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ABSTRACT

A detailed resource to data analysis shows that the widely known van Hoven and Derfler–Simonen laboratory results are far from reasonable
agreement with the standard Bohm–Gross dispersion relation. We provide an extension of the usual notion of a polytropic index to non-
Boltzmann–Gibbs statistics. Such an extension allows for the deduction of an equation of state of charged particles with the basis on the
Kappa density distribution. That equation of state, in turn, enables suprathermal corrections to the standard dispersion relation. As a conse-
quence, we prove that the employment of our suprathermal formula is in excellent agreement with the experimental data. Possible further
applications of our theory are briefly addressed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090547

I. INTRODUCTION

The widely known Langmuir (or electron plasma) waves (or oscil-
lations) were brought to light by Tonks and Langmuir in 1929.1

Langmuir waves are usually fast oscillations of the electron concentra-
tion around its equilibrium value, n0, in conducting media. Their linear
frequency �pe � n1=20 , where ½n0� ¼ m�3 and ½�pe� ¼ Hz.2 Therefore,
the value n0 � 1018 m�3, characteristic of electron equilibrium concen-
trations in several confined fusion plasma scenarios,3–5 provides
�pe � GHz. Actually, radiation propagating at �pe typically lies down in
the microwave range of the electromagnetic spectrum. Furthermore, �pe
depends weakly on the wavelength of the oscillation in cold plasmas.

In warm plasmas, the inclusion of a finite electron temperature,
T, in the realm of Boltzmann–Gibbs statistics yields a dispersion of the
frequency with the wavelength, which was theoretically predicted by
Bohm and Gross in 1949.6 Experimental verification of the
Bohm–Gross dispersion was provided, in an independent way, by van
Hoven7 and Derfler and Simonen8 in 1966. Although their results dis-
play all the basic features of electrostatic plasma waves, as we will
show in Sec. IV below, data analysis reveals that they are far from rea-
sonable agreement with the Bohm–Gross dispersion. Such outcomes

strongly suggest the necessity for a non-Boltzmann–Gibbs approach
to the propagation of Langmuir waves in warm plasmas. One possibil-
ity to fulfill this requirement is to look for corrections to the
frequency-wavelength dispersion due to suprathermal effects.

Suprathermal effects were disclosed in 1968 by Vasyliunas,9 who
made use of the so-called Kappa probability distribution in order to
describe phenomena occurring in space plasmas. The Kappa distribu-
tion may be regarded as a Maxwellian distribution, however, deformed
by an elongated tail, which follows a power-law of a real and continu-
ous parameter commonly referred to as the spectral j-index.10 Within
that tail, high-energy particles are allowed, typically suprathermal elec-
trons. This is why the Kappa distribution comprises an adequate theo-
retical ground for analyzing stationary regimes of low-density systems
out of thermodynamic equilibrium, such as space plasmas, where
binary collisions between particles are extremely rare events.11

The Kappa distribution has been employed in many studies of
planetary magnetospheres12–15 and solar winds.16–20 Observational
data collected by the Voyager spacecraft have suggested that certain
ion properties exhibited in the outer heliosphere would be describable
by the Kappa distribution.21,22 The plasma properties of the Jupiter’s
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magnetosphere have been continuously observed by the Jovian
Auroral Distributions Experiment (JADE) on the Juno mission.23

Based on a proposed connection of the Kappa distribution with non-
extensive statistics,24 a numerical analysis of JADE’s data concerning
ion density, flow, temperature, and composition has been recently per-
formed,25 and its accuracy-confidence correlation verified.26

In previous works,27–29 we have provided an analytical formula-
tion that allows for the introduction of a polytropic-like index, hence
leading to the description of a generalized isothermal regime in the
framework of non-Boltzmann–Gibbs statistics. In Ref. 27, an equation
of state has been deduced in the realm of the Thomas–Fermi distribu-
tion, accounting for concentration discontinuities of alkali metals at
high pressures. In Ref. 28, another equation of state has been derived,
that time, with basis on the Kappa distribution, thus explaining a pres-
sure profile observed in the Earth’s magnetopause, in terms of solar
wind particles. In Ref. 29, the possibility of emergence of systems with
non-integer numbers of degrees of freedom has been explored through
an analogy of the Kappa with Tsallis statistics.

