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Abstract: We investigate the transient dynamics of the Fisher equation under nonlinear diffusion
and fractional operators. Firstly, we investigate the effects of the nonlinear diffusivity parameter
in the integer-order Fisher equation, by considering a Gaussian distribution as the initial condition.
Measuring the spread of the Gaussian distribution by u(0, t)−2, our results show that the solution
reaches a steady state governed by the parameters present in the logistic function in Fisher’s equation.
The initial transient is an anomalous diffusion process, but a power law cannot describe the whole
transient. In this sense, the main novelty of this work is to show that a q-exponential function gives
a better description of the transient dynamics. In addition to this result, we extend the Fisher equation
via non-integer operators. As a fractional definition, we employ the Caputo fractional derivative
and use a discretized system for the numerical approach according to finite difference schemes. We
consider the numerical solutions in three scenarios: fractional differential operators acting in time,
space, and in both variables. Our results show that the time to reach the steady solution strongly
depends on the fractional order of the differential operator, with more influence by the time operator.
Our main finding shows that a generalized q-exponential, present in the Tsallis formalism, describes
the transient dynamics. The adjustment parameters of the q-exponential depend on the fractional
order, connecting the generalized thermostatistics with the anomalous relaxation promoted by the
fractional operators in time and space.

Keywords: fractional Fisher’s equation; fractional dynamics; q-distribution

1. Introduction

Diffusion equation with logistic source as a reaction term is known as Fisher’s
equation [1], or, in a general version, as the Kolmogorov–Petrosvsky–Piscounov (KPP)
equation [2]. Reaction–diffusion equations describe the diffusion of concentration in
space under local interaction [3]. Fisher’s equation has been applied to model many
phenomena. For example, a generalized Fisher equation can be used as a noise threshold
for experimental measurements without requiring more experimental information [4].
The discrepancy of experimental data with the generalized Fisher equation can yield
good optimization criteria for determining the rate coefficient of a reaction mechanism [4].

Fractal Fract. 2024, 8, 143. https://doi.org/10.3390/fractalfract8030143 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8030143
https://doi.org/10.3390/fractalfract8030143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-8407-7675
https://orcid.org/0000-0003-4956-5259
https://orcid.org/0009-0007-0007-1238
https://orcid.org/0000-0002-7293-2443
https://orcid.org/0000-0001-6183-9393
https://orcid.org/0000-0002-7647-2341
https://orcid.org/0000-0002-0103-9017
https://orcid.org/0000-0002-1748-0106
https://orcid.org/0000-0002-5899-0591
https://orcid.org/0000-0003-3853-1790
https://doi.org/10.3390/fractalfract8030143
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8030143?type=check_update&version=1


Fractal Fract. 2024, 8, 143 2 of 12

Fisher’s equation has been employed in modeling experimental wound healing [5]. The
authors studied how different phenotypes affected the population migration rate. The
dynamics of the bacterial population have long been explained by Fisher’s equation [6].

Due to the diversity of applications, exact and approximated solutions are useful [7].
However, analytical methods are very challenging in nonlinear partial differential equations.
In this sense, numerical methods have been proposed to solve Fisher’s equation [8]. Some
of them are the particle grid [9], Adomian [10], Haar wavelet [11], finite elements [12],
Galerkin [13], and Elzaki methods [14]. Each of these approaches must be properly chosen,
taking into account the particularities of the applications. To name a few, the particle
grid method can be applied for reacting flows in porous media [9], Adomian to solve
nonlinear systems [15], and the Haar wavelet can result in a simple, fast, and accurate
solution to boundary value problems [16]. These methods are applied to study Fisher’s
equation governed by a differential operator, which we refer to by integer or standard
derivatives. Nevertheless, due to the increase in fractional calculus applications, it is natural
to investigate the fractional Fisher’s equation.

