(7):1686–98.
[6] Horton W. Nonlinear drift waves and transport in magnetized plasma. Phys Rep 1990;192(1–3):1–177.
[7] Yu S-P, Muniz JA, Hung C-L, Kimble HJ. Two-dimensional photonic crystals for engineering atom-light interactions. Proc Natl Acad Sci USA

2019;116(26):12743–51.
[8] Sholl DS, Skodje RT. Diffusion of xenon on a platinum surface: The influence of correlated flights. Physica D 1994;71:168–84.
[9] Thommen Q, Garreau JC, Zehnlé V. Classical chaos with Bose-Einstein condensates in tilted optical lattices. Phys Rev Lett 2003;91(21):1–4.

[10] Prants SV. Light-induced atomic elevator in optical lattices. JETP Lett 2016;104(11):749–53.
[11] Prants SV, Kon’kov LE. On the possibility of observing chaotic motion of cold atoms in rigid optical lattices. Quantum Electron 2017;47(5):446–50.
[12] Zaslavsky GM, Sagdeev RZ, Chaikovsky DK, Chernikov AA. Chaos and two-dimensional random walk in periodic and quasiperiodic fields. Sov

Phys—JETP 1989;68(5):995–1000.
[13] Bagchi B, Zwanzig R, Marchetti MC. Diffusion in a two-dimensional periodic potential. Phys Rev A 1985;31(2):892–6.
[14] Machta J, Zwanzig R. Diffusion in a periodic Lorentz gas. Phys Rev Lett 1983;50(25):1959–62.
[15] Kroetz T, Oliveira HA, Portela JSE, Viana RL. Dynamical properties of the soft-wall elliptical billiard. Phys Rev E 2016;94:022218.
[16] Kaplan A, Friedman N, Andersen M, Davidson N. Stable regions and singular trajectories in chaotic soft-wall billiards. Physica D 2004;187:136–45.
[17] Reichl LE. The transition to chaos in conservative classical systems. New York: Springer-Verlag; 1992.
[18] Argonov V Yu, Prants SV. Fractals and chaotic scattering of atoms in the field of a standing light wave. J Exp Theor Phys 2003;96(5):832–45.
[19] Argonov V Yu, Prants SV. Nonlinear coherent dynamics of an atom in an optical lattice. J Russ Laser Res 2006;27(4):360–78.
[20] Prants SV. Weak chaos with cold atoms in a 2D optical lattice with orthogonal polarizations of laser beams. J Russ Laser Res 2019;40(3):213–20.
[21] Zaslavsky GM, Tippett MK. Connection between recurrence-time statistics and anomalous transport. Phys Rev Lett 1991;67(23):3251–4.
[22] Zaslavsky GM. Chaos, fractional kinetics, and anomalous transport. Phys Rep 2002;371:461–580.
[23] Zaslavsky GM, Stevens D, Weitzner H. Self-similar transport in incomplete chaos. Phys Rev E 1993;48(3):1683–94.
[24] Chaikovsky DK, Zaslavsky GM. Channeling and percolation in two-dimensional chaotic dynamics. Chaos 1991;1:463–72.
[25] Horsley E, Koppell S, Reichl LE. Chaotic dynamics in a two-dimensional optical lattice. Phys Rev E 2014;89:012917.
[26] Porter MD, Barr A, Barr A, Reichl LE. Chaos in the band structure of a soft Sinai lattice. Phys Rev E 2017;95:052213.
[27] Porter MD, Reichl LE. Chaos in the honeycomb optical-lattice unit cell. Phys Rev E 2016;93:012204.
[28] Argonov V Yu, Prants SV. Theory of chaotic atomic transport in an optical lattice. Phys Rev A 2007;75:063428.
[29] Mandal D, Elskens Y, Leoncini X, Lemoine N, Doveil F. Sticky islands in stochastic webs and anomalous chaotic cross-field particle transport

by ExB electron drift instability. Chaos Solitons Fractals 2021;145:110810.
[30] Cash JR, Karp AH. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans Math

Software 1990;16:201–22.
[31] Tao M. Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance. Phys Rev E 2016;94:043303.
[32] Gottwald GA, Skokos CH, Laskar J. Chaos detection and predictability. Berlin Heidelberg: Springer-Verlag; 2015.
[33] Skokos C, Bountis T, Antonopoulos CG, Vrahatis MN. Detecting order and chaos in Hamiltonian systems by the SALI method. J Phys A: Math

Gen 2004;37:6269–84.
[34] Baranger M, Davies KTR, Mahoney JH. The calculation of periodic trajectories. Ann Physics 1988;186:95–110.
[35] Simonović NS. Calculations of periodic orbits: The monodromy method and application to regularized systems. Chaos 1999;9(4):854–64.
[36] Elskens Y, Escande DF. Infinite resonance overlap: A natural limit for Hamiltonian chaos. Physica D 1993;62:66–74.
[37] de Sousa MC, Caldas IL, de Almeida AM Ozorio, Rizzato FB, Pakter R. Alternate islands of multiple isochronous chains in wave-particle

interactions. Phys Rev E 2013;88:064901.
18

https://doi.org/10.1016/j.cnsns.2022.106525
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb1
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb2
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb3
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb3
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb3
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb4
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb4
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb4
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb5
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb6
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb7
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb7
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb7
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb8
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb9
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb10
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb11
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb12
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb12
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb12
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb13
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb14
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb15
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb16
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb17
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb18
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb19
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb20
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb21
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb22
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb23
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb24
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb25
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb26
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb27
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb28
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb29
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb29
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb29
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb30
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb30
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb30
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb31
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb32
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb33
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb33
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb33
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb34
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb35
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb36
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb37
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb37
http://refhub.elsevier.com/S1007-5704(22)00157-5/sb37

	Diffusion transitions in a 2D periodic lattice
	Introduction
	Model
	Diffusion calculation
	Results
	Diffusion exponent
	Diffusion onset
	Local maxima transition
	Periodic orbits bifurcations
	Local flights

	Conclusions and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Periodic orbit analysis
	Appendix B. Supplementary data
	References