In this work, we generalize the above referred formulation by
extending the polytropic-like index notion to adiabatic processes
occurring in non-Boltzmann–Gibbs statistics. As a by-product of that,
we derive an equation of state of charged particles with a basis on the
Kappa distribution, which enables suprathermal corrections to the
usual Bohm–Gross dispersion. The corrected formula proves to be in
excellent agreement with the van Hoven and Derfler–Simonen
frequency-wavelength data. This paper is organized as follows.

In Sec. II, we start by briefly reviewing our aforementioned for-
mulation of the polytropic-like index with a basis on the Kappa distri-
bution, leading to a generalized isothermal regime. Then, such a
formulation is extended to adiabatic processes. An equation of state of
charged particles is derived. In Sec. III, that equation of state is
employed to find out suprathermal corrections to the usual
Bohm–Gross dispersion. It is shown that the suprathermal formula
allows for reinterpretations of the number of degrees of freedom and
electron Debye length in Kappa statistics.

In Sec. IV, resource to data analysis unveils that the van Hoven
and Derfler–Simonen laboratory results are far from reasonable agree-
ment with the usual Bohm–Gross dispersion. Thus, it is found out
that the employment of the suprathermal formula proves to be in
excellent agreement with the experimental data. In the concluding sec-
tion, we summarize our work. Possible further applications of our the-
ory are briefly addressed.

II. POLYTROPIC-LIKE INDICES AND KAPPA EQUATION
OF STATE

The following discussion applies to any gas of charged particles.
However, in order to simplify the understanding of our proposal, we
regard an electron gas.

Consider a gas of electrons with mass m, charge �e < 0, and
concentration n in the presence of a massive background of positive
charge (essentially, a plasma). In the absence of a magnetic field, the
time evolution of the gas flow~v is determined through the gradients of
the electrostatic potential U and isotropic pressure P developed in the
medium by the equation of motion,

m
@~v

@t
þ ~v � rð Þ~v

� �
¼ erU�rP

n
: (1)

On the assumption of an isothermal equation of state, the pressure
gradient is described in terms of the concentration gradient by

rP ¼ kBTrn; (2)

where kB is the Boltzmann constant and T is the (constant and uni-
form) Maxwellian temperature of the gas. It is widely known that the
stationary state of the equilibrium of the system [the left-hand side of
Eq. (1) vanishes] recovers the Boltzmann relation,2

n ¼ n0 exp
eU
kBT

� �
; (3)

where n0 is the electron concentration at a null potential amplitude
(the magnitude of U falls-off very rapidly with the distance from the
charges in a plasma).

Inspired by the aforementioned remark, in previous works,27–29

we have provided an analytical formulation that allows for the intro-
duction of a polytropic-like index, thereby leading to the description
of a generalized isothermal regime in the framework of non-
Boltzmann–Gibbs statistics. The starting point for that is the following.
Let us replace Eq. (2) with

rP ¼ kBHr cnð Þ; (4)

where H is a constant with the dimension of temperature (the precise
meaning of H will be given in a moment) and c is a function of the
particle concentration n, c ¼ cðnÞ, not the usual polytropic index. As
a result of replacing Eq. (2) with Eq. (4), the stationary state of equilib-
rium of the system [again, the left-hand side of Eq. (1) vanishes] will
be now determined by

r cnð Þ
n
¼ erU

kBH
: (5)

In Ref. 28, we have chosen the particle concentration n to depend on
the electrostatic potential U; n ¼ nðUÞ, through the Kappa density
distribution:9

n ¼ n0 1� eUð Þ= kBHð Þ
j� 3=2ð Þ

" #� j�1=2ð Þ

; (6)

where, as found in diverse physical scenarios,28–33 the Kappa H-
temperature is given by

H ¼ j
j� 3=2

� �
T (7)

in terms of the Maxwellian T-temperature, with the choice 3=2<j<1
for the so-called spectral j-index. In the limit j!1, Eq. (7) shows that
H!T , and then Eq. (6) recovers Eq. (3).