Fractional calculus extends integer operators to non-integer [17] and has been used
in many situations [18]. In general, fractional operators are more adequate to capture
the complexity of the systems than integer ones. This is explained by the fact that the
fractional operators are defined as convolution integrals and incorporate memory and
non-local effects in the models [19]. In some cases, this extension is more suitable to explain
experimental results [20]. Extensions of Fisher’s equation were investigated in some works,
for example, refs. [21–23] and references therein. However, these works are limited to
time fractional operators and operate via analytical solutions. Analytical solutions for time
fractional Fisher’s equation limit are feasible to some parameter ranges and, in general, are
very complicated to obtain, and an approach based on power series is necessary [24]. To
explore broader cases, numerical approaches need to be considered.

For instance, solutions based on the L1 formula were investigated by Majeed et al. [25]
for the time-fractional Fisher equation. They considered a nonlinear source term and
studied the Von Neumann stability for the numerical scheme. Their results showed that
the employed method is unconditionally stable. Using a cubic B-spline approximation
method, Majeed et al. [26] reported a numerical scheme to solve the time fractional Fisher’s
and Burgers’ equations. They considered the L1 formula to discretize the Caputo operator
and the Crank–Nicolson method to interpolate the solution along the spatial grid. They
compared their method with analytical solutions, where they obtained a small error. Using
Elzaki transformations, Rashid et al. [27] proposed a novel method to compute solutions for
the time fractional Fisher’s equation. Their results showed that a few terms are necessary
to ensure stability, which is computationally convenient. Veeresha et al. [28] employed the
q-homotopy analysis transform method to study numerical solutions of nonlinear fractional
Fisher’s equation. Their algorithm makes it possible to obtain auxiliary parameters related
to the convergence region.

In this work, we study the numerical solutions of the fractional Fisher’s equation
governed by the Caputo operator. To obtain a complete discretization, we utilize the finite
difference method [29]. We investigate the system’s time evolution, considering a Gaussian
distribution as the initial condition. Firstly, we apply the fractional derivative only in
the time operator. Our results show that the smaller the fractional order, the more time
the system takes to reach the steady state. In a second situation, we consider the space
fractional operator. In this case, the system reaches the steady state practically at the same
time for the different fractional orders. However, a change in the dynamics occurs in the
region of the space occupied by the packet spread. intended meaning is retained. We note
that the fractional time operator delays the time evolution and the space operator increases
the space diffusion. In the last scenario, we consider both operators as fractional ones;
in consequence, the effects of both operators are mixed. Nonetheless, the time fractional
changes are more pronounced than the space ones. The main contribution of the present
work is in the study of transient behavior in fractional Fisher’s equation. Our results
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show that power law functions do not describe the transient well. On the other hand,
the transient dynamics is described by a q-exponential function, namely q-Weibull [30].
The q-Weibull function is a general case of Tsallis distributions [31]. In this sense, our
study is a new application of Tsallis distributions [32]. These functions are generalizations
of Boltzmann–Gibbs statistics, incorporating effects such as long-range correlations and
interactions [33] and have many applications.

We organize the manuscript as follows. In Section 2, we present the fractional Fisher
equation. The subsections show the approach to treating fractional differential order for the
time, spatial, and time–spatial derivatives. Finally, we draw our conclusions in Section 3.

2. Fractional Fisher Equation

The fractional Fisher equation is defined by
∂α

∂tα
u(x, t) = D

∂µ

∂xµ u(x, t) + u(a − bu), (1)

which is subjected to the conditions u(±∞, t) = 0 and u(x, 0) = e−x2/2σ2
/(2πσ2), where

σ2 is the width of the distribution. In this sense, we have a Gaussian package as the
initial condition. By a Gaussian package, we mean a Gaussian distribution representing
the system’s initial condition with an initial width. The spreading represents the time
evolution of the initial condition subjected to the dynamics, in our case, of the standard
or fractional diffusion equation with the reaction term. In Equation (1), u is the density at
time t, and position x, α and µ are the fractional orders of the time and space operators,
respectively, with α ∈ (0, 1] and µ ∈ (1, 2]. The cases α = 1 and µ = 2 recover the usual
differential operator. The choice of the parameter α is directly connected to the feature
that the diffusion process considered in the paper is subdiffusion. For this reason, we
consider that 0 < α < 1. We observe a diffusion wave equation for other ranges, such as
1 < α < 2, which implies a different diffusion regime and requires an additional initial
condition. This range will be analyzed in another opportunity. The parameter µ range
considers the distributions with no divergent behavior at the origin and non-negatives.
Thus, for 1 < µ < 2, the distribution is normalized and well-behaved at the origin. For the
0 < µ < 1, the distribution that emerges can be divergent at the origin. For µ > 2, it is not
possible to assure that the solution is non-negative. The nonlinear term in Equation (1) is
given by f (u) = u(a− bu), which shows an increase and decrease in f (u) governed by the
terms a and b, respectively. This equation is known as a logistic equation, useful to model
population interactions [34,35], and in terms of population growth, a is the growth and b is
the death rate. Equation (1) can be rewritten as f (u) = ua (1 − uK), where b/a = K is
called the carrying capacity. As a fractional operator, we consider the Caputo definition,
which is given by

∂ν

∂yν
f (y) =

1
Γ(k − ν)

∫ y

c
dτ

f (k)(τ)
(y − τ)ν+1−k , (2)

where ν is the fractional order, y is the independent variable, Γ(·) is the gamma function,
k = ⌈ν⌉, and f (k)(τ) = dk f /dτk [36,37]. We recover the usual operators if α = 1 or
µ = 2. It is also interesting to note that the diffusion equations can be obtained from
different approaches, such as combining the continuity equation with Fick’s law or using
the continuous time random walk approach. For example, we may consider the approach
used in refs. [38,39] to obtain Equation (1) as follows:

ρ(x, t) = ρ(x, 0) +
∫ t

0

∫ ∞

−∞
ρ(x − x′, t′)Φ(x′, t − t′)dx′dt′

−
∫ t

0

(
ρ(x, t′)−R

[
ρ(x, t′)

])
I(t − t′)dt′

(3)

in which I(t) =
∫ ∞
−∞ Φ(x, t)dx, where Φ(x, t) is a probability density. Note that Equation (3) is

similar to a random walk approach [40,41]. By using the Fourier (F{. . . ; k} =
∫ ∞
−∞ . . . e−ikxdx
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and F−1{. . . ; x} = 1
2π

∫ ∞
−∞ . . . eikxdk) and Laplace transform (L{. . . ; s} =

∫ ∞
0 . . . estdt and

L−1{. . . ; t} = 1
2πi

∫ c+i∞
c−i∞ . . . estds), it is possible to show that

ρ(k, s) = ρ(k, 0)/s + ρ(k, s)Φ(k, s)−
(
ρ(k, s)−L{R[ρ(x, t)]; s}I(s) . (4)

Now, we consider, e.g., Φ(k, s) =
(
1 − Λ(k)|k|2

)
I(s), yields

∫ t

0
dt′K(t − t′)

∂

∂t′
ρ(x, t′) =

∫ ∞

−∞
dx′Λ(x − x′)

∂2

∂x′2
ρ(x′, t)dx′ +R[ρ(x, t)] , (5)

where

K(t) = L−1
{

1
sI(s) ; t

}
. (6)

A suitable choice for I(t), Λ(x) and R[ρ(x, t)] allows us to obtain Equation (1). Other
choices lead us to different diffusion equations.

2.1. Time Fractional

Firstly, we start our investigation by considering the power law kernel (Equation (2))
only in the time operator. In this case, the dimensionless fractional Fisher equation is
described as

∂α

∂tα
u(x, t) = D

∂2

∂x2 u(x, t) + u(a − bu). (7)