By solving Eq. (6) for U ¼ UðnÞ, we take its gradient to get the
expression

erU
kBH

¼ j� 3=2
j� 1=2

� �
n
n0

� �� 1= j�1=2ð Þ½ ��1
r n

n0

� �
: (8)

Subsequently, by substituting Eq. (8) in Eq. (5), we have the differential
equation,
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r c
n
n0

� �� �
¼ j� 3=2

j� 1=2

� �
n
n0

� ��1= j�1=2ð Þ
r n

n0

� �
: (9)

Finally, by integrating Eq. (9), under the boundary condition that the
function c ¼ cðnÞ achieves its maximum value when the argument n
attains its minimum value n0 (see Ref. 28 for details), we obtain

c ¼ n
n0

� ��1= j�1=2ð Þ
� 1

j� 1=2ð Þ
n0
n

� �
: (10)

In the limit j!1, Eq. (10) shows that c! 1, that is, the isothermal
regime is recovered in the framework of the Boltzmann–Gibbs statis-
tics. We name the function c, in Eq. (10), the first polytropic index.

Let us define the second polytropic index by

C ¼ 2
f
þ c; (11)

where f is the usual number of degrees of freedom of the system and c
is given by Eq. (10). In the limit j!1, Eq. (11) shows that

C! 2
f
þ 1; (12)

that is, the usual polytropic index is recovered (see Ref. 34). A word on
the concept of polytropic index in the realm of classical statistics, in
contrast with the new notions that arise from our proposal, is in order
now. In the framework of Boltzmann–Gibbs statistics, the polytropic
index, CBG, is formulated as the ratio of the specific heat at a constant
pressure, cP, to that at constant volume, cV, namely,34

CBG ¼
cP
cV
¼ 2þ f

f
; (13)

where f is the aforementioned usual number of degrees of freedom of
the system. Now, what we propose is the following: in the realm of non-
Boltzmann–Gibbs statistics, cP and cV would conspire in such a way that
f could not be the same in the numerator and denominator of Eq. (13).
As a consequence, the ratio of those different numbers should yield c,
our first polytropic index, thereby leading Eq. (13) to coincide with Eq.
(11), which defines C, our second polytropic index. Indeed, see Ref. 29
for the possibility of emergence of systems with non-integer numbers of
degrees of freedom in the framework of non-Boltzmann–Gibbs statis-
tics. We realize that such topics deserve further investigation, but, in this
work, we focus our attention on a simple and important case in plasma
physics, for which our ideas can be promptly checked: one-dimensional
(f¼ 1) Langmuir waves propagating in warm plasmas, while described
by the Bohm–Gross dispersion relation.

Given the above considerations, we update our starting point by
replacing Eq. (4) with

rP ¼ kBHr Cnð Þ; (14)

whereH andC are given by Eqs. (7) and (11), respectively. In the limit
j!1, Eq. (14) shows that

rP! 2
f
þ 1

� �
kBTrn; (15)

that is, the usual adiabatic regime is recovered (see Ref. 34).
By substituting Eq. (10) in Eq. (11), we obtain

C ¼ 2
f
þ n

n0

� ��1= j�1=2ð Þ
� 1

j� 1=2ð Þ
n0
n

� �
: (16)

Then, by substituting Eq. (16) in Eq. (14), we integrate it to find out
the equation of state of a gas of charged particles following the Kappa
density distribution (6),

P ¼ 2
f

n
n0

� �
þ n

n0

� � j�3=2ð Þ= j�1=2ð Þ
� 1

j� 1=2ð Þ

" #
j

j� 3=2

� �
n0kBT:

(17)

In the limit j!1, Eq. (17) shows that

P! 2
f
þ 1

� �
nkBT; (18)

that is, the adiabatic equation of state of a gas of charged particles fol-
lowing the Boltzmann relation is recovered (see Ref. 2).

III. BOHM–GROSS DISPERSION RELATION FOR KAPPA
GAS

Consider the static state of equilibrium of the system, for which
~v ¼ 0, U¼ 0, and n¼ n0. Around such an equilibrium, regard the lin-
ear perturbation~v !~v1; U! U1, and n! n0 þ n1.