Due to the nature of the fractional operator and the nonlinearity in Equation (7), we
restrict our analyses only to a numerical point of view. To obtain a complete discretization
of Equation (7), we use the finite differences method [29,42]. The complete discussion
about the method for the fractional reaction–diffusion equation under general kernels
can be found in ref. [43]. To do that, we construct a grid defined by [0, X]× [0, T], where
the space and time are discretized according to xi = i∆x and tj = j∆t, respectively,
where i = 0, 1, . . . , Nx and j = 0, 1, . . . , Nt. The step sizes are defined by ∆x = X/Nx and
∆t = T/Nt. In this work, we consider boundary conditions equal to u(±X, t) = 0 and
for numerical reasons, X → ∞. The discrete form of Equation (7) is given by

ui,j+1 = ui,j −
j

∑
k=1

ξk,α(ui,j+1−k − ui,j−k) + DΓ(2 − α)
∆tα

∆x2 (ui+1,j − 2ui,j + ui−1,j) + ∆tαF(ui, tj), (8)

where ξk,α = [(k + 1)1−α − k1−α] and F(ui , tj) = ui,j(a − bui,j). A detailed derivation
of Equation (8) is shown in ref. [43]. It is worth mentioning that this choice for the
spatial operator allows us to obtain an equivalent to the Riesz differential operator for
the interval [43,44], i.e., −∞ < x < ∞, which, for practical proposes is considered
finite −X ≤ x ≤ X (with |X| → ∞) to perform the numerical calculations. In this
manner, the Caputo differential operator applied for the spatial variable behaves like
the Riesz differential operator. Similar developments have been performed using the
Riemann–Liouville operator in ref. [45]. We consider u(x, 0) = [(e−x2/2σ2

)/(2πσ2)],
σ = 0.4, ∆t = 0.01, ∆x = 0.6, D = 1, a = 0.2 and b = 0.1. In this work, we
choose a > b to obtain a non-null steady state. However, the values of the parameter
are arbitrary.

Figure 1a–c displays the 3-dimensional solution with the respective density plots in
Figure 1d–f. Figure 1a,d are for α = 0.99 (value near α = 1), while Figure 1b,e are for α = 0.9
(a considerable deviation of α = 1) and the Figure 1c,f are for α = 0.7 (a large deviation of
α = 1). At the beginning of diffusion, the Gaussian packet spreads without the influence
of reaction terms. However, after a certain time, the system starts to gain the shape of
logistical growth, which is limited by K. This dynamic is sharper in Figure 1a,d, while in
Figure 1b,e,c,f, the packets spread with low velocity, proportionally with α decrease. The
decrease in the spread velocity implies a delay in reaching the steady solution.



Fractal Fract. 2024, 8, 143 5 of 12

(a) (b) (c)

(d) (e) (f)

u

x t x t x t

t

x

tt

150

0

-150
0 50 100 0 50 100 0 50 100

− − −

−

Figure 1. Gaussian package diffusion in the (a–c), followed by its density plot in the (d–f), respectively.
We consider α = 0.99 in (a,d), α = 0.90 in (b,e), and α = 0.7 in (c,f).

The delayed process, shown in Figure 1, is more evident when we observe the profiles
in Figure 2 for t = 0.02 (red line), t = 10 (green line), t = 12.5 (black line), t = 25 (blue
line), t = 50 (orange line) and t = 100 (dark green line). Figure 2a–c we consider α = 0.99,
α = 0.9 and α = 0.7, respectively. The amplitude of u(x, t) depends on the value of α. The
solution for α = 0.99 reaches the steady state in approximately t = 52, and for α = 0.9,
spends t ≈ 95. For α = 0.7, the time is superior to 100. Furthermore, we verify that the
Gaussian package deforms over time.

-150 0 150
x

-150 0 150
x

0

1

2

-150 0 150

u

x

(a)

t

(b) (c)

0.02 10 12.5 25 50 100 t0.02 10 12.5 25 50 100 t0.02 10 12.5 25 50 100

− − −

Figure 2. Profiles of Gaussian package spread for (a) α = 0.99, (b) α = 0.9 and (c) α = 0.7.

As observed in 3-dimensional and profile representation, the packet follows
a distribution without the influence of reaction terms and afterward obeys the logistic
growth. To quantify the spread, we use the inverse of the square of the central peak,
i.e., u(0, t)−2 [37]. Considering the normalized function u(0, t)−2 , Figure 3 displays the
distribution behavior of the Gaussian packet by the red points for α = 0.99 (Figure 3a),
orange points for α = 0.9 (Figure 3b), and green points for α = 0.7 (Figure 3c). Discarding
transient time (t > 0.04), the displacement can be described by a power law function
given by ∝ tS until t = 100, where the S parameter is related to the anomalous
relaxation process [37]. However, observing the distribution u(0, t)−2, a nonlinear
dynamics emerge. In this way, an adjustment given by a power law is not appropriate
to capture this nonlinearity effect. In an attempt to capture these dynamics, we test
q-exponential distributions [31]. In our simulations, the q-exponential that better fits
the dynamics is the q-Weibull, which is given by

PqW(t) = p0
rtr−1

tr
0

expq

[
−
(

t
t0

)r]
, (9)

where the q-exponential is defined as follows:

expq[x] =

{
[1 + (1 − q)x]

1
1−q , x ≥ 1/(q − 1)

0 , x < 1/(q − 1)
. (10)
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The q-Weibull adjustment depends on p0, r, t0 and q parameters. In the Figure 3a–c the
black curve shows the adjustment given by Equation (9). To obtain the better parameters of
Equation (9) that adjust the simulated points, we use the software Gnuplot 5.4.10 and we
found the following parameters for each case: p0 = 4.96, r = 1.75, t0 = 4.07 and q = 1.43
for Figure 3a; p0 = 5.98, r = 1.73, t0 = 4.87 and q = 1.35 for Figure 3b; and p0 = 9.58,
r = 1.74, t0 = 7.81, and q = 1.31 for Figure 3c. For the adjusted curve generated by
these parameters, we compute the Pearson correlation coefficient (r), using the package
SciPy in Python [46], and obtain, for Figure 3a, r = 0.9992; for Figure 3b, r = 0.9997; and
for Figure 3c, r = 0.9996. In addition, the respective mean square error is 0.012, 0.005
and 0.007. For these parameters, the respective absolute errors are displayed through blue
points below the panel. Figure 3a, Equation (9) describes the points with great accuracy
until t ≈ 52, namely the time in which the distribution reaches a constant. On the other
hand, as we decrease α, the q-Weibull does not fit the points for t < 100 with great accuracy.
However, the distribution adjusts the simulated points for a long time, i.e., t > 50. It is
worth mentioning that q-Weibull is a type of stretched exponential in the sense of Tsallis
distributions. In this way, the stretch is governed by the powers r and q. Our results suggest
that as α decreases, the q parameter decreases, and the r seems to remain around 1.74.

t

(a) (b) (c)

α = 0.99

r = 1.75

q = 1.43

α = 0.90

r = 1.73

q = 1.35

α = 0.70

r = 1.74

q = 1.31

∝
t
0.71

∝
t
0.83

∝

t
1.0

5

u
(0

,t
)−

2

t t

−

− − − − − −

−

−

−

−

Figure 3. Displacements (u(0, t)−2) of Gaussian package for α = 0.99 in the red line (a), α = 0.9 in the
orange line (b) and α = 0.7 in the green line (c). The black lines indicated the adjusment given by
Equation (9) for each case. (a) adjustment parameters are given by p0 = 4.96, r = 1.75, t0 = 4.07
and q = 1.43. (b), the parameters are p0 = 5.98, r = 1.73, t0 = 4.87 and q = 1.35. The parameters
are p0 = 9.58, r = 1.74, t0 = 7.81 and q = 1.31 in (c). The blue points in the below panels
represent the respective absolute error among simulated and theoretical points.