As a result of the aforementioned disturbance, Eq. (1) yields

@~v1
@t
¼ e

m

� �
rU1 �

2
f

j
j� 3=2

� �
þ j

j� 1=2

� �" #
kBT
m

� �
r n1

n0

� �
;

(19)

where use has been made of Eq. (17) in the limit n! n0 þ n1. In
the same approximation, the continuity and Poisson equations
imply

@

@t
n1
n0

� �
¼ �r �~v1; r2U1 ¼

n0e
�0

� �
n1
n0

� �
; (20)

respectively, where �0 is the vacuum electric permittivity. By combin-
ing Eq. (19) with both Eq. (20), we obtain

� @
2

@t2
n1
n0

� �
¼x2

pe
n1
n0

� �
� 2

f
j

j�3=2

� �
þ j

j�1=2

� �" #
v2thr2 n1

n0

� �
;

(21)

where we have introduced the abbreviations

xpe ¼
n0e2

�0m

� �1=2

; vth ¼
kBT
m

� �1=2

(22)

for the electron plasma frequency and isothermal speed, respectively.2

Let us assume a sinusoidal-like functional dependence for the
perturbation

n1
n0
� exp i~k �~r � ixtð Þ; (23)

where x and ~k are the angular frequency and wave vector, respec-
tively. On the account of expression (23) in Eq. (21), we find the dis-
persion relation of the frequency x with the wavenumber k ¼ j~kj,
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x2

x2
pe
¼ 1þ 2

f
j

j� 3=2

� �
þ j

j� 1=2

� �" #
k2k2De; (24)

where we have introduced the abbreviation

kDe ¼
vth
xpe
¼ �0kBT

n0e2

� �1=2

(25)

for the electron Debye length.2 It should be noticed that limiting prop-
erties of Eq. (24) have been studied in the framework of kinetic the-
ory.35–37 However, to the best of our knowledge, this is the first time
that it is derived in its closed form with no resort to an approximate
method. In the limit j!1, Eq. (24) approaches

x2

x2
pe
¼ 1þ 2

f
þ 1

� �
k2k2De: (26)

Then, for f¼ 1, Eq. (26) recovers the Bohm–Gross dispersion relation
in the framework of Boltzmann–Gibbs statistics,6

x2

x2
pe
¼ 1þ 3k2k2De; (27)

which describes the propagation of one-dimensional Langmuir waves
in warm plasmas.1 A last, but not least, remark is in order now.

Equation (24) may be recast in a form similar to that of Eq. (26),
namely,

x2

x2
pe
¼ 1þ 2

F
þ 1

� �
k2K2

De; (28)

where we have introduced the abbreviations

F ¼ j� 3=2
j� 1=2

� �
f ; KDe ¼

j� 3=2
j� 1=2

� �1=2 Vth

xpe
(29)

for the j-number F of degrees of freedom of the system and electron
Debye j-length KDe, respectively, the latter expressed in terms of

Vth ¼
kBH
m

� �1=2

; (30)

the electron isothermal j-speed Vth, with the Kappa H-temperature
given by Eq. (7). Several studies on modifications of the Debye length
have been pursued in plasma physics. For instance, in Ref. 38, the
problem has been examined for a one-electron component non-
Maxwellian plasma. Equation 20 of Ref. 38 coincides with the second
of our Eq. (29). Modified Debye lengths have been also obtained for
hot and cold electrons of a non-Maxwellian plasma in Ref. 39, which
includes numerical treatments of the consequent Debye shielding. We
think that our analytical formulation could be directly extended to
two-particle plasma components, and then its results could be com-
pared with those of Ref. 39. Now, an interesting investigation has been
performed by Livadiotis,40 who formulated a generalized Debye length
in terms of extended (named correlated) numbers of degrees of free-
dom of a non-Maxwellian plasma. It is true that some effort must be
made to compare our results with those of Ref. 40, given that the
Livadiotis theory is based on a Hamiltonian formulation. This issue
will be explored in future communications.