2.2. Space Fractional

To study the effects of a non-integer operator in a space derivative, we consider the
usual operator in the time derivative and Caputo’s definition of the space operator. In this
way, Equation (1) becomes

∂

∂t
u(x, t) = D

∂µ

∂xµ u(x, t) + u(a − bu), (11)

with numerical schemes, equal to the one developed in ref. [43], given by

ui,j+1 = ui,j +
D

Γ(3 − µ)

∆t
∆xµ

i−1

∑
n=0

ξn,µ(ui−n+1,j − 2ui−n,j + ui−n−1,j) + ∆tF(ui, tj), (12)

where ξn,µ = [(n + 1)2−µ − n2−µ] and F(ui, tj) = ui,j(a − bui,j). Note that the solutions
of the fractional diffusion equations in the absence of reaction terms can be related to the
Lévy distributions. The distributions that emerge from the Tsallis framework are essentially
power laws and can also be connected with the Lévy distributions in the asymptotic limit
for a suitable choice of the parameter q. These results allow us to connect these distributions
in the asymptotic limit as performed in refs. [47,48].
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A numerical solution for Equation (12) is exhibited in Figure 4, where we consider
u(x, 0) = e−x2/2σ2

/(2πσ2), σ = 0.4, ∆t = 0.01, ∆x = 0.6, D = 1, a = 0.2 and b = 0.1.
Figure 4a,d are for µ = 1.99, Figure 4b,e for µ = 1.7, and Figure 4c,f for µ = 1.5. These
choices of µ represent a small, medium, and large deviation from the standard value, i.e.,
µ = 2. The effects of space fractional derivatives contribute to the spread of the package.
As µ decreases, the package occupies a larger space region.

(a) (b) (c)

(d) (f)

u

x t x t x t

t

x

tt

(e)(e)

− − −

−

Figure 4. Diffusion of a Gaussian package in (a–c). Density plot of Gaussian package in (d–f). (a,d) are
for µ = 1.99, while (b,e) are for µ = 1.7. In (c,f), we consider µ = 1.5.

Considering µ = 1.99, µ = 1.7 and µ = 1.5, Figure 5a–c shows the respective profiles,
for t = 0.02 (red line), t = 10 (green line), t = 12.5 (black line), t = 25 (blue line), t = 50
(orange line) and t = 100 (dark green line). As observed in Figure 4, the effects of fractional
space derivative widen the packet spread. For example, upon comparing the orange line
(t = 50) in the three panels, it is possible to note that the profile in Figure 5c is wider
compared to cases in Figure 5a,b. This indicates that the smaller the µ value, the larger the
package will open.

− − −

(a) (b) (c)

Figure 5. Profiles of Gaussian package for (a) µ = 1.99, (b) µ = 1.7 and (c) µ = 1.5.

Considering the fractional operator acting only in the space derivative, we can also
describe the behavior in the range t ∈ (0.01, 0.04) by a power law. For µ = 1.99, Figure 6a, the
slope is 0.70. For µ = 1.7, Figure 6b, the slope is 0.75. Finally, for µ = 1.5, Figure 6c, the slope
is 0.79. As µ decreases, the slope increases. These slopes are associated with an anomalous
diffusion process. However, as in the case where we employ a time fractional derivative, the
considered power law is not able to describe the whole transient. Once again, in an attempt
to describe the whole transient, we adjust Equation (9) to the points obtained from the
simulation. The red, orange and green lines correspond to µ = 1.99, µ = 1.7 and µ = 1.5,
while the black line is the adjustment. The adjusted parameters for Figure 6a are p0 = 4.84,
r = 1.76, t0 = 3.99 and q = 1.44; for Figure 6b are p0 = 5.29, r = 1.83, t0 = 4.47 and
q = 1.41; and for Figure 6c are p0 = 5.71, r = 1.93, t0 = 5.00 and q = 1.39. For these
parameters, we compute the absolute error among the simulated and adjusted points and
display the results by the blue points below the panels. In this case, we observe that the
absolute error oscillates in the range (10−6, 10−3) for the time interval t ∈ (10−1, 3 × 101).
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The maximum error, for the three cases, occurs when t ∈ (10−2, 10−1) and t ∈ (5× 101, 102).
The correlation coefficient for the results in Figure 6a is r = 0.9991, Figure 6b is r = 0.9994
and Figure 6c is r = 0.9996, with a mean square error equal to 0.013, 0.011 and 0.008,
respectively. It is worth mentioning that in this approach, r depends on µ. On the other
hand, the q parameter decreases as a function of µ. The other parameter related to the
stretched exponential, i.e., r, increases as µ decreases.

(a) (b) (c)

∝
t
0.70
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μ = 1.70

r = 1.83
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q = 1.39

∝
t
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t
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−
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Figure 6. Displacements (u(0, t)−2) of the Gaussian package for µ = 1.99 in the red line (a), µ = 1.7
in the orange line (b), and µ = 1.5 in the green line (c). The black line is the adjusted curve with
parameters equal to: (a) p0 = 4.84, r = 1.76, t0 = 3.99 and q = 1.44; (b) p0 = 5.29, r = 1.83,
t0 = 4.47 and q = 1.41; (c) p0 = 5.71, r = 1.93, t0 = 5.00 and q = 1.39. The blue points in the
below panels show the absolute error computed considering the black and simulated points.

2.3. Time–Space Fractional

Considering both non-integer operators in Equation (1), the fractional Fisher
equation becomes

∂α

∂tα
u(x, t) = D

∂µ

∂xµ u(x, t) + u(a − bu), (13)

with a discrete form [43] equal to

ui,j+1 = ui,j −
j

∑
k=1

ξk,α(ui,j+1−k − ui,j−k) +

+ D
Γ(2 − α)

Γ(3 − µ)

∆tα

∆xµ

i−1

∑
n=0

ξn,µ(ui−n+1,j − 2ui−n,j + ui−n−1,j)

+ ∆tαΓ(2 − α)F(ui, tj), (14)

where ξk,α = [(k + 1)1−α − k1−α], ξn,µ = [(n + 1)2−µ − n2−µ] and F(ui, tj) = ui,j(a − bui,j).

Considering u(x, 0) = [(e−x2/2σ2
)/(2πσ2)], σ = 0.4, ∆t = 0.01, ∆x = 0.6, D = 1,

a = 0.2 and b = 0.1, Figure 7 shows the numerical solutions for Equation (14). Figure 7a–c
exhibit the 3-dimensional solution, while Figure 7d–f display the density plots. We consider
α = 0.99 and µ = 1.99 in Figure 7a,d; α = 0.9 and
µ = 1.7 in Figure 7b,e; and α = 0.7 and µ = 1.5 in Figure 7c,f. The package, initially
Gaussian, suffers the influence of both non-integer derivatives. Nonetheless, the diffusion
accentuates the effects of the time operator more than the space one. Another observation
is that the time to reach the steady state is practically the same, as shown in Figure 1.

The profiles for t = 0.02 (red line), t = 10 (green line), t = 12.5 (black line),
t = 25 (blue line), t = 50 (orange line) and t = 100 (dark green line) are displayed in
Figure 8a for α = 0.99 and µ = 1.99; Figure 8b for α = 0.9 and µ = 1.7; and Figure 8c for
α = 0.7 and µ = 1.5. The profiles show that the spread is similar when it is only governed
by the time fractional operators. This difference occurs due to the multiplicative factors in
Equation (14).

The transient dynamics can also be described by Equation (9) when we combine
both fractional operators in time and space. Figure 9 displays the simulated points in
(a) red, (b) orange, and (c) green and the adjusted curve in the black lines, for µ = 1.99 and
α = 0.99, µ = 1.70 and α = 0.90, and µ = 1.50 and α = 0.70, respectively. The result in
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blue points shows the absolute error among the simulated points and the ones obtained by
the adjustment using Equation (9). The adjustment parameters are p0 = 4.97, r = 1.75,
t0 = 4.09 and q = 1.43 for Figure 9a; p0 = 6.42, r = 1.80, t0 = 5.35 and q = 1.34 for
Figure 9b; and p0 = 11, r = 1.87, t0 = 9.35 and q = 1.30 for Figure 9c. By computing
the correlation, we obtain (a) r = 0.9992, (b) r = 0.9997 and (c) r = 0.9996. Furthermore,
the mean square error is 0.012, 0.005 and 0.007 in Figure 9a–c, respectively. Due to the
influence of both operators, the packet is well described by Equation (9) in the region
t ∈ (100, τ), where τ = 52.2 in Figure 9a, τ ≈ 95 in Figure 9b and τ > 100 in Figure 9c.
These results are similar to those shown in Figure 3. Furthermore, the r value is close to the
value obtained when only the time fractional operator is considered. On the other hand,
the value of q is the same. These results confirm the fact that the time fractional operator
causes more influence in the system than the space operator.