IV. VAN HOVEN AND DERFLER–SIMONEN
EXPERIMENTS

In 1966, van Hoven7 and Derfler and Simonen8 observed, in an
independent way, the propagation of one-dimensional electrostatic
plane waves in non-collisional thermal plasmas in the absence of a
magnetic field. At that time, there was already a theoretical prediction
of electrostatic-wave propagation, established by Bohm and Gross.6

However, no experimental verification of that had been yet carried out
in the laboratory. The experiments intended to fully validate the x–k
relation while predicted by Eq. (27). The main idea was to apply an
input signal at various frequencies, which excited electrostatic waves in
the plasma and then measure the wave numbers of the received signal.

According to the technical specifications of each experiment,
some physical parameters were evaluated. For the van Hoven appara-
tus, the electron equilibrium concentration was estimated to be
n0 � 5� 107 cm�3, linear plasma frequency, �pe � 59MHz, and
Debye length, kDe � 1mm. For the Derfler and Simonen experiment,
n0 � 2� 107 cm�3; �pe � 34MHz, and kDe � 0:7mm. The values
of 2p�pe were used to normalize the angular frequencies x, and those
of kDe, the wavenumbers k.

The results presented by van Hoven and Derfler–Simonen exhib-
ited all the basic features of electrostatic plasma waves. However, as we
will show soon, they are far from reasonable agreement with the
Bohm–Gross dispersion relation. The reason for that is the following.

In data analysis, the method of least squares provides a measure
of how much a given fit line departs from the data distribution, by
selecting the regression equation that minimizes the so-called sum of
squared residuals, Sres. Such a quantity is defined as the sum of squared
differences between each one of the observed values of the dependent
variable, Yi, and the corresponding value yield by the regression equa-
tion, GðXiÞ, calculated at the associated observed value of the indepen-
dent variable, Xi, where i ¼ 1; 2;…;N labels each one of the N data.
In the present case, one seeks the values of A and B, which minimize41

Sres ¼
X
i

Yi � G Xið Þ½ �2 ¼
X
i

Yi � Bþ AX2
i

� �1=2h i2
; (31)

where the independent Xi and dependent Yi variables are defined by

Xi ¼ kikDe; Yi ¼
xi

xpe
(32)

for each one of the observed wavenumber ki and frequency xi.
Now, by considering the mean value of the observed data,

�Y ¼ 1
N

X
i

Yi; (33)

one can define the quantity41

Stot ¼
X
i

Yi � �Y½ �2; (34)

a measure of the total variation of the dependent variables with respect
to its mean value.

Finally, one can define the so-called coefficient of determination,
R2, through41

R2 ¼ 1� Sres
Stot

: (35)
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Such a quantity indicates how well a given regression equation
describes the relationship between the two observed variables. On the
one hand, a result R2 ¼ 1 specifies that the dependent variable can be
predicted with certainty from the independent one, once there is no
residual variation around the regression equation, Sres ¼ 0. On the
other hand, an outcome R2 � 0 stipulates that no regression trend
stems from the observed data, since the residual variation around the
regression equation is greater or equal to the total variation around the
mean value of the dependent variable, Sres � Stot.

The above explained regression method of least squares is directly
applicable to the Bohm–Gross dispersion relation, Eq. (27), derived in
the framework of Boltzmann–Gibbs statistics. However, in order to
apply it in the realm of Kappa statistics, we must, first, choose f¼ 1 in
our Eq. (24), thereby obtaining

x2

x2
pe
¼ 1þ 2

j
j� 3=2

� �
þ j

j� 1=2

� �� �
k2k2De: (36)

Then, the coefficient A in Eq. (31) will be expressed in terms of the
spectral j-index through

A ¼ 2
j

j� 3=2

� �
þ j

j� 1=2

� �
(37)

to be properly determined by the regression method in the interval
3=2 < j <1.

In Figs. 1 and 2, we show the results of the aforementioned appli-
cation to fit the van Hoven and Derfler–Simonen data, respectively, by
Eq. (36), in contrast with Eq. (27). We find out that j ¼ 3:036 0:11

and j ¼ 2:036 0:06, with coefficients of determination R2 ¼ 0:94 and
R2 ¼ 0:85, for the fit of the van Hoven and Derfler–Simonen data,
respectively, by Eq. (36). Therefore, in view of the above discussion,
we conclude that such results are, themselves, extremely satisfactory,
even more, by taking into account R2 ¼ 0:52 and R2 ¼ �0:10, for the
fit of the van Hoven and Derfler–Simonen data, respectively, by Eq.
(27).