(a) (b) (c)

(d) (e) (f)

u

x t x t x t

t

x

tt

Figure 7. Diffusion of a Gaussian package in (a–c). Density plot of Gaussian package in (d–f). In (a,d),
we consider µ = 1.99 and α = 0.99; in (b,c), we use µ = 1.7 and α = 0.9; and in (c,f), we consider
µ = 1.5 and α = 0.7.

xxx
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Figure 8. Profiles of Gaussian package for (a) µ = 1.99 and α = 0.99, (b) µ = 1.7 and α = 0.9,
and (c) µ = 1.5 and α = 0.7.
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Figure 9. Displacements (u(0, t)−2) of Gaussian package for (a) α = 0.99 and µ = 1.99 in the red line,
(b) µ = 1.7 and α = 0.9 in the orange line and (c) µ = 1.5 and α = 0.7 in the green line. The black curve
is the adjusted curve with parameters equal to p0 = 4.97, r = 1.75, t0 = 4.09 and q = 1.43, for (a);
p0 = 6.42, r = 1.80, t0 = 5.35 and q = 1.34, for (b); p0 = 11, r = 1.87, t0 = 9.35 and q = 1.30,
for (c). The blue points in the below panels show the absolute error computed considering the black and
simulated points.



Fractal Fract. 2024, 8, 143 10 of 12

3. Conclusions

In this work, we have conducted a study of the numerical solutions of the fractional
Fisher’s equation. As a fractional operator, we employed the Caputo definition discretized
by the finite difference scheme. Considering a Gaussian package as an initial condition, we
investigated three scenarios in terms of fractional operators. We consider time and space
operators in the first and second scenarios. The last one considered time and space operators
in the reaction–diffusion equation. Due to the logistic terms in the reaction–diffusion
equation, the system evolved until it reached its stability solutions, which are completely
determined by logistics terms.

Our results show that the transient dynamics are not well described by power law func-
tions, such as in some cases of the diffusion processes. From our simulations, the function
that best fits the transient is a generalized q-exponential, from a Tsallis framework. In our
simulations, we have different behaviors exhibited by the solution. One for a small time, where
the influence of the reaction terms is not pronounced. Another is exhibited for a long time,
when the reaction terms have a pronounced effect and an intermediate behavior connecting
these two limits. On the other hand, the Tsallis framework provides functions with a large
class of behaviors that can also be connected with the solutions of the nonlinear equations,
such as the porous media equation, establishing a connection between the parameters for the
distributions. In this sense, we use the functions that emerge from the Tsallis framework to
capture the behavior exhibited by the spreading of the system in a range of time, suggesting
that the system’s relaxation process is anomalous and may be investigated by a generalized
context. This is a relevant and new finding for the q-distributions. Furthermore, it is impor-
tant to mention that the adjustment parameters from q-exponential depend on the fractional
order. This is expected once the transient strongly depends on the time order derivative. In
addition, we observed that the fractional operator in space does not significantly influence the
transient. In terms of fractional calculus, our results contribute to a better understanding of
Fisher’s equation in a generalized way. These achievements can be used to comprehend better
phenomena described by Fisher’s equation, such as epidemics and bacteria growth [6] and
chemical kinetics [4]. In future works, we plan to employ the methodology described in this
research in real applications, such as in the field of biochemistry [5].
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