V. CONCLUSION

We have proved that the employment of our derived suprather-
mal corrections to the standard Bohm–Gross dispersion has been in
excellent agreement with the van Hoven and Derfler–Simonen experi-
mental data. Our derivation has been based on an extension of the
usual notion of a polytropic index to non-Boltzmann–Gibbs statistics.
Such an extension has allowed for the deduction of an equation of
state of charged particles with basis on the Kappa distribution. Let us
mention a handful of possible applications of our theory.

The breaking of Langmuir waves, propagating with phase speed
vph in a plasma of warm electrons and cold ions, is known to be lim-
ited by the criterion,42

n
n0

� �CBGþ1
�

v2ph
C2
BGv2th

; (38)

where CBG is the Boltzmann–Gibbs adiabatic index, while formulated
as Eq. (13). It shall be interesting to investigate the consequences of
expressing inequality (38) in terms of our second polytropic index C,
while defined by Eq. (11). Actually, Langmuir wave-breaking is of
great importance in several processes occurring in plasma physics,

FIG. 1. The data distribution (circles on the plane) for the wavenumber k and fre-
quency x normalized by the electron Debye length kDe and plasma frequency xpe,
as observed in the experiment conducted by van Hoven.7 The regression method
of least squares41 is applied to fit the data distribution by the suprathermal
Bohm–Gross dispersion relation, Eq. (36) (the curve to the top of the plane, blue
online), in contrast with the usual Bohm–Gross dispersion relation, Eq. (27) (the
curve to the bottom of the plane, red online). We find out that the spectral index
j ¼ 3:036 0:11, with coefficient of determination R2 ¼ 0:94, for the fit by Eq. (36).
Such results are, themselves, extremely satisfactory, even more, by taking into
account R2 ¼ 0:52, for the fit by Eq. (27).

FIG. 2. The data distribution (circles on the plane) for the wavenumber k and fre-
quency x normalized by the electron Debye length kDe and plasma frequency xpe,
as observed in the experiment conducted by Derfler and Simonen.8 The regression
method of least squares41 is applied to fit the data distribution by the suprathermal
Bohm–Gross dispersion relation, Eq. (36) (the curve to the top of the plane, blue
online), in contrast with the usual Bohm–Gross dispersion relation, Eq. (27) (the
curve to the bottom of the plane, red online). We find out that the spectral index
j ¼ 2:036 0:06, with coefficient of determination R2 ¼ 0:85, for the fit by Eq. (36).
Such results are, themselves, extremely satisfactory, even more, by taking into
account R2 ¼ �0:10, for the fit by Eq. (27).
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such as laser pulse compression to extremely short duration43 and
linear–nonlinear mode transition driven by phase synchronization.44

In Boltzmann–Gibbs statistics, the nonlinear electric permittivity,
�, in a plasma of warm electrons and cold ions, may be expressed
through45

�

�0
¼ 1�

x2
pe

x2
exp � e2hE2i

2m2v2thx
2

 !
; (39)

where h�i stands for time averaging and ~E denotes the so-called
ponderomotive electric field, oscillating at an angular frequency x.
It shall be interesting to examine how Eq. (39) modifies in view of
our theory because � plays a key role in inertial confinement fusion
plasmas.46 As a matter of fact, acceleration of electrons from regions
with concentration �1% of the critical concentration, driven by
laser irradiance >1016 W cm�2 lm2, has been recently achieved.47

It is well-known that the ponderomotive field in Eq. (39) causes a
density fluctuation in a warm electron fluid, which, in turn, gives rise
to the so-called nonlinear Bohm–Gross dispersion relation,2

x2

x2
pe
¼ 1þ dn

n0
þ 3k2k2De; (40)

where dn stands for a second-order disturbance in the equilibrium
concentration. It shall be interesting to explore how Eq. (40) modi-
fies in light of our theory, given that density fluctuations are crucial
to describing radio emission from interplanetary shocks, planetary
foreshocks, and some solar flares, a plethora of phenomena com-
monly referred to as the plasma emission framework.48–50 All those
above-mentioned issues shall be addressed in forthcoming
communications.
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